Improve SIFT for arm64/Apple silicon

- Reduce branch density by collapsing compares.
- Fix windows build errors
- Use OpenCV universal intrinsics
- Use v_check_any and v_signmask as requested
pull/20204/head
Developer-Ecosystem-Engineering 4 years ago
parent 0e8431d17b
commit 9557b9f70f
  1. 195
      modules/features2d/src/sift.simd.hpp

@ -450,31 +450,184 @@ public:
const sift_wt* currptr = img.ptr<sift_wt>(r);
const sift_wt* prevptr = prev.ptr<sift_wt>(r);
const sift_wt* nextptr = next.ptr<sift_wt>(r);
int c = SIFT_IMG_BORDER;
for( int c = SIFT_IMG_BORDER; c < cols-SIFT_IMG_BORDER; c++)
#if CV_SIMD && !(DoG_TYPE_SHORT)
const int vecsize = v_float32::nlanes;
for( ; c <= cols-SIFT_IMG_BORDER - vecsize; c += vecsize)
{
v_float32 val = vx_load(&currptr[c]);
v_float32 _00,_01,_02;
v_float32 _10, _12;
v_float32 _20,_21,_22;
v_float32 vmin,vmax;
v_float32 cond = v_abs(val) > vx_setall_f32((float)threshold);
if (!v_check_any(cond))
{
continue;
}
_00 = vx_load(&currptr[c-step-1]); _01 = vx_load(&currptr[c-step]); _02 = vx_load(&currptr[c-step+1]);
_10 = vx_load(&currptr[c -1]); _12 = vx_load(&currptr[c +1]);
_20 = vx_load(&currptr[c+step-1]); _21 = vx_load(&currptr[c+step]); _22 = vx_load(&currptr[c+step+1]);
vmax = v_max(v_max(v_max(_00,_01),v_max(_02,_10)),v_max(v_max(_12,_20),v_max(_21,_22)));
vmin = v_min(v_min(v_min(_00,_01),v_min(_02,_10)),v_min(v_min(_12,_20),v_min(_21,_22)));
v_float32 condp = cond & (val > vx_setall_f32(0)) & (val >= vmax);
v_float32 condm = cond & (val < vx_setall_f32(0)) & (val <= vmin);
cond = condp | condm;
if (!v_check_any(cond))
{
continue;
}
_00 = vx_load(&prevptr[c-step-1]); _01 = vx_load(&prevptr[c-step]); _02 = vx_load(&prevptr[c-step+1]);
_10 = vx_load(&prevptr[c -1]); _12 = vx_load(&prevptr[c +1]);
_20 = vx_load(&prevptr[c+step-1]); _21 = vx_load(&prevptr[c+step]); _22 = vx_load(&prevptr[c+step+1]);
vmax = v_max(v_max(v_max(_00,_01),v_max(_02,_10)),v_max(v_max(_12,_20),v_max(_21,_22)));
vmin = v_min(v_min(v_min(_00,_01),v_min(_02,_10)),v_min(v_min(_12,_20),v_min(_21,_22)));
condp &= (val >= vmax);
condm &= (val <= vmin);
cond = condp | condm;
if (!v_check_any(cond))
{
continue;
}
v_float32 _11p = vx_load(&prevptr[c]);
v_float32 _11n = vx_load(&nextptr[c]);
v_float32 max_middle = v_max(_11n,_11p);
v_float32 min_middle = v_min(_11n,_11p);
_00 = vx_load(&nextptr[c-step-1]); _01 = vx_load(&nextptr[c-step]); _02 = vx_load(&nextptr[c-step+1]);
_10 = vx_load(&nextptr[c -1]); _12 = vx_load(&nextptr[c +1]);
_20 = vx_load(&nextptr[c+step-1]); _21 = vx_load(&nextptr[c+step]); _22 = vx_load(&nextptr[c+step+1]);
vmax = v_max(v_max(v_max(_00,_01),v_max(_02,_10)),v_max(v_max(_12,_20),v_max(_21,_22)));
vmin = v_min(v_min(v_min(_00,_01),v_min(_02,_10)),v_min(v_min(_12,_20),v_min(_21,_22)));
condp &= (val >= v_max(vmax,max_middle));
condm &= (val <= v_min(vmin,min_middle));
cond = condp | condm;
if (!v_check_any(cond))
{
continue;
}
int mask = v_signmask(cond);
for (int k = 0; k<vecsize;k++)
{
if ((mask & (1<<k)) == 0)
continue;
CV_TRACE_REGION("pixel_candidate_simd");
KeyPoint kpt;
int r1 = r, c1 = c+k, layer = i;
if( !adjustLocalExtrema(dog_pyr, kpt, o, layer, r1, c1,
nOctaveLayers, (float)contrastThreshold,
(float)edgeThreshold, (float)sigma) )
continue;
float scl_octv = kpt.size*0.5f/(1 << o);
float omax = calcOrientationHist(gauss_pyr[o*(nOctaveLayers+3) + layer],
Point(c1, r1),
cvRound(SIFT_ORI_RADIUS * scl_octv),
SIFT_ORI_SIG_FCTR * scl_octv,
hist, n);
float mag_thr = (float)(omax * SIFT_ORI_PEAK_RATIO);
for( int j = 0; j < n; j++ )
{
int l = j > 0 ? j - 1 : n - 1;
int r2 = j < n-1 ? j + 1 : 0;
if( hist[j] > hist[l] && hist[j] > hist[r2] && hist[j] >= mag_thr )
{
float bin = j + 0.5f * (hist[l]-hist[r2]) / (hist[l] - 2*hist[j] + hist[r2]);
bin = bin < 0 ? n + bin : bin >= n ? bin - n : bin;
kpt.angle = 360.f - (float)((360.f/n) * bin);
if(std::abs(kpt.angle - 360.f) < FLT_EPSILON)
