parent
5b868ccd82
commit
9457bf10ab
4 changed files with 521 additions and 125 deletions
@ -0,0 +1,434 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
// Copyright (C) 2018, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
|
||||
#ifdef HAVE_PROTOBUF |
||||
|
||||
#include "tf_graph_editor.hpp" |
||||
|
||||
namespace cv { namespace dnn { |
||||
CV__DNN_EXPERIMENTAL_NS_BEGIN |
||||
|
||||
using ::google::protobuf::RepeatedField; |
||||
using ::google::protobuf::MapPair; |
||||
|
||||
class Subgraph // Interface to match and replace TensorFlow subgraphs.
|
||||
{ |
||||
public: |
||||
// Add a node to be matched in the origin graph. Specify ids of nodes that
|
||||
// are expected to be inputs. Returns id of a newly added node.
|
||||
// TODO: Replace inputs to std::vector<int> in C++11
|
||||
int addNodeToMatch(const std::string& op, int input_0 = -1, int input_1 = -1, |
||||
int input_2 = -1, int input_3 = -1) |
||||
{ |
||||
int nodeInputs[] = {input_0, input_1, input_2, input_3}; |
||||
int numInputs = 0; |
||||
for (int i = 0; i < 4; ++i) |
||||
{ |
||||
CV_Assert(nodeInputs[i] < (int)nodes.size()); |
||||
numInputs += (int)(nodeInputs[i] != -1); |
||||
} |
||||
nodes.push_back(op); |
||||
inputs.push_back(std::vector<int>(&nodeInputs[0], &nodeInputs[0] + numInputs)); |
||||
return nodes.size() - 1; |
||||
} |
||||
|
||||
// Specify resulting node. All the matched nodes in subgraph excluding
|
||||
// input nodes will be fused into this single node.
|
||||
// TODO: Replace inputs to std::vector<int> in C++11
|
||||
void setFusedNode(const std::string& op, int input_0 = -1, int input_1 = -1, |
||||
int input_2 = -1, int input_3 = -1, int input_4 = -1, |
||||
int input_5 = -1) |
||||
{ |
||||
int nodeInputs[] = {input_0, input_1, input_2, input_3, input_4, input_5}; |
||||
int numInputs = 0; |
||||
for (int i = 0; i < 6; ++i) |
||||
{ |
||||
CV_Assert(nodeInputs[i] < (int)nodes.size()); |
||||
numInputs += (int)(nodeInputs[i] != -1); |
||||
} |
||||
fusedNodeInputs = std::vector<int>(&nodeInputs[0], &nodeInputs[0] + numInputs); |
||||
|
||||
fusedNodeOp = op; |
||||
nodesToFuse.clear(); |
||||
for (int i = 0; i < nodes.size(); ++i) |
||||
{ |
||||
if (std::find(fusedNodeInputs.begin(), fusedNodeInputs.end(), i) == fusedNodeInputs.end()) |
||||
nodesToFuse.push_back(i); |
||||
} |
||||
} |
||||
|
||||
static const tensorflow::NodeDef& getInputNode(const tensorflow::GraphDef& net, |
||||
const tensorflow::NodeDef& node, |
||||
int inpId) |
||||
{ |
||||
CV_Assert(inpId < node.input_size()); |
||||
std::string name = node.input(inpId); |
||||
const int numNodes = net.node_size(); |
||||
for (int i = 0; i < numNodes; ++i) |
||||
{ |
||||
const tensorflow::NodeDef& node = net.node(i); |
||||
if (node.name() == name) |
||||
return node; |
||||
} |
||||
CV_Error(Error::StsParseError, "Input node with name " + name + " not found"); |
||||
return net.node(0); // just return something
|
||||
} |
||||
|
||||
// Match TensorFlow subgraph starting from <nodeId> with a set of nodes to be fused.
|
||||
// Returns true if nodes are matched and can be fused.
