Merge pull request #1189 from pengx17:2.4_sort_by_key

pull/1237/head
Roman Donchenko 11 years ago committed by OpenCV Buildbot
commit 95bdd4b670
  1. 38
      modules/ocl/doc/operations_on_matrices.rst
  2. 25
      modules/ocl/include/opencv2/ocl/ocl.hpp
  3. 176
      modules/ocl/src/opencl/kernel_radix_sort_by_key.cl
  4. 245
      modules/ocl/src/opencl/kernel_sort_by_key.cl
  5. 296
      modules/ocl/src/opencl/kernel_stablesort_by_key.cl
  6. 454
      modules/ocl/src/sort_by_key.cpp
  7. 244
      modules/ocl/test/test_sort.cpp

@ -481,4 +481,40 @@ Performs generalized matrix multiplication.
* **GEMM_1_T** transpose ``src1``
* **GEMM_2_T** transpose ``src2``
.. seealso:: :ocv:func:`gemm`
.. seealso:: :ocv:func:`gemm`
ocl::sortByKey
------------------
Returns void
.. ocv:function:: void ocl::sortByKey(oclMat& keys, oclMat& values, int method, bool isGreaterThan = false)
:param keys: The keys to be used as sorting indices.
:param values: The array of values.
:param isGreaterThan: Determine sorting order.
:param method: supported sorting methods:
* **SORT_BITONIC** bitonic sort, only support power-of-2 buffer size
* **SORT_SELECTION** selection sort, currently cannot sort duplicate keys
* **SORT_MERGE** merge sort
* **SORT_RADIX** radix sort, only support signed int/float keys(``CV_32S``/``CV_32F``)
Returns the sorted result of all the elements in values based on equivalent keys.
The element unit in the values to be sorted is determined from the data type,
i.e., a ``CV_32FC2`` input ``{a1a2, b1b2}`` will be considered as two elements, regardless its matrix dimension.
Both keys and values will be sorted inplace.
Keys needs to be a **single** channel `oclMat`.
Example::
input -
keys = {2, 3, 1} (CV_8UC1)
values = {10,5, 4,3, 6,2} (CV_8UC2)
sortByKey(keys, values, SORT_SELECTION, false);
output -
keys = {1, 2, 3} (CV_8UC1)
values = {6,2, 10,5, 4,3} (CV_8UC2)

@ -1673,6 +1673,31 @@ namespace cv
oclMat diff_buf;
oclMat norm_buf;
};
// current supported sorting methods
enum
{
SORT_BITONIC, // only support power-of-2 buffer size
SORT_SELECTION, // cannot sort duplicate keys
SORT_MERGE,
SORT_RADIX // only support signed int/float keys(CV_32S/CV_32F)
};
//! Returns the sorted result of all the elements in input based on equivalent keys.
//
// The element unit in the values to be sorted is determined from the data type,
// i.e., a CV_32FC2 input {a1a2, b1b2} will be considered as two elements, regardless its
// matrix dimension.
// both keys and values will be sorted inplace
// Key needs to be single channel oclMat.
//
// Example:
// input -
// keys = {2, 3, 1} (CV_8UC1)
// values = {10,5, 4,3, 6,2} (CV_8UC2)
// sortByKey(keys, values, SORT_SELECTION, false);
// output -
// keys = {1, 2, 3} (CV_8UC1)
// values = {6,2, 10,5, 4,3} (CV_8UC2)
void CV_EXPORTS sortByKey(oclMat& keys, oclMat& values, int method, bool isGreaterThan = false);
}
}
#if defined _MSC_VER && _MSC_VER >= 1200

@ -0,0 +1,176 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Peng Xiao, pengxiao@outlook.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#pragma OPENCL EXTENSION cl_khr_byte_addressable_store : enable
#ifndef N // number of radices
#define N 4
#endif
#ifndef K_T
#define K_T float
#endif
#ifndef V_T
#define V_T float
#endif
#ifndef IS_GT
#define IS_GT 0
#endif
// from Thrust::b40c, link:
// https://github.com/thrust/thrust/blob/master/thrust/system/cuda/detail/detail/b40c/radixsort_key_conversion.h
__inline uint convertKey(uint converted_key)
{
#ifdef K_FLT
unsigned int mask = (converted_key & 0x80000000) ? 0xffffffff : 0x80000000;
converted_key ^= mask;
#elif defined(K_INT)
const uint SIGN_MASK = 1u << ((sizeof(int) * 8) - 1);
converted_key ^= SIGN_MASK;
#else
#endif
return converted_key;
}
//FIXME(pengx17):
// exclusive scan, need to be optimized as this is too naive...