kpt.angle = 0.f;
kpts_.push_back(kpt);
}
}
}
}
#endif //CV_SIMD && !(DoG_TYPE_SHORT)
// vector loop reminder, better predictibility and less branch density
for( ; c < cols-SIFT_IMG_BORDER; c++)
{
sift_wt val = currptr[c];
if (std::abs(val) <= threshold)
continue;
sift_wt _00,_01,_02;
sift_wt _10, _12;
sift_wt _20,_21,_22;
_00 = currptr[c-step-1]; _01 = currptr[c-step]; _02 = currptr[c-step+1];
_10 = currptr[c -1]; _12 = currptr[c +1];
_20 = currptr[c+step-1]; _21 = currptr[c+step]; _22 = currptr[c+step+1];
bool calculate = false;
if (val > 0)
{
sift_wt vmax = std::max(std::max(std::max(_00,_01),std::max(_02,_10)),std::max(std::max(_12,_20),std::max(_21,_22)));
if (val >= vmax)
{
_00 = prevptr[c-step-1]; _01 = prevptr[c-step]; _02 = prevptr[c-step+1];
_10 = prevptr[c -1]; _12 = prevptr[c +1];
_20 = prevptr[c+step-1]; _21 = prevptr[c+step]; _22 = prevptr[c+step+1];
vmax = std::max(std::max(std::max(_00,_01),std::max(_02,_10)),std::max(std::max(_12,_20),std::max(_21,_22)));
if (val >= vmax)
{
_00 = nextptr[c-step-1]; _01 = nextptr[c-step]; _02 = nextptr[c-step+1];
_10 = nextptr[c -1]; _12 = nextptr[c +1];
_20 = nextptr[c+step-1]; _21 = nextptr[c+step]; _22 = nextptr[c+step+1];
vmax = std::max(std::max(std::max(_00,_01),std::max(_02,_10)),std::max(std::max(_12,_20),std::max(_21,_22)));
if (val >= vmax)
{
sift_wt _11p = prevptr[c], _11n = nextptr[c];
calculate = (val >= std::max(_11p,_11n));
}
}
}
} else { // val cant be zero here (first abs took care of zero), must be negative
sift_wt vmin = std::min(std::min(std::min(_00,_01),std::min(_02,_10)),std::min(std::min(_12,_20),std::min(_21,_22)));
if (val <= vmin)
{
_00 = prevptr[c-step-1]; _01 = prevptr[c-step]; _02 = prevptr[c-step+1];
_10 = prevptr[c -1]; _12 = prevptr[c +1];
_20 = prevptr[c+step-1]; _21 = prevptr[c+step]; _22 = prevptr[c+step+1];
vmin = std::min(std::min(std::min(_00,_01),std::min(_02,_10)),std::min(std::min(_12,_20),std::min(_21,_22)));
if (val <= vmin)
{
_00 = nextptr[c-step-1]; _01 = nextptr[c-step]; _02 = nextptr[c-step+1];
_10 = nextptr[c -1]; _12 = nextptr[c +1];
_20 = nextptr[c+step-1]; _21 = nextptr[c+step]; _22 = nextptr[c+step+1];
vmin = std::min(std::min(std::min(_00,_01),std::min(_02,_10)),std::min(std::min(_12,_20),std::min(_21,_22)));
if (val <= vmin)
{
sift_wt _11p = prevptr[c], _11n = nextptr[c];
calculate = (val <= std::min(_11p,_11n));
}
}
}
}
// find local extrema with pixel accuracy
if( std::abs(val) > threshold &&
((val > 0 && val >= currptr[c-1] && val >= currptr[c+1] &&
val >= currptr[c-step-1] && val >= currptr[c-step] && val >= currptr[c-step+1] &&
val >= currptr[c+step-1] && val >= currptr[c+step] && val >= currptr[c+step+1] &&
val >= nextptr[c] && val >= nextptr[c-1] && val >= nextptr[c+1] &&
val >= nextptr[c-step-1] && val >= nextptr[c-step] && val >= nextptr[c-step+1] &&
val >= nextptr[c+step-1] && val >= nextptr[c+step] && val >= nextptr[c+step+1] &&
val >= prevptr[c] && val >= prevptr[c-1] && val >= prevptr[c+1] &&
val >= prevptr[c-step-1] && val >= prevptr[c-step] && val >= prevptr[c-step+1] &&
val >= prevptr[c+step-1] && val >= prevptr[c+step] && val >= prevptr[c+step+1]) ||
(val < 0 && val <= currptr[c-1] && val <= currptr[c+1] &&
val <= currptr[c-step-1] && val <= currptr[c-step] && val <= currptr[c-step+1] &&
val <= currptr[c+step-1] && val <= currptr[c+step] && val <= currptr[c+step+1] &&
val <= nextptr[c] && val <= nextptr[c-1] && val <= nextptr[c+1] &&
val <= nextptr[c-step-1] && val <= nextptr[c-step] && val <= nextptr[c-step+1] &&
val <= nextptr[c+step-1] && val <= nextptr[c+step] && val <= nextptr[c+step+1] &&
val <= prevptr[c] && val <= prevptr[c-1] && val <= prevptr[c+1] &&
val <= prevptr[c-step-1] && val <= prevptr[c-step] && val <= prevptr[c-step+1] &&
val <= prevptr[c+step-1] && val <= prevptr[c+step] && val <= prevptr[c+step+1])))
if (calculate)
{
CV_TRACE_REGION("pixel_candidate");

Loading…
Cancel
Save