Some changes in erosion and dilation functions

pull/1163/head
kdrobnyh 12 years ago
parent 487ded8b27
commit 94bc4c4429
  1. 456
      modules/imgproc/src/morph.cpp

@ -1137,380 +1137,152 @@ private:
};
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
static bool IPPDilateReplicate(const Mat &src, Mat &dst, const Mat &kernel, const Point &anchor)
static bool IPPMorphReplicate(int &op, const Mat &src, Mat &dst, const Mat &kernel, const Point &anchor)
{
int cnn = src.channels();
switch( src.depth() )
int type = src.type();
const Mat* _src = &src;
Mat temp;
if( src.data == dst.data )
{
case CV_8U:
src.copyTo(temp);
_src = &temp;
}
//DEPRECATED. Allocates and initializes morphology state structure for erosion or dilation operation.
typedef IppStatus (CV_STDCALL* ippiMorphologyInitAllocFunc)(int, const void*, IppiSize, IppiPoint, IppiMorphState **);
ippiMorphologyInitAllocFunc ippInitAllocFunc =
type == CV_8UC1 ? (ippiMorphologyInitAllocFunc)ippiMorphologyInitAlloc_8u_C1R :
type == CV_8UC3 ? (ippiMorphologyInitAllocFunc)ippiMorphologyInitAlloc_8u_C3R :
type == CV_8UC4 ? (ippiMorphologyInitAllocFunc)ippiMorphologyInitAlloc_8u_C4R :
type == CV_32FC1 ? (ippiMorphologyInitAllocFunc)ippiMorphologyInitAlloc_32f_C1R :
type == CV_32FC3 ? (ippiMorphologyInitAllocFunc)ippiMorphologyInitAlloc_32f_C3R :
type == CV_32FC4 ? (ippiMorphologyInitAllocFunc)ippiMorphologyInitAlloc_32f_C4R :
0;
typedef IppStatus (CV_STDCALL* ippiMorphologyBorderReplicateFunc)(const void*, int, void *, int, IppiSize, IppiBorderType, IppiMorphState *);
ippiMorphologyBorderReplicateFunc ippFunc = 0;
switch( op )
{
case MORPH_DILATE:
{
switch( cnn )
{
case 1:
{
IppiSize roiSize = {src.cols, src.rows};
Ipp8u *data = (Ipp8u *)src.data;
int step = src.step;
if( src.data == dst.data )
{
Ipp8u *temp = ippiMalloc_8u_C1( src.cols, src.rows, &step );
ippiCopy_8u_C1R( (Ipp8u *)src.data, src.step, temp, step, roiSize );
data = temp;
}
IppiMorphState* ppState;
IppiSize kernelSize = {kernel.cols, kernel.rows};
IppiPoint point = {anchor.x, anchor.y};
ippiMorphologyInitAlloc_8u_C1R( roiSize.width, (Ipp8u *)kernel.data, kernelSize, point, &ppState );
ippiDilateBorderReplicate_8u_C1R( data, step, (Ipp8u *)dst.data, dst.step, roiSize, ippBorderRepl, ppState );
ippiMorphologyFree(ppState);
if( src.data == dst.data )
{
ippiFree(data);
}
return true;
}
case 3:
{
IppiSize roiSize = {src.cols, src.rows};
Ipp8u *data = (Ipp8u *)src.data;
int step = src.step;
if( src.data == dst.data )
{
Ipp8u *temp = ippiMalloc_8u_C3( src.cols, src.rows, &step );
ippiCopy_8u_C3R( (Ipp8u *)src.data, src.step, temp, step, roiSize );
data = temp;
}
IppiMorphState* ppState;
IppiSize kernelSize = {kernel.cols, kernel.rows};
IppiPoint point = {anchor.x, anchor.y};
ippiMorphologyInitAlloc_8u_C3R( roiSize.width, (Ipp8u *)kernel.data, kernelSize, point, &ppState );
ippiDilateBorderReplicate_8u_C3R( data, step, (Ipp8u *)dst.data, dst.step, roiSize, ippBorderRepl, ppState );
ippiMorphologyFree(ppState);
if( src.data == dst.data )
{
ippiFree(data);
}
return true;
}
case 4:
{
IppiSize roiSize = {src.cols, src.rows};