kernel
void naiveScanAddition(
__global int * input,
__global int * output,
int size
)
{
if(get_global_id(0) == 0)
{
output[0] = 0;
for(int i = 1; i < size; i ++)
{
output[i] = output[i - 1] + input[i - 1];
}
}
}
// following is ported from
// https://github.com/HSA-Libraries/Bolt/blob/master/include/bolt/cl/sort_uint_kernels.cl
kernel
void histogramRadixN (
__global K_T* unsortedKeys,
__global int * buckets,
uint shiftCount
)
{
const int RADIX_T = N;
const int RADICES_T = (1 << RADIX_T);
const int NUM_OF_ELEMENTS_PER_WORK_ITEM_T = RADICES_T;
const int MASK_T = (1 << RADIX_T) - 1;
int localBuckets[16] = {0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0};
int globalId = get_global_id(0);
int numOfGroups = get_num_groups(0);
/* Calculate thread-histograms */
for(int i = 0; i < NUM_OF_ELEMENTS_PER_WORK_ITEM_T; ++i)
{
uint value = convertKey(as_uint(unsortedKeys[mad24(globalId, NUM_OF_ELEMENTS_PER_WORK_ITEM_T, i)]));
value = (value >> shiftCount) & MASK_T;
#if IS_GT
localBuckets[RADICES_T - value - 1]++;
#else
localBuckets[value]++;
#endif
}
for(int i = 0; i < NUM_OF_ELEMENTS_PER_WORK_ITEM_T; ++i)
{
buckets[mad24(i, RADICES_T * numOfGroups, globalId) ] = localBuckets[i];
}
}
kernel
void permuteRadixN (
__global K_T* unsortedKeys,
__global V_T* unsortedVals,
__global int* scanedBuckets,
uint shiftCount,
__global K_T* sortedKeys,
__global V_T* sortedVals
)
{
const int RADIX_T = N;
const int RADICES_T = (1 << RADIX_T);
const int MASK_T = (1<<RADIX_T) -1;
int globalId = get_global_id(0);
int numOfGroups = get_num_groups(0);
const int NUM_OF_ELEMENTS_PER_WORK_GROUP_T = numOfGroups << N;
int localIndex[16];
/*Load the index to local memory*/
for(int i = 0; i < RADICES_T; ++i)
{
#if IS_GT
localIndex[i] = scanedBuckets[mad24(RADICES_T - i - 1, NUM_OF_ELEMENTS_PER_WORK_GROUP_T, globalId)];
#else
localIndex[i] = scanedBuckets[mad24(i, NUM_OF_ELEMENTS_PER_WORK_GROUP_T, globalId)];
#endif
}
/* Permute elements to appropriate location */
for(int i = 0; i < RADICES_T; ++i)
{
int old_idx = mad24(globalId, RADICES_T, i);
K_T ovalue = unsortedKeys[old_idx];
uint value = convertKey(as_uint(ovalue));
uint maskedValue = (value >> shiftCount) & MASK_T;
uint index = localIndex[maskedValue];
sortedKeys[index] = ovalue;
sortedVals[index] = unsortedVals[old_idx];
localIndex[maskedValue] = index + 1;
}
}

@ -0,0 +1,245 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Peng Xiao, pengxiao@outlook.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef K_T
#define K_T float
#endif
#ifndef V_T
#define V_T float
#endif
#ifndef IS_GT
#define IS_GT false
#endif
#if IS_GT
#define my_comp(x,y) ((x) > (y))
#else
#define my_comp(x,y) ((x) < (y))
#endif
/////////////////////// Bitonic sort ////////////////////////////
// ported from
// https://github.com/HSA-Libraries/Bolt/blob/master/include/bolt/cl/sort_by_key_kernels.cl
__kernel
void bitonicSort
(
__global K_T * keys,
__global V_T * vals,
int count,
int stage,
int passOfStage
)
{
const int threadId = get_global_id(0);
if(threadId >= count / 2)
{
return;
}
const int pairDistance = 1 << (stage - passOfStage);
const int blockWidth = 2 * pairDistance;
int leftId = min( (threadId % pairDistance)
+ (threadId / pairDistance) * blockWidth, count );
int rightId = min( leftId + pairDistance, count );
int temp;
const V_T lval = vals[leftId];
const V_T rval = vals[rightId];
const K_T lkey = keys[leftId];
const K_T rkey = keys[rightId];
int sameDirectionBlockWidth = 1 << stage;
if((threadId/sameDirectionBlockWidth) % 2 == 1)
{
temp = rightId;
rightId = leftId;
leftId = temp;
}
const bool compareResult = my_comp(lkey, rkey);
if(compareResult)
{
keys[rightId] = rkey;
keys[leftId] = lkey;
vals[rightId] = rval;
vals[leftId] = lval;
}
else
{
keys[rightId] = lkey;
keys[leftId] = rkey;
vals[rightId] = lval;
vals[leftId] = rval;
}
}
/////////////////////// Selection sort ////////////////////////////
//kernel is ported from Bolt library:
//https://github.com/HSA-Libraries/Bolt/blob/master/include/bolt/cl/sort_kernels.cl
__kernel
void selectionSortLocal
(
__global K_T * keys,
__global V_T * vals,
const int count,
__local K_T * scratch
)
{
int i = get_local_id(0); // index in workgroup
int numOfGroups = get_num_groups(0); // index in workgroup
int groupID = get_group_id(0);
int wg = get_local_size(0); // workgroup size = block size
int n; // number of elements to be processed for this work group
int offset = groupID * wg;
int same = 0;
vals += offset;
keys += offset;
n = (groupID == (numOfGroups-1))? (count - wg*(numOfGroups-1)) : wg;
int clamped_i= min(i, n - 1);
K_T key1 = keys[clamped_i], key2;
V_T val1 = vals[clamped_i];
scratch[i] = key1;
barrier(CLK_LOCAL_MEM_FENCE);
if(i >= n)
{
return;
}
int pos = 0;
for (int j=0;j<n;++j)
{
key2 = scratch[j];
if(my_comp(key2, key1))
pos++;//calculate the rank of this element in this work group
else
{
if(my_comp(key1, key2))
continue;
else
{
// key1 and key2 are same
same++;
}
}
}
for (int j=0; j< same; j++)
{
vals[pos + j] = val1;
keys[pos + j] = key1;
}
}
__kernel
void selectionSortFinal
(
__global K_T * keys,
__global V_T * vals,
const int count
)
{
const int i = get_local_id(0); // index in workgroup
const int numOfGroups = get_num_groups(0); // index in workgroup
const int groupID = get_group_id(0);
const int wg = get_local_size(0); // workgroup size = block size
int pos = 0, same = 0;
const int offset = get_group_id(0) * wg;
const int remainder = count - wg*(numOfGroups-1);
if((offset + i ) >= count)
return;
V_T val1 = vals[offset + i];
K_T key1 = keys[offset + i];
K_T key2;
for(int j=0; j<numOfGroups-1; j++ )
{
for(int k=0; k<wg; k++)
{
key2 = keys[j*wg + k];
if(my_comp(key1, key2))
break;
else
{
//Increment only if the value is not the same.