|
||||
bool match(const tensorflow::GraphDef& net, int nodeId, int* numMatchedNodes) |
||||
{ |
||||
*numMatchedNodes = 0; |
||||
int numNodes = net.node_size(); |
||||
for (int i = 0; i < nodesToFuse.size(); ++i) |
||||
{ |
||||
if (nodeId + i > numNodes - 1) |
||||
return false; |
||||
|
||||
const tensorflow::NodeDef &node = net.node(nodeId + i); |
||||
if (node.op() != nodes[nodesToFuse[i]]) |
||||
return false; |
||||
|
||||
std::vector<int>& inputNodes = inputs[nodesToFuse[i]]; |
||||
if (inputNodes.size() != node.input_size()) |
||||
return false; |
||||
for (int j = 0; j < inputNodes.size(); ++j) |
||||
{ |
||||
if (nodes[inputNodes[j]].empty()) // Unknown input node type.
|
||||
continue; |
||||
const tensorflow::NodeDef& inpNode = getInputNode(net, node, j); |
||||
if (inpNode.op() != nodes[inputNodes[j]]) |
||||
return false; |
||||
} |
||||
|
||||
*numMatchedNodes += 1; |
||||
} |
||||
return true; |
||||
} |
||||
|
||||
// Fuse matched subgraph.
|
||||
void replace(tensorflow::GraphDef& net, int nodeId, int* numReplacedNodes) |
||||
{ |
||||
*numReplacedNodes = 0; |
||||
|
||||
// Extract names of input nodes.
|
||||
std::vector<std::string> inputsNames(fusedNodeInputs.size()); |
||||
for (int i = 0; i < fusedNodeInputs.size(); ++i) |
||||
{ |
||||
std::string inpName; |
||||
// Find input node name looking at inputs of fused nodes.
|
||||
for (int j = 0; j < nodesToFuse.size() && inpName.empty(); ++j) |
||||
{ |
||||
const tensorflow::NodeDef &node = net.node(nodeId + j); |
||||
std::vector<int>& inpIndices = inputs[nodesToFuse[j]]; |
||||
|
||||
CV_Assert(node.input_size() == inpIndices.size()); |
||||
for (int k = 0; k < inpIndices.size(); ++k) |
||||
{ |
||||
if (inpIndices[k] == fusedNodeInputs[i]) |
||||
{ |
||||
inpName = node.input(k); |
||||
break; |
||||
} |
||||
} |
||||
} |
||||
CV_Assert(!inpName.empty()); |
||||
inputsNames[i] = inpName; |
||||
} |
||||
|
||||
// Remove all nodes except the last one.
|
||||
*numReplacedNodes = nodesToFuse.size() - 1; |
||||
net.mutable_node()->DeleteSubrange(nodeId, *numReplacedNodes); |
||||
|
||||
// Modify the last node to be a fused one.
|
||||
tensorflow::NodeDef* node = net.mutable_node(nodeId); |
||||
node->set_op(fusedNodeOp); |
||||
node->clear_input(); |
||||
for (int i = 0; i < inputsNames.size(); ++i) |
||||
{ |
||||
node->add_input(inputsNames[i]); |
||||
} |
||||
|
||||
std::vector<tensorflow::NodeDef> inputNodes(inputsNames.size()); |
||||
for (int i = 0; i < inputsNames.size(); ++i) |
||||
{ |
||||
inputNodes[i] = getInputNode(net, *node, i); |
||||
} |
||||
finalize(net, node, inputNodes); |
||||
} |
||||
|
||||
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef*, |
||||
const std::vector<tensorflow::NodeDef>&) {} |
||||
|
||||
private: |
||||
std::vector<std::string> nodes; // Nodes to be matched in the origin graph.
|
||||
std::vector<std::vector<int> > inputs; // Connections of an every node to it's inputs.
|
||||
|
||||
std::string fusedNodeOp; // Operation name of resulting fused node.
|
||||
std::vector<int> nodesToFuse; // Set of nodes to be fused.
|
||||
std::vector<int> fusedNodeInputs; // Inputs of fused node.
