|
|
|
@ -87,7 +87,7 @@ performance. |
|
|
|
|
|
|
|
|
|
@sa cvtColor |
|
|
|
|
*/ |
|
|
|
|
CV_EXPORTS void cvtColor(InputArray src, OutputArray dst, int code, int dcn = 0, Stream& stream = Stream::Null()); |
|
|
|
|
CV_EXPORTS_W void cvtColor(InputArray src, OutputArray dst, int code, int dcn = 0, Stream& stream = Stream::Null()); |
|
|
|
|
|
|
|
|
|
enum DemosaicTypes |
|
|
|
|
{ |
|
|
|
@ -133,7 +133,7 @@ The function can do the following transformations: |
|
|
|
|
|
|
|
|
|
@sa cvtColor |
|
|
|
|
*/ |
|
|
|
|
CV_EXPORTS void demosaicing(InputArray src, OutputArray dst, int code, int dcn = -1, Stream& stream = Stream::Null()); |
|
|
|
|
CV_EXPORTS_W void demosaicing(InputArray src, OutputArray dst, int code, int dcn = -1, Stream& stream = Stream::Null()); |
|
|
|
|
|
|
|
|
|
/** @brief Exchanges the color channels of an image in-place.
|
|
|
|
|
|
|
|
|
@ -145,7 +145,7 @@ E.g. Given an RGBA image, aDstOrder = [3,2,1,0] converts this to ABGR channel or |
|
|
|
|
|
|
|
|
|
The methods support arbitrary permutations of the original channels, including replication. |
|
|
|
|
*/ |
|
|
|
|
CV_EXPORTS void swapChannels(InputOutputArray image, const int dstOrder[4], Stream& stream = Stream::Null()); |
|
|
|
|
CV_EXPORTS_W void swapChannels(InputOutputArray image, const int dstOrder[4], Stream& stream = Stream::Null()); |
|
|
|
|
|
|
|
|
|
/** @brief Routines for correcting image color gamma.
|
|
|
|
|
|
|
|
|
@ -154,7 +154,7 @@ CV_EXPORTS void swapChannels(InputOutputArray image, const int dstOrder[4], Stre |
|
|
|
|
@param forward true for forward gamma correction or false for inverse gamma correction. |
|
|
|
|
@param stream Stream for the asynchronous version. |
|
|
|
|
*/ |
|
|
|
|
CV_EXPORTS void gammaCorrection(InputArray src, OutputArray dst, bool forward = true, Stream& stream = Stream::Null()); |
|
|
|
|
CV_EXPORTS_W void gammaCorrection(InputArray src, OutputArray dst, bool forward = true, Stream& stream = Stream::Null()); |
|
|
|
|
|
|
|
|
|
enum AlphaCompTypes { ALPHA_OVER, ALPHA_IN, ALPHA_OUT, ALPHA_ATOP, ALPHA_XOR, ALPHA_PLUS, ALPHA_OVER_PREMUL, ALPHA_IN_PREMUL, ALPHA_OUT_PREMUL, |
|
|
|
|
ALPHA_ATOP_PREMUL, ALPHA_XOR_PREMUL, ALPHA_PLUS_PREMUL, ALPHA_PREMUL}; |
|
|
|
@ -184,7 +184,7 @@ enum AlphaCompTypes { ALPHA_OVER, ALPHA_IN, ALPHA_OUT, ALPHA_ATOP, ALPHA_XOR, AL |
|
|
|
|
- An example demonstrating the use of alphaComp can be found at |
|
|
|
|
opencv_source_code/samples/gpu/alpha_comp.cpp |
|
|
|
|
*/ |
|
|
|
|
CV_EXPORTS void alphaComp(InputArray img1, InputArray img2, OutputArray dst, int alpha_op, Stream& stream = Stream::Null()); |
|
|
|
|
CV_EXPORTS_W void alphaComp(InputArray img1, InputArray img2, OutputArray dst, int alpha_op, Stream& stream = Stream::Null()); |
|
|
|
|
|
|
|
|
|
//! @} cudaimgproc_color
|
|
|
|
|
|
|
|
|
@ -199,7 +199,7 @@ CV_EXPORTS void alphaComp(InputArray img1, InputArray img2, OutputArray dst, int |
|
|
|
|
@param hist Destination histogram with one row, 256 columns, and the CV_32SC1 type. |
|
|
|
|
@param stream Stream for the asynchronous version. |
|
|
|
|
*/ |
|
|
|
|
CV_EXPORTS void calcHist(InputArray src, OutputArray hist, Stream& stream = Stream::Null()); |
|
|
|
|
CV_EXPORTS_W void calcHist(InputArray src, OutputArray hist, Stream& stream = Stream::Null()); |
|
|
|
|
|
|
|
|
|
/** @brief Calculates histogram for one channel 8-bit image confined in given mask.