if(my_comp(key2, key1))
pos++;
else
same++;
}
}
}
for(int k=0; k<remainder; k++)
{
key2 = keys[(numOfGroups-1)*wg + k];
if(my_comp(key1, key2))
break;
else
{
//Don't increment if the value is the same.
if(my_comp(key2, key1))
pos++;
else
same++;
}
}
for (int j=0; j< same; j++)
{
vals[pos + j] = val1;
keys[pos + j] = key1;
}
}

@ -0,0 +1,296 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Peng Xiao, pengxiao@outlook.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef K_T
#define K_T float
#endif
#ifndef V_T
#define V_T float
#endif
#ifndef IS_GT
#define IS_GT false
#endif
#if IS_GT
#define my_comp(x,y) ((x) > (y))
#else
#define my_comp(x,y) ((x) < (y))
#endif
///////////// parallel merge sort ///////////////
// ported from https://github.com/HSA-Libraries/Bolt/blob/master/include/bolt/cl/stablesort_by_key_kernels.cl
uint lowerBoundLinear( global K_T* data, uint left, uint right, K_T searchVal)
{
// The values firstIndex and lastIndex get modified within the loop, narrowing down the potential sequence
uint firstIndex = left;
uint lastIndex = right;
// This loops through [firstIndex, lastIndex)
// Since firstIndex and lastIndex will be different for every thread depending on the nested branch,
// this while loop will be divergent within a wavefront
while( firstIndex < lastIndex )
{
K_T dataVal = data[ firstIndex ];
// This branch will create divergent wavefronts
if( my_comp( dataVal, searchVal ) )
{
firstIndex = firstIndex+1;
}
else
{
break;
}
}
return firstIndex;
}
// This implements a binary search routine to look for an 'insertion point' in a sequence, denoted
// by a base pointer and left and right index for a particular candidate value. The comparison operator is
// passed as a functor parameter my_comp
// This function returns an index that is the first index whos value would be equal to the searched value
uint lowerBoundBinary( global K_T* data, uint left, uint right, K_T searchVal)
{
// The values firstIndex and lastIndex get modified within the loop, narrowing down the potential sequence
uint firstIndex = left;
uint lastIndex = right;
// This loops through [firstIndex, lastIndex)
// Since firstIndex and lastIndex will be different for every thread depending on the nested branch,
// this while loop will be divergent within a wavefront
while( firstIndex < lastIndex )
{
// midIndex is the average of first and last, rounded down
uint midIndex = ( firstIndex + lastIndex ) / 2;
K_T midValue = data[ midIndex ];
// This branch will create divergent wavefronts
if( my_comp( midValue, searchVal ) )
{
firstIndex = midIndex+1;
// printf( "lowerBound: lastIndex[ %i ]=%i\n", get_local_id( 0 ), lastIndex );
}
else
{
lastIndex = midIndex;
// printf( "lowerBound: firstIndex[ %i ]=%i\n", get_local_id( 0 ), firstIndex );
}
}
return firstIndex;
}
// This implements a binary search routine to look for an 'insertion point' in a sequence, denoted
// by a base pointer and left and right index for a particular candidate value. The comparison operator is
// passed as a functor parameter my_comp
// This function returns an index that is the first index whos value would be greater than the searched value
// If the search value is not found in the sequence, upperbound returns the same result as lowerbound
uint upperBoundBinary( global K_T* data, uint left, uint right, K_T searchVal)
{
uint upperBound = lowerBoundBinary( data, left, right, searchVal );
// printf( "upperBoundBinary: upperBound[ %i, %i ]= %i\n", left, right, upperBound );
// If upperBound == right, then searchVal was not found in the sequence. Just return.
if( upperBound != right )
{
// While the values are equal i.e. !(x < y) && !(y < x) increment the index
K_T upperValue = data[ upperBound ];
while( !my_comp( upperValue, searchVal ) && !my_comp( searchVal, upperValue) && (upperBound != right) )
{
upperBound++;
upperValue = data[ upperBound ];
}
}
return upperBound;
}
// This kernel implements merging of blocks of sorted data. The input to this kernel most likely is
// the output of blockInsertionSortTemplate. It is expected that the source array contains multiple
// blocks, each block is independently sorted. The goal is to write into the output buffer half as
// many blocks, of double the size. The even and odd blocks are stably merged together to form
// a new sorted block of twice the size. The algorithm is out-of-place.