|
||||
}; |
||||
|
||||
class BatchNormSubgraph : public Subgraph |
||||
{ |
||||
public: |
||||
BatchNormSubgraph() |
||||
{ |
||||
int input = addNodeToMatch(""); |
||||
int epsilon = addNodeToMatch("Const"); |
||||
int moving_variance = addNodeToMatch("Const"); |
||||
int moving_mean = addNodeToMatch("Const"); |
||||
int beta = addNodeToMatch("Const"); |
||||
int gamma = addNodeToMatch("Const"); |
||||
int add = addNodeToMatch("Add", moving_variance, epsilon); |
||||
int rsqrt = addNodeToMatch("Rsqrt", add); |
||||
int mul = addNodeToMatch("Mul", rsqrt, gamma); |
||||
int mul_1 = addNodeToMatch("Mul", input, mul); |
||||
int mul_2 = addNodeToMatch("Mul", moving_mean, mul); |
||||
int sub = addNodeToMatch("Sub", beta, mul_2); |
||||
addNodeToMatch("Add", mul_1, sub); |
||||
|
||||
setFusedNode("FusedBatchNorm", input, gamma, beta, moving_mean, moving_variance, epsilon); |
||||
} |
||||
|
||||
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode, |
||||
const std::vector<tensorflow::NodeDef>& inputNodes) |
||||
{ |
||||
Mat epsMat = getTensorContent(inputNodes.back().attr().at("value").tensor()); |
||||
CV_Assert(epsMat.total() == 1, epsMat.type() == CV_32FC1); |
||||
|
||||
fusedNode->mutable_input()->ReleaseLast(); |
||||
fusedNode->clear_attr(); |
||||
tensorflow::AttrValue epsilon; |
||||
epsilon.set_f(epsMat.at<float>(0)); |
||||
fusedNode->mutable_attr()->insert(MapPair<std::string, tensorflow::AttrValue>("epsilon", epsilon)); |
||||
} |
||||
}; |
||||
|
||||
class BatchNormNoGammaSubgraph : public Subgraph |
||||
{ |
||||
public: |
||||
BatchNormNoGammaSubgraph() |
||||
{ |
||||
int input = addNodeToMatch(""); |
||||
int epsilon = addNodeToMatch("Const"); |
||||
int moving_variance = addNodeToMatch("Const"); |
||||
int moving_mean = addNodeToMatch("Const"); |
||||
int beta = addNodeToMatch("Const"); |
||||
int add = addNodeToMatch("Add", moving_variance, epsilon); |
||||
int rsqrt = addNodeToMatch("Rsqrt", add); |
||||
int mul = addNodeToMatch("Mul", input, rsqrt); |
||||
int mul_1 = addNodeToMatch("Mul", moving_mean, rsqrt); |
||||
int sub = addNodeToMatch("Sub", beta, mul_1); |
||||
addNodeToMatch("Add", mul, sub); |
||||
|
||||
// There is a fake reference to beta that will be replaced to a new gamma tensor.
|
||||
setFusedNode("FusedBatchNorm", input, beta, beta, moving_mean, moving_variance, epsilon); |
||||
} |
||||
|
||||
virtual void finalize(tensorflow::GraphDef& net, tensorflow::NodeDef* fusedNode, |
||||
const std::vector<tensorflow::NodeDef>& inputNodes) |
||||
{ |
||||
Mat epsMat = getTensorContent(inputNodes.back().attr().at("value").tensor()); |
||||
CV_Assert(epsMat.total() == 1, epsMat.type() == CV_32FC1); |
||||
|
||||
fusedNode->mutable_input()->ReleaseLast(); |
||||
fusedNode->clear_attr(); |
||||
tensorflow::AttrValue epsilon; |
||||
epsilon.set_f(epsMat.at<float>(0)); |
||||
fusedNode->mutable_attr()->insert(MapPair<std::string, tensorflow::AttrValue>("epsilon", epsilon)); |
||||
|
||||
tensorflow::NodeDef* gamma = net.add_node(); |
||||
gamma->set_op("Const"); |
||||
gamma->set_name(fusedNode->name() + "/gamma"); |
||||
// Just put a single value to recognize this node as Const.