Ipp8u *data = (Ipp8u *)src.data;
int step = src.step;
if( src.data == dst.data )
{
Ipp8u *temp = ippiMalloc_8u_C4( src.cols, src.rows, &step );
ippiCopy_8u_C4R( (Ipp8u *)src.data, src.step, temp, step, roiSize );
data = temp;
}
IppiMorphState* ppState;
IppiSize kernelSize = {kernel.cols, kernel.rows};
IppiPoint point = {anchor.x, anchor.y};
ippiMorphologyInitAlloc_8u_C4R( roiSize.width, (Ipp8u *)kernel.data, kernelSize, point, &ppState );
ippiDilateBorderReplicate_8u_C4R( data, step, (Ipp8u *)dst.data, dst.step, roiSize, ippBorderRepl, ppState );
ippiMorphologyFree(ppState);
if( src.data == dst.data )
{
ippiFree(data);
}
return true;
}
}
break;
ippFunc =
type == CV_8UC1 ? (ippiMorphologyBorderReplicateFunc)ippiDilateBorderReplicate_8u_C1R :
type == CV_8UC3 ? (ippiMorphologyBorderReplicateFunc)ippiDilateBorderReplicate_8u_C3R :
type == CV_8UC4 ? (ippiMorphologyBorderReplicateFunc)ippiDilateBorderReplicate_8u_C4R :
type == CV_32FC1 ? (ippiMorphologyBorderReplicateFunc)ippiDilateBorderReplicate_32f_C1R :
type == CV_32FC3 ? (ippiMorphologyBorderReplicateFunc)ippiDilateBorderReplicate_32f_C3R :
type == CV_32FC4 ? (ippiMorphologyBorderReplicateFunc)ippiDilateBorderReplicate_32f_C4R :
0;
break;
}
case CV_32F:
case MORPH_ERODE:
{
switch( cnn )
{
case 1:
{
IppiSize roiSize = {src.cols, src.rows};
Ipp32f *data = (Ipp32f *)src.data;
int step = src.step;
if( src.data == dst.data )
{
Ipp32f *temp = ippiMalloc_32f_C1( src.cols, src.rows, &step );
ippiCopy_32f_C1R( (Ipp32f *)src.data, src.step, temp, step, roiSize );
data = temp;
}
IppiMorphState* ppState;
IppiSize kernelSize = {kernel.cols, kernel.rows};
IppiPoint point = {anchor.x, anchor.y};
ippiMorphologyInitAlloc_32f_C1R( roiSize.width, (Ipp8u *)kernel.data, kernelSize, point, &ppState );
ippiDilateBorderReplicate_32f_C1R( data, step, (Ipp32f *)dst.data, dst.step, roiSize, ippBorderRepl, ppState );
ippiMorphologyFree(ppState);
if( src.data == dst.data )
{
ippiFree(data);
}
return true;
}
case 3:
{
IppiSize roiSize = {src.cols, src.rows};
Ipp32f *data = (Ipp32f *)src.data;
int step = src.step;
if( src.data == dst.data )
{
Ipp32f *temp = ippiMalloc_32f_C3( src.cols, src.rows, &step );
ippiCopy_32f_C3R( (Ipp32f *)src.data, src.step, temp, step, roiSize );
data = temp;
}
IppiMorphState* ppState;
IppiSize kernelSize = {kernel.cols, kernel.rows};
IppiPoint point = {anchor.x, anchor.y};
ippiMorphologyInitAlloc_32f_C3R( roiSize.width, (Ipp8u *)kernel.data, kernelSize, point, &ppState );
ippiDilateBorderReplicate_32f_C3R( data, step, (Ipp32f *)dst.data, dst.step, roiSize, ippBorderRepl, ppState );
ippiMorphologyFree(ppState);
if( src.data == dst.data )
{
ippiFree(data);
}
return true;
}
case 4:
{
IppiSize roiSize = {src.cols, src.rows};
Ipp32f *data = (Ipp32f *)src.data;
int step = src.step;
if( src.data == dst.data )
{
Ipp32f *temp = ippiMalloc_32f_C4( src.cols, src.rows, &step );
ippiCopy_32f_C4R( (Ipp32f *)src.data, src.step, temp, step, roiSize );
data = temp;
}
IppiMorphState* ppState;
IppiSize kernelSize = {kernel.cols, kernel.rows};
IppiPoint point = {anchor.x, anchor.y};
