features2d(test): more AKAZE tests

pull/9308/head
Alexander Alekhin 8 years ago
parent ad2e864a9a
commit 94dbc35d92
  1. 3
      modules/features2d/src/kaze/AKAZEFeatures.cpp
  2. 99
      modules/features2d/test/test_descriptors_regression.cpp
  3. 6
      modules/ts/misc/run_long.py

@ -2144,7 +2144,8 @@ void generateDescriptorSubsample(Mat& sampleList, Mat& comparisons, int nbits,
}
ssz *= nchannels;
CV_Assert(nbits <= ssz); // Descriptor size can't be bigger than full descriptor
CV_Assert(ssz == 162*nchannels);
CV_Assert(nbits <= ssz && "Descriptor size can't be bigger than full descriptor (486 = 162*3 - 3 channels)");
// Since the full descriptor is usually under 10k elements, we pick
// the selection from the full matrix. We take as many samples per

@ -43,6 +43,7 @@
using namespace std;
using namespace cv;
using namespace testing;
const string FEATURES2D_DIR = "features2d";
const string IMAGE_FILENAME = "tsukuba.png";
@ -417,68 +418,82 @@ TEST( Features2d_DescriptorExtractor, batch )
}
}
TEST( Features2d_Feature2d, no_crash )
class DescriptorImage : public TestWithParam<std::string>
{
protected:
virtual void SetUp() {
pattern = GetParam();
}
std::string pattern;
};
TEST_P(DescriptorImage, no_crash)
{
const String& pattern = string(cvtest::TS::ptr()->get_data_path() + "shared/*.png");
vector<String> fnames;
glob(pattern, fnames, false);
glob(cvtest::TS::ptr()->get_data_path() + pattern, fnames, false);
sort(fnames.begin(), fnames.end());
Ptr<AKAZE> akaze = AKAZE::create();
Ptr<AKAZE> akaze_mldb = AKAZE::create(AKAZE::DESCRIPTOR_MLDB);
Ptr<AKAZE> akaze_mldb_upright = AKAZE::create(AKAZE::DESCRIPTOR_MLDB_UPRIGHT);
Ptr<AKAZE> akaze_mldb_256 = AKAZE::create(AKAZE::DESCRIPTOR_MLDB, 256);
Ptr<AKAZE> akaze_mldb_upright_256 = AKAZE::create(AKAZE::DESCRIPTOR_MLDB_UPRIGHT, 256);
Ptr<AKAZE> akaze_kaze = AKAZE::create(AKAZE::DESCRIPTOR_KAZE);
Ptr<AKAZE> akaze_kaze_upright = AKAZE::create(AKAZE::DESCRIPTOR_KAZE_UPRIGHT);
Ptr<ORB> orb = ORB::create();
Ptr<KAZE> kaze = KAZE::create();
Ptr<BRISK> brisk = BRISK::create();
size_t i, n = fnames.size();
size_t n = fnames.size();
vector<KeyPoint> keypoints;
Mat descriptors;
orb->setMaxFeatures(5000);
for( i = 0; i < n; i++ )
for(size_t i = 0; i < n; i++ )
{
printf("%d. image: %s:\n", (int)i, fnames[i].c_str());
if( strstr(fnames[i].c_str(), "MP.png") != 0 )
{
printf("\tskip\n");
continue;
}
bool checkCount = strstr(fnames[i].c_str(), "templ.png") == 0;
Mat img = imread(fnames[i], -1);
printf("\tAKAZE ... "); fflush(stdout);
akaze->detectAndCompute(img, noArray(), keypoints, descriptors);
printf("(%d keypoints) ", (int)keypoints.size()); fflush(stdout);
if( checkCount )
{
EXPECT_GT((int)keypoints.size(), 0);
}
ASSERT_EQ(descriptors.rows, (int)keypoints.size());
printf("ok\n");
printf("\tKAZE ... "); fflush(stdout);
kaze->detectAndCompute(img, noArray(), keypoints, descriptors);
printf("(%d keypoints) ", (int)keypoints.size()); fflush(stdout);
if( checkCount )
{
EXPECT_GT((int)keypoints.size(), 0);
}
printf("\t%dx%d\n", img.cols, img.rows);
#define TEST_DETECTOR(name, descriptor) \
keypoints.clear(); descriptors.release(); \
printf("\t" name "\n"); fflush(stdout); \
descriptor->detectAndCompute(img, noArray(), keypoints, descriptors); \
printf("\t\t\t(%d keypoints, descriptor size = %d)\n", (int)keypoints.size(), descriptors.cols); fflush(stdout); \
if (checkCount) \
{ \
EXPECT_GT((int)keypoints.size(), 0); \
} \
ASSERT_EQ(descriptors.rows, (int)keypoints.size());
printf("ok\n");
printf("\tORB ... "); fflush(stdout);
orb->detectAndCompute(img, noArray(), keypoints, descriptors);
printf("(%d keypoints) ", (int)keypoints.size()); fflush(stdout);
if( checkCount )
{
EXPECT_GT((int)keypoints.size(), 0);
}
ASSERT_EQ(descriptors.rows, (int)keypoints.size());
printf("ok\n");
printf("\tBRISK ... "); fflush(stdout);
brisk->detectAndCompute(img, noArray(), keypoints, descriptors);
printf("(%d keypoints) ", (int)keypoints.size()); fflush(stdout);
if( checkCount )
{
EXPECT_GT((int)keypoints.size(), 0);
}
ASSERT_EQ(descriptors.rows, (int)keypoints.size());
printf("ok\n");
TEST_DETECTOR("AKAZE:MLDB", akaze_mldb);
TEST_DETECTOR("AKAZE:MLDB_UPRIGHT", akaze_mldb_upright);
TEST_DETECTOR("AKAZE:MLDB_256", akaze_mldb_256);
TEST_DETECTOR("AKAZE:MLDB_UPRIGHT_256", akaze_mldb_upright_256);
TEST_DETECTOR("AKAZE:KAZE", akaze_kaze);
TEST_DETECTOR("AKAZE:KAZE_UPRIGHT", akaze_kaze_upright);
TEST_DETECTOR("KAZE", kaze);
TEST_DETECTOR("ORB", orb);
TEST_DETECTOR("BRISK", brisk);
}
}
INSTANTIATE_TEST_CASE_P(Features2d, DescriptorImage,
testing::Values(
"shared/lena.png",
"shared/box*.png",
"shared/fruits*.png",
"shared/airplane.png",
"shared/graffiti.png",
"shared/1_itseez-0001*.png",
"shared/pic*.png",
"shared/templ.png"
)
);

@ -8,7 +8,11 @@ from pprint import PrettyPrinter as PP
LONG_TESTS_DEBUG_VALGRIND = [
('calib3d', 'Calib3d_InitUndistortRectifyMap.accuracy', 2017.22),
('dnn', 'Reproducibility*', 1000), # large DNN models
('features2d', 'Features2d_Feature2d.no_crash', 1235.68),
('features2d', 'Features2d/DescriptorImage.no_crash/3', 1000),
('features2d', 'Features2d/DescriptorImage.no_crash/4', 1000),
('features2d', 'Features2d/DescriptorImage.no_crash/5', 1000),
('features2d', 'Features2d/DescriptorImage.no_crash/6', 1000),
('features2d', 'Features2d/DescriptorImage.no_crash/7', 1000),
('imgcodecs', 'Imgcodecs_Png.write_big', 1000), # memory limit
('imgcodecs', 'Imgcodecs_Tiff.decode_tile16384x16384', 1000), # memory limit
('ml', 'ML_RTrees.regression', 1423.47),

Loading…
Cancel
Save