kernel void merge(
global K_T* iKey_ptr,
global V_T* iValue_ptr,
global K_T* oKey_ptr,
global V_T* oValue_ptr,
const uint srcVecSize,
const uint srcLogicalBlockSize,
local K_T* key_lds,
local V_T* val_lds
)
{
size_t globalID = get_global_id( 0 );
size_t groupID = get_group_id( 0 );
size_t localID = get_local_id( 0 );
size_t wgSize = get_local_size( 0 );
// Abort threads that are passed the end of the input vector
if( globalID >= srcVecSize )
return; // on SI this doesn't mess-up barriers
// For an element in sequence A, find the lowerbound index for it in sequence B
uint srcBlockNum = globalID / srcLogicalBlockSize;
uint srcBlockIndex = globalID % srcLogicalBlockSize;
// printf( "mergeTemplate: srcBlockNum[%i]=%i\n", srcBlockNum, srcBlockIndex );
// Pairs of even-odd blocks will be merged together
// An even block should search for an insertion point in the next odd block,
// and the odd block should look for an insertion point in the corresponding previous even block
uint dstLogicalBlockSize = srcLogicalBlockSize<<1;
uint leftBlockIndex = globalID & ~((dstLogicalBlockSize) - 1 );
leftBlockIndex += (srcBlockNum & 0x1) ? 0 : srcLogicalBlockSize;
leftBlockIndex = min( leftBlockIndex, srcVecSize );
uint rightBlockIndex = min( leftBlockIndex + srcLogicalBlockSize, srcVecSize );
// if( localID == 0 )
// {
// printf( "mergeTemplate: wavefront[ %i ] logicalBlock[ %i ] logicalIndex[ %i ] leftBlockIndex[ %i ] <=> rightBlockIndex[ %i ]\n", groupID, srcBlockNum, srcBlockIndex, leftBlockIndex, rightBlockIndex );
// }
// For a particular element in the input array, find the lowerbound index for it in the search sequence given by leftBlockIndex & rightBlockIndex
// uint insertionIndex = lowerBoundLinear( iKey_ptr, leftBlockIndex, rightBlockIndex, iKey_ptr[ globalID ], my_comp ) - leftBlockIndex;
uint insertionIndex = 0;
if( (srcBlockNum & 0x1) == 0 )
{
insertionIndex = lowerBoundBinary( iKey_ptr, leftBlockIndex, rightBlockIndex, iKey_ptr[ globalID ] ) - leftBlockIndex;
}
else
{
insertionIndex = upperBoundBinary( iKey_ptr, leftBlockIndex, rightBlockIndex, iKey_ptr[ globalID ] ) - leftBlockIndex;
}
// The index of an element in the result sequence is the summation of it's indixes in the two input
// sequences
uint dstBlockIndex = srcBlockIndex + insertionIndex;
uint dstBlockNum = srcBlockNum/2;
// if( (dstBlockNum*dstLogicalBlockSize)+dstBlockIndex == 395 )
// {
// printf( "mergeTemplate: (dstBlockNum[ %i ] * dstLogicalBlockSize[ %i ]) + dstBlockIndex[ %i ] = srcBlockIndex[ %i ] + insertionIndex[ %i ]\n", dstBlockNum, dstLogicalBlockSize, dstBlockIndex, srcBlockIndex, insertionIndex );
// printf( "mergeTemplate: dstBlockIndex[ %i ] = iKey_ptr[ %i ] ( %i )\n", (dstBlockNum*dstLogicalBlockSize)+dstBlockIndex, globalID, iKey_ptr[ globalID ] );
// }
oKey_ptr[ (dstBlockNum*dstLogicalBlockSize)+dstBlockIndex ] = iKey_ptr[ globalID ];
oValue_ptr[ (dstBlockNum*dstLogicalBlockSize)+dstBlockIndex ] = iValue_ptr[ globalID ];
// printf( "mergeTemplate: leftResultIndex[ %i ]=%i + %i\n", leftResultIndex, srcBlockIndex, leftInsertionIndex );
}
kernel void blockInsertionSort(
global K_T* key_ptr,
global V_T* value_ptr,
const uint vecSize,
local K_T* key_lds,
local V_T* val_lds
)
{
size_t gloId = get_global_id( 0 );
size_t groId = get_group_id( 0 );
size_t locId = get_local_id( 0 );
size_t wgSize = get_local_size( 0 );
bool in_range = gloId < vecSize;
K_T key;
V_T val;
// Abort threads that are passed the end of the input vector
if (in_range)
{
// Make a copy of the entire input array into fast local memory
key = key_ptr[ gloId ];
val = value_ptr[ gloId ];
key_lds[ locId ] = key;
val_lds[ locId ] = val;
}
barrier( CLK_LOCAL_MEM_FENCE );
// Sorts a workgroup using a naive insertion sort
// The sort uses one thread within a workgroup to sort the entire workgroup
if( locId == 0 && in_range )
{
// The last workgroup may have an irregular size, so we calculate a per-block endIndex
// endIndex is essentially emulating a mod operator with subtraction and multiply
size_t endIndex = vecSize - ( groId * wgSize );
endIndex = min( endIndex, wgSize );
// printf( "Debug: endIndex[%i]=%i\n", groId, endIndex );
// Indices are signed because the while loop will generate a -1 index inside of the max function
for( int currIndex = 1; currIndex < endIndex; ++currIndex )
{
key = key_lds[ currIndex ];
val = val_lds[ currIndex ];
int scanIndex = currIndex;
K_T ldsKey = key_lds[scanIndex - 1];
while( scanIndex > 0 && my_comp( key, ldsKey ) )
{
V_T ldsVal = val_lds[scanIndex - 1];
// If the keys are being swapped, make sure the values are swapped identicaly
key_lds[ scanIndex ] = ldsKey;
val_lds[ scanIndex ] = ldsVal;
scanIndex = scanIndex - 1;
ldsKey = key_lds[ max( 0, scanIndex - 1 ) ]; // scanIndex-1 may be -1
}
key_lds[ scanIndex ] = key;
val_lds[ scanIndex ] = val;
}
}
barrier( CLK_LOCAL_MEM_FENCE );
if(in_range)
{
key = key_lds[ locId ];
key_ptr[ gloId ] = key;
val = val_lds[ locId ];
value_ptr[ gloId ] = val;
}
}
///////////// Radix sort from b40c library /////////////