ippiMorphologyInitAlloc_32f_C4R( roiSize.width, (Ipp8u *)kernel.data, kernelSize, point, &ppState );
ippiDilateBorderReplicate_32f_C4R( data, step, (Ipp32f *)dst.data, dst.step, roiSize, ippBorderRepl, ppState );
ippiMorphologyFree(ppState);
if( src.data == dst.data )
{
ippiFree(data);
}
return true;
}
}
break;
ippFunc =
type == CV_8UC1 ? (ippiMorphologyBorderReplicateFunc)ippiErodeBorderReplicate_8u_C1R :
type == CV_8UC3 ? (ippiMorphologyBorderReplicateFunc)ippiErodeBorderReplicate_8u_C3R :
type == CV_8UC4 ? (ippiMorphologyBorderReplicateFunc)ippiErodeBorderReplicate_8u_C4R :
type == CV_32FC1 ? (ippiMorphologyBorderReplicateFunc)ippiErodeBorderReplicate_32f_C1R :
type == CV_32FC3 ? (ippiMorphologyBorderReplicateFunc)ippiErodeBorderReplicate_32f_C3R :
type == CV_32FC4 ? (ippiMorphologyBorderReplicateFunc)ippiErodeBorderReplicate_32f_C4R :
0;
break;
}
}
if( ippFunc && ippInitAllocFunc)
{
IppiMorphState* pState;
IppiSize roiSize = {src.cols, src.rows};
IppiSize kernelSize = {kernel.cols, kernel.rows};
IppiPoint point = {anchor.x, anchor.y};
if( ippInitAllocFunc( roiSize.width, kernel.data, kernelSize, point, &pState ) < 0 )
{
return false;
}
if( ippFunc( _src->data, _src->step[0], dst.data, dst.step[0], roiSize, ippBorderRepl, pState ) < 0 )
{
ippiMorphologyFree(pState);
return false;
}
ippiMorphologyFree(pState);
return true;
}
return false;
}
static bool IPPErodeReplicate(const Mat &src, Mat &dst, const Mat &kernel, const Point &anchor)
static bool IPPMorphOp(int &op, InputArray &_src, OutputArray &_dst,
InputArray &_kernel,
const Point &anchor, int &iterations,
int &borderType, const Scalar &borderValue)
{
int cnn = src.channels();
switch( src.depth() )
Mat src = _src.getMat(), kernel = _kernel.getMat();
if( !( src.depth() == CV_8U || src.depth() == CV_32F ) || ( iterations > 1 ) ||
!( borderType == cv::BORDER_REPLICATE || (borderType == cv::BORDER_CONSTANT && borderValue == morphologyDefaultBorderValue()) )
|| !( op == MORPH_DILATE || op == MORPH_ERODE) )
{
case CV_8U:
return false;
}
if( borderType == cv::BORDER_CONSTANT )
{
int x, y;
for( y = 0; y < kernel.rows; y++ )
{
switch( cnn )
if( kernel.at<uchar>(y, anchor.x) != 0 )
{
case 1:
{
IppiSize roiSize = {src.cols, src.rows};
Ipp8u *data = (Ipp8u *)src.data;
int step = src.step;
if( src.data == dst.data )
{
Ipp8u *temp = ippiMalloc_8u_C1( src.cols, src.rows, &step );
ippiCopy_8u_C1R( (Ipp8u *)src.data, src.step, temp, step, roiSize );
data = temp;
}
IppiMorphState* ppState;
IppiSize kernelSize = {kernel.cols, kernel.rows};
IppiPoint point = {anchor.x, anchor.y};
ippiMorphologyInitAlloc_8u_C1R( roiSize.width, (Ipp8u *)kernel.data, kernelSize, point, &ppState );
ippiErodeBorderReplicate_8u_C1R( data, step, (Ipp8u *)dst.data, dst.step, roiSize, ippBorderRepl, ppState );
ippiMorphologyFree(ppState);
if( src.data == dst.data )
{
ippiFree(data);
}
return true;
}
case 3:
{
IppiSize roiSize = {src.cols, src.rows};
Ipp8u *data = (Ipp8u *)src.data;
int step = src.step;
if( src.data == dst.data )
{
Ipp8u *temp = ippiMalloc_8u_C3( src.cols, src.rows, &step );