|
||||
gamma->mutable_attr()->insert(MapPair<std::string, tensorflow::AttrValue>("value", epsilon)); |
||||
fusedNode->set_input(1, gamma->name()); |
||||
} |
||||
}; |
||||
|
||||
// tf.contrib.layers.flatten
|
||||
class FlattenSubgraph : public Subgraph |
||||
{ |
||||
public: |
||||
FlattenSubgraph() |
||||
{ |
||||
int input = addNodeToMatch(""); |
||||
int shape = addNodeToMatch("Const"); |
||||
int stack = addNodeToMatch("Const"); |
||||
int stack_1 = addNodeToMatch("Const"); |
||||
int stack_2 = addNodeToMatch("Const"); |
||||
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); |
||||
int shape_pack = addNodeToMatch("Const"); |
||||
int pack = addNodeToMatch("Pack", strided_slice, shape_pack); |
||||
addNodeToMatch("Reshape", input, pack); |
||||
|
||||
setFusedNode("Flatten", input); |
||||
} |
||||
}; |
||||
|
||||
// tf.contrib.layers.flatten in case of unknown batch size
|
||||
class FlattenShapeSubgraph : public Subgraph |
||||
{ |
||||
public: |
||||
FlattenShapeSubgraph() |
||||
{ |
||||
int input = addNodeToMatch(""); |
||||
int shape = addNodeToMatch("Shape", input); |
||||
int stack = addNodeToMatch("Const"); |
||||
int stack_1 = addNodeToMatch("Const"); |
||||
int stack_2 = addNodeToMatch("Const"); |
||||
int strided_slice = addNodeToMatch("StridedSlice", shape, stack, stack_1, stack_2); |
||||
int shape_pack = addNodeToMatch("Const"); |
||||
int pack = addNodeToMatch("Pack", strided_slice, shape_pack); |
||||
addNodeToMatch("Reshape", input, pack); |
||||
|
||||
setFusedNode("Flatten", input); |
||||
} |
||||
}; |
||||
|
||||
void simplifySubgraphs(tensorflow::GraphDef& net) |
||||
{ |
||||
std::vector<Ptr<Subgraph> > subgraphs; |
||||
subgraphs.push_back(Ptr<Subgraph>(new BatchNormSubgraph())); |
||||
subgraphs.push_back(Ptr<Subgraph>(new BatchNormNoGammaSubgraph())); |
||||
subgraphs.push_back(Ptr<Subgraph>(new FlattenSubgraph())); |
||||
subgraphs.push_back(Ptr<Subgraph>(new FlattenShapeSubgraph())); |
||||
|
||||
int numNodes = net.node_size(); |
||||
int numMatchedNodes, numReplacedNodes; |
||||
for (int i = 0; i < numNodes; ++i) |
||||
{ |
||||
for (int j = 0; j < subgraphs.size(); ++j) |
||||
{ |
||||
if (subgraphs[j]->match(net, i, &numMatchedNodes)) |
||||
{ |
||||
subgraphs[j]->replace(net, i, &numReplacedNodes); |
||||
numNodes -= numReplacedNodes; |
||||
break; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
void RemoveIdentityOps(tensorflow::GraphDef& net) |
||||
{ |
||||
typedef std::map<String, String> IdentityOpsMap; |
||||
IdentityOpsMap identity_ops; |
||||
|
||||
std::vector<int> identity_ops_idx; |
||||
|
||||
int layersCount = net.node_size(); |
||||
for (int li = 0; li < layersCount; li++) |
||||
{ |
||||
const tensorflow::NodeDef &layer = net.node(li); |
||||
String type = layer.op(); |
||||
|
||||
if (type == "Identity" || type == "Dropout") { |
||||
identity_ops_idx.push_back(li); |
||||
identity_ops[layer.name()] = layer.input(0); |
||||
} |
||||
} |
||||
|
||||
for (int li = 0; li < layersCount; li++) |
||||
{ |
||||