@ -0,0 +1,454 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Peng Xiao, pengxiao@outlook.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <iomanip>
#include "precomp.hpp"
namespace cv
{
namespace ocl
{
extern const char * kernel_sort_by_key;
extern const char * kernel_stablesort_by_key;
extern const char * kernel_radix_sort_by_key;
void sortByKey(oclMat& keys, oclMat& vals, size_t vecSize, int method, bool isGreaterThan);
//TODO(pengx17): change this value depending on device other than a constant
const static unsigned int GROUP_SIZE = 256;
const char * depth_strings[] =
{
"uchar", //CV_8U
"char", //CV_8S
"ushort", //CV_16U
"short", //CV_16S
"int", //CV_32S
"float", //CV_32F
"double" //CV_64F
};
void static genSortBuildOption(const oclMat& keys, const oclMat& vals, bool isGreaterThan, char * build_opt_buf)
{
sprintf(build_opt_buf, "-D IS_GT=%d -D K_T=%s -D V_T=%s",
isGreaterThan?1:0, depth_strings[keys.depth()], depth_strings[vals.depth()]);
if(vals.oclchannels() > 1)
{
sprintf( build_opt_buf + strlen(build_opt_buf), "%d", vals.oclchannels());
}
}
inline bool isSizePowerOf2(size_t size)
{
return ((size - 1) & (size)) == 0;
}
namespace bitonic_sort
{
static void sortByKey(oclMat& keys, oclMat& vals, size_t vecSize, bool isGreaterThan)
{
CV_Assert(isSizePowerOf2(vecSize));
Context * cxt = Context::getContext();
size_t globalThreads[3] = {vecSize / 2, 1, 1};
size_t localThreads[3] = {GROUP_SIZE, 1, 1};
// 2^numStages should be equal to vecSize or the output is invalid
int numStages = 0;
for(int i = vecSize; i > 1; i >>= 1)
{
++numStages;
}
char build_opt_buf [100];
genSortBuildOption(keys, vals, isGreaterThan, build_opt_buf);
const int argc = 5;
std::vector< std::pair<size_t, const void *> > args(argc);
String kernelname = "bitonicSort";
args[0] = std::make_pair(sizeof(cl_mem), (void *)&keys.data);
args[1] = std::make_pair(sizeof(cl_mem), (void *)&vals.data);
args[2] = std::make_pair(sizeof(cl_int), (void *)&vecSize);
for(int stage = 0; stage < numStages; ++stage)
{
args[3] = std::make_pair(sizeof(cl_int), (void *)&stage);
for(int passOfStage = 0; passOfStage < stage + 1; ++passOfStage)
{
args[4] = std::make_pair(sizeof(cl_int), (void *)&passOfStage);
openCLExecuteKernel(cxt, &kernel_sort_by_key, kernelname, globalThreads, localThreads, args, -1, -1, build_opt_buf);
}
}
}
} /* bitonic_sort */
namespace selection_sort
{
// FIXME:
// This function cannot sort arrays with duplicated keys
static void sortByKey(oclMat& keys, oclMat& vals, size_t vecSize, bool isGreaterThan)
{
CV_Error(-1, "This function is incorrect at the moment.");
Context * cxt = Context::getContext();
size_t globalThreads[3] = {vecSize, 1, 1};
size_t localThreads[3] = {GROUP_SIZE, 1, 1};
std::vector< std::pair<size_t, const void *> > args;
char build_opt_buf [100];
genSortBuildOption(keys, vals, isGreaterThan, build_opt_buf);
//local
String kernelname = "selectionSortLocal";
int lds_size = GROUP_SIZE * keys.elemSize();
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&keys.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&vals.data));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&vecSize));
args.push_back(std::make_pair(lds_size, (void*)NULL));
openCLExecuteKernel(cxt, &kernel_sort_by_key, kernelname, globalThreads, localThreads, args, -1, -1, build_opt_buf);
//final
kernelname = "selectionSortFinal";
args.pop_back();
openCLExecuteKernel(cxt, &kernel_sort_by_key, kernelname, globalThreads, localThreads, args, -1, -1, build_opt_buf);
}
} /* selection_sort */
namespace radix_sort
{
//FIXME(pengx17):
// exclusive scan, need to be optimized as this is too naive...
//void naive_scan_addition(oclMat& input, oclMat& output)
//{
// Context * cxt = Context::getContext();
// size_t vecSize = input.cols;
// size_t globalThreads[3] = {1, 1, 1};
// size_t localThreads[3] = {1, 1, 1};
//
// String kernelname = "naiveScanAddition";
//
// std::vector< std::pair<size_t, const void *> > args;
// args.push_back(std::make_pair(sizeof(cl_mem), (void *)&input.data));
// args.push_back(std::make_pair(sizeof(cl_mem), (void *)&output.data));
// args.push_back(std::make_pair(sizeof(cl_int), (void *)&vecSize));
// openCLExecuteKernel(cxt, &kernel_radix_sort_by_key, kernelname, globalThreads, localThreads, args, -1, -1);
//}
void static naive_scan_addition_cpu(oclMat& input, oclMat& output)
{
Mat m_input = input, m_output(output.size(), output.type());
MatIterator_<int> i_mit = m_input.begin<int>();
MatIterator_<int> o_mit = m_output.begin<int>();
*o_mit = 0;
++i_mit;
++o_mit;
for(; i_mit != m_input.end<int>(); ++i_mit, ++o_mit)
{
*o_mit = *(o_mit - 1) + *(i_mit - 1);
}
output = m_output;
}
//radix sort ported from Bolt
static void sortByKey(oclMat& keys, oclMat& vals, size_t origVecSize, bool isGreaterThan)
{
CV_Assert(keys.depth() == CV_32S || keys.depth() == CV_32F); // we assume keys are 4 bytes
bool isKeyFloat = keys.type() == CV_32F;
const int RADIX = 4; //Now you cannot replace this with Radix 8 since there is a
//local array of 16 elements in the histogram kernel.