|
|
|
|
|
|
|
|
|
@ -208,7 +208,7 @@ CV_EXPORTS void calcHist(InputArray src, OutputArray hist, Stream& stream = Stre |
|
|
|
|
@param mask A mask image same size as src and of type CV_8UC1. |
|
|
|
|
@param stream Stream for the asynchronous version. |
|
|
|
|
*/ |
|
|
|
|
CV_EXPORTS void calcHist(InputArray src, InputArray mask, OutputArray hist, Stream& stream = Stream::Null()); |
|
|
|
|
CV_EXPORTS_W void calcHist(InputArray src, InputArray mask, OutputArray hist, Stream& stream = Stream::Null()); |
|
|
|
|
|
|
|
|
|
/** @brief Equalizes the histogram of a grayscale image.
|
|
|
|
|
|
|
|
|
@ -218,11 +218,11 @@ CV_EXPORTS void calcHist(InputArray src, InputArray mask, OutputArray hist, Stre |
|
|
|
|
|
|
|
|
|
@sa equalizeHist |
|
|
|
|
*/ |
|
|
|
|
CV_EXPORTS void equalizeHist(InputArray src, OutputArray dst, Stream& stream = Stream::Null()); |
|
|
|
|
CV_EXPORTS_W void equalizeHist(InputArray src, OutputArray dst, Stream& stream = Stream::Null()); |
|
|
|
|
|
|
|
|
|
/** @brief Base class for Contrast Limited Adaptive Histogram Equalization. :
|
|
|
|
|
*/ |
|
|
|
|
class CV_EXPORTS CLAHE : public cv::CLAHE |
|
|
|
|
class CV_EXPORTS_W CLAHE : public cv::CLAHE |
|
|
|
|
{ |
|
|
|
|
public: |
|
|
|
|
using cv::CLAHE::apply; |
|
|
|
@ -232,7 +232,7 @@ public: |
|
|
|
|
@param dst Destination image. |
|
|
|
|
@param stream Stream for the asynchronous version. |
|
|
|
|
*/ |
|
|
|
|
virtual void apply(InputArray src, OutputArray dst, Stream& stream) = 0; |
|
|
|
|
CV_WRAP virtual void apply(InputArray src, OutputArray dst, Stream& stream) = 0; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
/** @brief Creates implementation for cuda::CLAHE .
|
|
|
|
@ -241,7 +241,7 @@ public: |
|
|
|
|
@param tileGridSize Size of grid for histogram equalization. Input image will be divided into |
|
|
|
|
equally sized rectangular tiles. tileGridSize defines the number of tiles in row and column. |
|
|
|
|
*/ |
|
|
|
|
CV_EXPORTS Ptr<cuda::CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8)); |
|
|
|
|
CV_EXPORTS_W Ptr<cuda::CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8)); |
|
|
|
|
|
|
|
|
|
/** @brief Computes levels with even distribution.
|
|
|
|
|
|
|
|
|
@ -251,7 +251,7 @@ CV_EXPORTS Ptr<cuda::CLAHE> createCLAHE(double clipLimit = 40.0, Size tileGridSi |
|
|
|
|
@param upperLevel Upper boundary value of the greatest level. |
|
|
|
|
@param stream Stream for the asynchronous version. |
|
|
|
|
*/ |
|
|
|
|
CV_EXPORTS void evenLevels(OutputArray levels, int nLevels, int lowerLevel, int upperLevel, Stream& stream = Stream::Null()); |
|
|
|
|
CV_EXPORTS_W void evenLevels(OutputArray levels, int nLevels, int lowerLevel, int upperLevel, Stream& stream = Stream::Null()); |
|
|
|
|
|
|
|
|
|
/** @brief Calculates a histogram with evenly distributed bins.