ippiCopy_8u_C3R( (Ipp8u *)src.data, src.step, temp, step, roiSize );
data = temp;
}
IppiMorphState* ppState;
IppiSize kernelSize = {kernel.cols, kernel.rows};
IppiPoint point = {anchor.x, anchor.y};
ippiMorphologyInitAlloc_8u_C3R( roiSize.width, (Ipp8u *)kernel.data, kernelSize, point, &ppState );
ippiErodeBorderReplicate_8u_C3R( data, step, (Ipp8u *)dst.data, dst.step, roiSize, ippBorderRepl, ppState );
ippiMorphologyFree(ppState);
if( src.data == dst.data )
{
ippiFree(data);
}
return true;
}
case 4:
continue;
}
for( x = 0; x < kernel.cols; x++ )
{
if( kernel.at<uchar>(y,x) != 0 )
{
IppiSize roiSize = {src.cols, src.rows};
Ipp8u *data = (Ipp8u *)src.data;
int step = src.step;
if( src.data == dst.data )
{
Ipp8u *temp = ippiMalloc_8u_C4( src.cols, src.rows, &step );
ippiCopy_8u_C4R( (Ipp8u *)src.data, src.step, temp, step, roiSize );
data = temp;
}
IppiMorphState* ppState;
IppiSize kernelSize = {kernel.cols, kernel.rows};
IppiPoint point = {anchor.x, anchor.y};
ippiMorphologyInitAlloc_8u_C4R( roiSize.width, (Ipp8u *)kernel.data, kernelSize, point, &ppState );
ippiErodeBorderReplicate_8u_C4R( data, step, (Ipp8u *)dst.data, dst.step, roiSize, ippBorderRepl, ppState );
ippiMorphologyFree(ppState);
if( src.data == dst.data )
{
ippiFree(data);
}
return true;
return false;
}
}
break;
}
case CV_32F:
for( x = 0; y < kernel.cols; x++ )
{
switch( cnn )
if( kernel.at<uchar>(anchor.y, x) != 0 )
{
case 1:
{
IppiSize roiSize = {src.cols, src.rows};
Ipp32f *data = (Ipp32f *)src.data;
int step = src.step;
if( src.data == dst.data )
{
Ipp32f *temp = ippiMalloc_32f_C1( src.cols, src.rows, &step );
ippiCopy_32f_C1R( (Ipp32f *)src.data, src.step, temp, step, roiSize );
data = temp;
}
IppiMorphState* ppState;
IppiSize kernelSize = {kernel.cols, kernel.rows};
IppiPoint point = {anchor.x, anchor.y};
ippiMorphologyInitAlloc_32f_C1R( roiSize.width, (Ipp8u *)kernel.data, kernelSize, point, &ppState );
ippiErodeBorderReplicate_32f_C1R( data, step, (Ipp32f *)dst.data, dst.step, roiSize, ippBorderRepl, ppState );
ippiMorphologyFree(ppState);
if( src.data == dst.data )
{
ippiFree(data);
}
return true;
}
case 3:
{
IppiSize roiSize = {src.cols, src.rows};
Ipp32f *data = (Ipp32f *)src.data;
int step = src.step;
if( src.data == dst.data )
{
Ipp32f *temp = ippiMalloc_32f_C3( src.cols, src.rows, &step );
ippiCopy_32f_C3R( (Ipp32f *)src.data, src.step, temp, step, roiSize );
data = temp;
}
IppiMorphState* ppState;
IppiSize kernelSize = {kernel.cols, kernel.rows};
IppiPoint point = {anchor.x, anchor.y};
ippiMorphologyInitAlloc_32f_C3R( roiSize.width, (Ipp8u *)kernel.data, kernelSize, point, &ppState );
ippiErodeBorderReplicate_32f_C3R( data, step, (Ipp32f *)dst.data, dst.step, roiSize, ippBorderRepl, ppState );
ippiMorphologyFree(ppState);
if( src.data == dst.data )
{
ippiFree(data);
}
return true;
}
case 4:
continue;
}
for( y = 0; y < kernel.rows; y++ )
{
if( kernel.at<uchar>(y,x) != 0 )
{
IppiSize roiSize = {src.cols, src.rows};
Ipp32f *data = (Ipp32f *)src.data;
int step = src.step;
if( src.data == dst.data )
{
Ipp32f *temp = ippiMalloc_32f_C4( src.cols, src.rows, &step );