const int RADICES = (1 << RADIX); //Values handeled by each work-item?
bool newBuffer = false;
size_t vecSize = origVecSize;
unsigned int groupSize = RADICES;
size_t mulFactor = groupSize * RADICES;
oclMat buffer_keys, buffer_vals;
if(origVecSize % mulFactor != 0)
{
vecSize = ((vecSize + mulFactor) / mulFactor) * mulFactor;
buffer_keys.create(1, vecSize, keys.type());
buffer_vals.create(1, vecSize, vals.type());
Scalar padding_value;
oclMat roi_buffer_vals = buffer_vals(Rect(0,0,origVecSize,1));
if(isGreaterThan)
{
switch(buffer_keys.depth())
{
case CV_32F:
padding_value = Scalar::all(-FLT_MAX);
break;
case CV_32S:
padding_value = Scalar::all(INT_MIN);
break;
}
}
else
{
switch(buffer_keys.depth())
{
case CV_32F:
padding_value = Scalar::all(FLT_MAX);
break;
case CV_32S:
padding_value = Scalar::all(INT_MAX);
break;
}
}
ocl::copyMakeBorder(
keys(Rect(0,0,origVecSize,1)), buffer_keys,
0, 0, 0, vecSize - origVecSize,
BORDER_CONSTANT, padding_value);
vals(Rect(0,0,origVecSize,1)).copyTo(roi_buffer_vals);
newBuffer = true;
}
else
{
buffer_keys = keys;
buffer_vals = vals;
newBuffer = false;
}
oclMat swap_input_keys(1, vecSize, keys.type());
oclMat swap_input_vals(1, vecSize, vals.type());
oclMat hist_bin_keys(1, vecSize, CV_32SC1);
oclMat hist_bin_dest_keys(1, vecSize, CV_32SC1);
Context * cxt = Context::getContext();
size_t globalThreads[3] = {vecSize / RADICES, 1, 1};
size_t localThreads[3] = {groupSize, 1, 1};
std::vector< std::pair<size_t, const void *> > args;
char build_opt_buf [100];
genSortBuildOption(keys, vals, isGreaterThan, build_opt_buf);
//additional build option for radix sort
sprintf(build_opt_buf + strlen(build_opt_buf), " -D K_%s", isKeyFloat?"FLT":"INT");
String kernelnames[2] = {String("histogramRadixN"), String("permuteRadixN")};
int swap = 0;
for(int bits = 0; bits < (static_cast<int>(keys.elemSize()) * 8); bits += RADIX)
{
args.clear();
//Do a histogram pass locally
if(swap == 0)
{
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&buffer_keys.data));
}
else
{
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&swap_input_keys.data));
}
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&hist_bin_keys.data));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&bits));
openCLExecuteKernel(cxt, &kernel_radix_sort_by_key, kernelnames[0], globalThreads, localThreads,
args, -1, -1, build_opt_buf);
args.clear();
//Perform a global scan
naive_scan_addition_cpu(hist_bin_keys, hist_bin_dest_keys);
// end of scan
if(swap == 0)
{
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&buffer_keys.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&buffer_vals.data));
}
else
{
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&swap_input_keys.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&swap_input_vals.data));
}
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&hist_bin_dest_keys.data));
args.push_back(std::make_pair(sizeof(cl_int), (void *)&bits));
if(swap == 0)
{
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&swap_input_keys.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&swap_input_vals.data));
}
else
{
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&buffer_keys.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&buffer_vals.data));
}
openCLExecuteKernel(cxt, &kernel_radix_sort_by_key, kernelnames[1], globalThreads, localThreads,
args, -1, -1, build_opt_buf);
swap = swap ? 0 : 1;
}
if(newBuffer)
{
buffer_keys(Rect(0,0,origVecSize,1)).copyTo(keys);
buffer_vals(Rect(0,0,origVecSize,1)).copyTo(vals);
}
}
} /* radix_sort */
namespace merge_sort
{
static void sortByKey(oclMat& keys, oclMat& vals, size_t vecSize, bool isGreaterThan)
{
Context * cxt = Context::getContext();
size_t globalThreads[3] = {vecSize, 1, 1};
size_t localThreads[3] = {GROUP_SIZE, 1, 1};
std::vector< std::pair<size_t, const void *> > args;
char build_opt_buf [100];
genSortBuildOption(keys, vals, isGreaterThan, build_opt_buf);
String kernelname[] = {String("blockInsertionSort"), String("merge")};
int keylds_size = GROUP_SIZE * keys.elemSize();
int vallds_size = GROUP_SIZE * vals.elemSize();
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&keys.data));
args.push_back(std::make_pair(sizeof(cl_mem), (void *)&vals.data));
args.push_back(std::make_pair(sizeof(cl_uint), (void *)&vecSize));
args.push_back(std::make_pair(keylds_size, (void*)NULL));
args.push_back(std::make_pair(vallds_size, (void*)NULL));