|
|
|
|
|
|
|
|
|
@ -263,7 +263,7 @@ a four-channel image, all channels are processed separately. |
|
|
|
|
@param upperLevel Upper boundary of highest-level bin. |
|
|
|
|
@param stream Stream for the asynchronous version. |
|
|
|
|
*/ |
|
|
|
|
CV_EXPORTS void histEven(InputArray src, OutputArray hist, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null()); |
|
|
|
|
CV_EXPORTS_W void histEven(InputArray src, OutputArray hist, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null()); |
|
|
|
|
/** @overload */ |
|
|
|
|
CV_EXPORTS void histEven(InputArray src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream = Stream::Null()); |
|
|
|
|
|
|
|
|
@ -275,7 +275,7 @@ For a four-channel image, all channels are processed separately. |
|
|
|
|
@param levels Number of levels in the histogram. |
|
|
|
|
@param stream Stream for the asynchronous version. |
|
|
|
|
*/ |
|
|
|
|
CV_EXPORTS void histRange(InputArray src, OutputArray hist, InputArray levels, Stream& stream = Stream::Null()); |
|
|
|
|
CV_EXPORTS_W void histRange(InputArray src, OutputArray hist, InputArray levels, Stream& stream = Stream::Null()); |
|
|
|
|
/** @overload */ |
|
|
|
|
CV_EXPORTS void histRange(InputArray src, GpuMat hist[4], const GpuMat levels[4], Stream& stream = Stream::Null()); |
|
|
|
|
|
|
|
|
@ -285,7 +285,7 @@ CV_EXPORTS void histRange(InputArray src, GpuMat hist[4], const GpuMat levels[4] |
|
|
|
|
|
|
|
|
|
/** @brief Base class for Canny Edge Detector. :
|
|
|
|
|
*/ |
|
|
|
|
class CV_EXPORTS CannyEdgeDetector : public Algorithm |
|
|
|
|
class CV_EXPORTS_W CannyEdgeDetector : public Algorithm |
|
|
|
|
{ |
|
|
|
|
public: |
|
|
|
|
/** @brief Finds edges in an image using the @cite Canny86 algorithm.
|
|
|
|
@ -294,26 +294,26 @@ public: |
|
|
|
|
@param edges Output edge map. It has the same size and type as image. |
|
|
|
|
@param stream Stream for the asynchronous version. |
|
|
|
|
*/ |
|
|
|
|
virtual void detect(InputArray image, OutputArray edges, Stream& stream = Stream::Null()) = 0; |
|
|
|
|
CV_WRAP virtual void detect(InputArray image, OutputArray edges, Stream& stream = Stream::Null()) = 0; |
|
|
|
|
/** @overload
|
|
|
|
|
@param dx First derivative of image in the vertical direction. Support only CV_32S type. |
|
|
|
|
@param dy First derivative of image in the horizontal direction. Support only CV_32S type. |
|
|
|
|
@param edges Output edge map. It has the same size and type as image. |
|
|
|
|
@param stream Stream for the asynchronous version. |
|
|
|
|
*/ |
|
|
|
|
virtual void detect(InputArray dx, InputArray dy, OutputArray edges, Stream& stream = Stream::Null()) = 0; |
|
|
|
|
CV_WRAP virtual void detect(InputArray dx, InputArray dy, OutputArray edges, Stream& stream = Stream::Null()) = 0; |
|
|
|
|
|
|
|
|
|
virtual void setLowThreshold(double low_thresh) = 0; |
|
|
|
|
virtual double getLowThreshold() const = 0; |
|
|
|
|
CV_WRAP virtual void setLowThreshold(double low_thresh) = 0; |
|
|
|
|
CV_WRAP virtual double getLowThreshold() const = 0; |
|
|
|
|
|
|
|
|
|
virtual void setHighThreshold(double high_thresh) = 0; |
|
|
|
|
virtual double getHighThreshold() const = 0; |
|
|
|
|
CV_WRAP virtual void setHighThreshold(double high_thresh) = 0; |
|
|
|
|
CV_WRAP virtual double getHighThreshold() const = 0; |
|
|
|
|
|
|
|
|
|
virtual void setAppertureSize(int apperture_size) = 0; |
|
|
|
|
virtual int getAppertureSize() const = 0; |
|
|
|
|
CV_WRAP virtual void setAppertureSize(int apperture_size) = 0; |
|
|
|
|
CV_WRAP virtual int getAppertureSize() const = 0; |
|
|
|
|
|
|
|
|
|
virtual void setL2Gradient(bool L2gradient) = 0; |
|
|
|
|
virtual bool getL2Gradient() const = 0; |
|
|
|
|
CV_WRAP virtual void setL2Gradient(bool L2gradient) = 0; |
|
|
|
|
CV_WRAP virtual bool getL2Gradient() const = 0; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
/** @brief Creates implementation for cuda::CannyEdgeDetector .
|
|
|
|
@ -326,7 +326,7 @@ public: |
|
|
|
|
L2gradient=true ), or a faster default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough ( L2gradient=false |
|
|
|
|
). |
|
|
|
|
*/ |
|
|
|
|
CV_EXPORTS Ptr<CannyEdgeDetector> createCannyEdgeDetector(double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false); |
|
|
|
|
CV_EXPORTS_W Ptr<CannyEdgeDetector> createCannyEdgeDetector(double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false); |
|
|
|
|
|
|
|
|
|
/////////////////////////// Hough Transform ////////////////////////////
|
|
|
|
|
|
|
|
|
|