ippiCopy_32f_C4R( (Ipp32f *)src.data, src.step, temp, step, roiSize );
data = temp;
}
IppiMorphState* ppState;
IppiSize kernelSize = {kernel.cols, kernel.rows};
IppiPoint point = {anchor.x, anchor.y};
ippiMorphologyInitAlloc_32f_C4R( roiSize.width, (Ipp8u *)kernel.data, kernelSize, point, &ppState );
ippiErodeBorderReplicate_32f_C4R( data, step, (Ipp32f *)dst.data, dst.step, roiSize, ippBorderRepl, ppState );
ippiMorphologyFree(ppState);
if( src.data == dst.data )
{
ippiFree(data);
}
return true;
return false;
}
}
break;
}
}
return false;
}
static bool IPPMorphOp(int op, InputArray _src, OutputArray _dst,
InputArray _kernel,
Point anchor, int iterations,
int borderType)
{
Mat src = _src.getMat(), kernel = _kernel.getMat();
if( !(src.depth() == CV_8U || src.depth() == CV_32F) || (iterations > 1) ||
(borderType != cv::BORDER_REPLICATE) || !( op == MORPH_DILATE || op == MORPH_ERODE) )
{
return false;
}
Size ksize = kernel.data ? kernel.size() : Size(3,3);
Point normanchor = normalizeAnchor(anchor, ksize);
Point normanchor = normalizeAnchor(anchor, ksize);
CV_Assert( normanchor.inside(Rect(0, 0, ksize.width, ksize.height)) );
CV_Assert( normanchor.inside(Rect(0, 0, ksize.width, ksize.height)) );
_dst.create( src.size(), src.type() );
Mat dst = _dst.getMat();
_dst.create( src.size(), src.type() );
Mat dst = _dst.getMat();
if( iterations == 0 || kernel.rows*kernel.cols == 1 )
{
src.copyTo(dst);
return true;
}
if( iterations == 0 || kernel.rows*kernel.cols == 1 )
{
src.copyTo(dst);
return true;
}
if( !kernel.data )
{
kernel = getStructuringElement(MORPH_RECT, Size(1+iterations*2,1+iterations*2));
normanchor = Point(iterations, iterations);
iterations = 1;
}
else if( iterations > 1 && countNonZero(kernel) == kernel.rows*kernel.cols )
{
normanchor = Point(normanchor.x*iterations, normanchor.y*iterations);
kernel = getStructuringElement(MORPH_RECT,
Size(ksize.width + (iterations-1)*(ksize.width-1),
ksize.height + (iterations-1)*(ksize.height-1)),
normanchor);
iterations = 1;
}
switch( op )
if( !kernel.data )
{
case MORPH_DILATE:
{
return IPPDilateReplicate( src, dst, kernel, normanchor );
}
case MORPH_ERODE:
{
return IPPErodeReplicate( src, dst, kernel, normanchor );
}
kernel = getStructuringElement(MORPH_RECT, Size(1+iterations*2,1+iterations*2));
normanchor = Point(iterations, iterations);
iterations = 1;
}
return false;
else if( iterations > 1 && countNonZero(kernel) == kernel.rows*kernel.cols )
{
normanchor = Point(normanchor.x*iterations, normanchor.y*iterations);
kernel = getStructuringElement(MORPH_RECT,
Size(ksize.width + (iterations-1)*(ksize.width-1),
ksize.height + (iterations-1)*(ksize.height-1)),
normanchor);
iterations = 1;
}
return IPPMorphReplicate( op, src, dst, kernel, normanchor );
}
#endif
@ -1521,7 +1293,7 @@ static void morphOp( int op, InputArray _src, OutputArray _dst,
{
#if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7)
if (IPPMorphOp(op, _src, _dst, _kernel, anchor, iterations, borderType))
if( IPPMorphOp(op, _src, _dst, _kernel, anchor, iterations, borderType, borderValue) )
{
return;
}

Loading…
Cancel
Save