openCLExecuteKernel(cxt, &kernel_stablesort_by_key, kernelname[0], globalThreads, localThreads, args, -1, -1, build_opt_buf);
// Early exit for the case of no merge passes, values are already in destination vector
if(vecSize <= GROUP_SIZE)
{
return;
}
// An odd number of elements requires an extra merge pass to sort
size_t numMerges = 0;
// Calculate the log2 of vecSize, taking into acvecSize our block size from kernel 1 is 64
// this is how many merge passes we want
size_t log2BlockSize = vecSize >> 6;
for( ; log2BlockSize > 1; log2BlockSize >>= 1 )
{
++numMerges;
}
// Check to see if the input vector size is a power of 2, if not we will need last merge pass
numMerges += isSizePowerOf2(vecSize)? 1: 0;
// Allocate a flipflop buffer because the merge passes are out of place
oclMat tmpKeyBuffer(keys.size(), keys.type());
oclMat tmpValBuffer(vals.size(), vals.type());
args.resize(8);
args[4] = std::make_pair(sizeof(cl_uint), (void *)&vecSize);
args[6] = std::make_pair(keylds_size, (void*)NULL);
args[7] = std::make_pair(vallds_size, (void*)NULL);
for(size_t pass = 1; pass <= numMerges; ++pass )
{
// For each pass, flip the input-output buffers
if( pass & 0x1 )
{
args[0] = std::make_pair(sizeof(cl_mem), (void *)&keys.data);
args[1] = std::make_pair(sizeof(cl_mem), (void *)&vals.data);
args[2] = std::make_pair(sizeof(cl_mem), (void *)&tmpKeyBuffer.data);
args[3] = std::make_pair(sizeof(cl_mem), (void *)&tmpValBuffer.data);
}
else
{
args[0] = std::make_pair(sizeof(cl_mem), (void *)&tmpKeyBuffer.data);
args[1] = std::make_pair(sizeof(cl_mem), (void *)&tmpValBuffer.data);
args[2] = std::make_pair(sizeof(cl_mem), (void *)&keys.data);
args[3] = std::make_pair(sizeof(cl_mem), (void *)&vals.data);
}
// For each pass, the merge window doubles
unsigned int srcLogicalBlockSize = static_cast<unsigned int>( localThreads[0] << (pass-1) );
args[5] = std::make_pair(sizeof(cl_uint), (void *)&srcLogicalBlockSize);
openCLExecuteKernel(cxt, &kernel_stablesort_by_key, kernelname[1], globalThreads, localThreads, args, -1, -1, build_opt_buf);
}
// If there are an odd number of merges, then the output data is sitting in the temp buffer. We need to copy
// the results back into the input array
if( numMerges & 1 )
{
tmpKeyBuffer.copyTo(keys);
tmpValBuffer.copyTo(vals);
}
}
} /* merge_sort */
}
} /* namespace cv { namespace ocl */
void cv::ocl::sortByKey(oclMat& keys, oclMat& vals, size_t vecSize, int method, bool isGreaterThan)
{
CV_Assert( keys.rows == 1 ); // we only allow one dimensional input
CV_Assert( keys.channels() == 1 ); // we only allow one channel keys
CV_Assert( vecSize <= static_cast<size_t>(keys.cols) );
switch(method)
{
case SORT_BITONIC:
bitonic_sort::sortByKey(keys, vals, vecSize, isGreaterThan);
break;
case SORT_SELECTION:
selection_sort::sortByKey(keys, vals, vecSize, isGreaterThan);
break;
case SORT_RADIX:
radix_sort::sortByKey(keys, vals, vecSize, isGreaterThan);
break;
case SORT_MERGE:
merge_sort::sortByKey(keys, vals, vecSize, isGreaterThan);
break;
}
}
void cv::ocl::sortByKey(oclMat& keys, oclMat& vals, int method, bool isGreaterThan)
{
CV_Assert( keys.size() == vals.size() );
CV_Assert( keys.rows == 1 ); // we only allow one dimensional input
size_t vecSize = static_cast<size_t>(keys.cols);
sortByKey(keys, vals, vecSize, method, isGreaterThan);
}

@ -0,0 +1,244 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Peng Xiao, pengxiao@outlook.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other oclMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include <map>
#include <functional>
#include "precomp.hpp"
using namespace std;
using namespace cvtest;
using namespace testing;
using namespace cv;
namespace
{
IMPLEMENT_PARAM_CLASS(IsGreaterThan, bool)
IMPLEMENT_PARAM_CLASS(InputSize, int)
IMPLEMENT_PARAM_CLASS(SortMethod, int)
template<class T>
struct KV_CVTYPE{ static int toType() {return 0;} };
template<> struct KV_CVTYPE<int> { static int toType() {return CV_32SC1;} };
template<> struct KV_CVTYPE<float>{ static int toType() {return CV_32FC1;} };
template<> struct KV_CVTYPE<Vec2i>{ static int toType() {return CV_32SC2;} };
template<> struct KV_CVTYPE<Vec2f>{ static int toType() {return CV_32FC2;} };
template<class key_type, class val_type>
bool kvgreater(pair<key_type, val_type> p1, pair<key_type, val_type> p2)
{
return p1.first > p2.first;
}
template<class key_type, class val_type>
bool kvless(pair<key_type, val_type> p1, pair<key_type, val_type> p2)
{
return p1.first < p2.first;
}
template<class key_type, class val_type>
void toKVPair(
MatConstIterator_<key_type> kit,
MatConstIterator_<val_type> vit,
int vecSize,
vector<pair<key_type, val_type> >& kvres
)
{
kvres.clear();
for(int i = 0; i < vecSize; i ++)
{
kvres.push_back(make_pair(*kit, *vit));
++kit;
++vit;
}
}
template<class key_type, class val_type>
void kvquicksort(Mat& keys, Mat& vals, bool isGreater = false)
{
vector<pair<key_type, val_type> > kvres;
toKVPair(keys.begin<key_type>(), vals.begin<val_type>(), keys.cols, kvres);
if(isGreater)
{
std::sort(kvres.begin(), kvres.end(), kvgreater<key_type, val_type>);
}
else
{
std::sort(kvres.begin(), kvres.end(), kvless<key_type, val_type>);
}
key_type * kptr = keys.ptr<key_type>();
val_type * vptr = vals.ptr<val_type>();
for(int i = 0; i < keys.cols; i ++)
{
kptr[i] = kvres[i].first;
vptr[i] = kvres[i].second;
}
}
class SortByKey_STL
{
public:
static void sort(cv::Mat&, cv::Mat&, bool is_gt);
private:
typedef void (*quick_sorter)(cv::Mat&, cv::Mat&, bool);
SortByKey_STL();
quick_sorter quick_sorters[CV_64FC4][CV_64FC4];
static SortByKey_STL instance;
};
SortByKey_STL SortByKey_STL::instance = SortByKey_STL();
SortByKey_STL::SortByKey_STL()
{
memset(instance.quick_sorters, 0, sizeof(quick_sorters));
#define NEW_SORTER(KT, VT) \
instance.quick_sorters[KV_CVTYPE<KT>::toType()][KV_CVTYPE<VT>::toType()] = kvquicksort<KT, VT>;
NEW_SORTER(int, int);
NEW_SORTER(int, Vec2i);
NEW_SORTER(int, float);
NEW_SORTER(int, Vec2f);
NEW_SORTER(float, int);
NEW_SORTER(float, Vec2i);
NEW_SORTER(float, float);
NEW_SORTER(float, Vec2f);
#undef NEW_SORTER
}
void SortByKey_STL::sort(cv::Mat& keys, cv::Mat& vals, bool is_gt)
{
instance.quick_sorters[keys.type()][vals.type()](keys, vals, is_gt);
}
bool checkUnstableSorterResult(const Mat& gkeys_, const Mat& gvals_,
const Mat& /*dkeys_*/, const Mat& dvals_)
{
int cn_val = gvals_.channels();
int count = gkeys_.cols;
//for convenience we convert depth to float and channels to 1
Mat gkeys, gvals, dkeys, dvals;
gkeys_.reshape(1).convertTo(gkeys, CV_32F);
gvals_.reshape(1).convertTo(gvals, CV_32F);
//dkeys_.reshape(1).convertTo(dkeys, CV_32F);
dvals_.reshape(1).convertTo(dvals, CV_32F);
float * gkptr = gkeys.ptr<float>();
float * gvptr = gvals.ptr<float>();
//float * dkptr = dkeys.ptr<float>();
float * dvptr = dvals.ptr<float>();
for(int i = 0; i < count - 1; ++i)
{
int iden_count = 0;
// firstly calculate the number of identical keys
while(gkptr[i + iden_count] == gkptr[i + 1 + iden_count])
{
++ iden_count;
}
// sort dv and gv
int num_of_val = (iden_count + 1) * cn_val;
std::sort(gvptr + i * cn_val, gvptr + i * cn_val + num_of_val);
std::sort(dvptr + i * cn_val, dvptr + i * cn_val + num_of_val);
// then check if [i, i + iden_count) is the same
for(int j = 0; j < num_of_val; ++j)
{
if(gvptr[i + j] != dvptr[i + j])
{
return false;
}
}
i += iden_count;
}
return true;
}
}
#define INPUT_SIZES Values(InputSize(0x10), InputSize(0x100), InputSize(0x10000)) //2^4, 2^8, 2^16
#define KEY_TYPES Values(MatType(CV_32SC1), MatType(CV_32FC1))
#define VAL_TYPES Values(MatType(CV_32SC1), MatType(CV_32SC2), MatType(CV_32FC1), MatType(CV_32FC2))
#define SORT_METHODS Values(SortMethod(cv::ocl::SORT_BITONIC),SortMethod(cv::ocl::SORT_MERGE),SortMethod(cv::ocl::SORT_RADIX)/*,SortMethod(cv::ocl::SORT_SELECTION)*/)
#define F_OR_T Values(IsGreaterThan(false), IsGreaterThan(true))
PARAM_TEST_CASE(SortByKey, InputSize, MatType, MatType, SortMethod, IsGreaterThan)
{
InputSize input_size;
MatType key_type, val_type;
SortMethod method;
IsGreaterThan is_gt;
Mat mat_key, mat_val;
virtual void SetUp()
{
input_size = GET_PARAM(0);
key_type = GET_PARAM(1);
val_type = GET_PARAM(2);
method = GET_PARAM(3);
is_gt = GET_PARAM(4);
using namespace cv;
// fill key and val
mat_key = randomMat(Size(input_size, 1), key_type, INT_MIN, INT_MAX);
mat_val = randomMat(Size(input_size, 1), val_type, INT_MIN, INT_MAX);
}
};
TEST_P(SortByKey, Accuracy)
{
using namespace cv;
ocl::oclMat oclmat_key(mat_key);
ocl::oclMat oclmat_val(mat_val);
ocl::sortByKey(oclmat_key, oclmat_val, method, is_gt);
SortByKey_STL::sort(mat_key, mat_val, is_gt);
EXPECT_MAT_NEAR(mat_key, oclmat_key, 0.0);
EXPECT_TRUE(checkUnstableSorterResult(mat_key, mat_val, oclmat_key, oclmat_val));
}
INSTANTIATE_TEST_CASE_P(OCL_SORT, SortByKey, Combine(INPUT_SIZES, KEY_TYPES, VAL_TYPES, SORT_METHODS, F_OR_T));
Loading…
Cancel
Save