tensorflow::NodeDef* layer = net.mutable_node(li); |
||||
for (int input_id = 0; input_id < layer->input_size(); input_id++) { |
||||
String input_op_name = layer->input(input_id); |
||||
IdentityOpsMap::iterator it = identity_ops.find(input_op_name); |
||||
|
||||
if (it != identity_ops.end()) { |
||||
layer->set_input(input_id, it->second); |
||||
} |
||||
} |
||||
} |
||||
|
||||
std::sort(identity_ops_idx.begin(), identity_ops_idx.end()); |
||||
|
||||
int removed_nodes = 0; |
||||
for(size_t i = 0; i < identity_ops_idx.size(); i++) { |
||||
int start_id = identity_ops_idx[i] - removed_nodes; |
||||
net.mutable_node()->DeleteSubrange(start_id, 1); |
||||
removed_nodes++; |
||||
} |
||||
} |
||||
|
||||
Mat getTensorContent(const tensorflow::TensorProto &tensor) |
||||
{ |
||||
std::string content = tensor.tensor_content(); |
||||
switch (tensor.dtype()) |
||||
{ |
||||
case tensorflow::DT_FLOAT: |
||||
{ |
||||
if (!content.empty()) |
||||
return Mat(1, content.size() / sizeof(float), CV_32FC1, (void*)content.c_str()).clone(); |
||||
else |
||||
{ |
||||
const RepeatedField<float>& field = tensor.float_val(); |
||||
CV_Assert(!field.empty()); |
||||
return Mat(1, field.size(), CV_32FC1, (void*)field.data()).clone(); |
||||
} |
||||
} |
||||
case tensorflow::DT_DOUBLE: |
||||
{ |
||||
if (!content.empty()) |
||||
return Mat(1, content.size() / sizeof(double), CV_64FC1, (void*)content.c_str()).clone(); |
||||
else |
||||
{ |
||||
const RepeatedField<double>& field = tensor.double_val(); |
||||
CV_Assert(!field.empty()); |
||||
return Mat(1, field.size(), CV_64FC1, (void*)field.data()).clone(); |
||||
} |
||||
} |
||||
case tensorflow::DT_INT32: |
||||
{ |
||||
if (!content.empty()) |
||||
return Mat(1, content.size() / sizeof(int32_t), CV_32SC1, (void*)content.c_str()).clone(); |
||||
else |
||||
{ |
||||
const RepeatedField<int32_t>& field = tensor.int_val(); |
||||
CV_Assert(!field.empty()); |
||||
return Mat(1, field.size(), CV_32SC1, (void*)field.data()).clone(); |
||||
} |
||||
} |
||||
case tensorflow::DT_HALF: |
||||
{ |
||||
Mat halfs; |
||||
if (!content.empty()) |
||||
{ |
||||
static const int kHalfSize = 2; |
||||
halfs = Mat(1, content.size() / kHalfSize, CV_16UC1, (void*)content.c_str()); |
||||
} |
||||
else |
||||
{ |
||||
const RepeatedField<int32_t>& field = tensor.half_val(); |
||||
CV_Assert(!field.empty()); |
||||
Mat ints(1, field.size(), CV_32SC1, (void*)field.data()); |
||||
ints.convertTo(halfs, CV_16UC1); |
||||
} |
||||
// Reinterpret as a signed shorts just for a convertFp16 call.
|
||||
Mat halfsSigned(halfs.size(), CV_16SC1, halfs.data); |
||||
Mat floats(halfs.size(), CV_32FC1); |
||||
convertFp16(halfsSigned, floats); |
||||
return floats; |
||||
} |
||||
case tensorflow::DT_QUINT8: |
||||
{ |
||||
CV_Assert(!content.empty()); |
||||
return Mat(1, content.size(), CV_8UC1, (void*)content.c_str()).clone(); |
||||
} |
||||
default: |
||||
CV_Error(Error::StsError, "Tensor's data type is not supported"); |
||||
break; |
||||
} |
||||
return Mat(); |
||||
} |
||||
|
||||
CV__DNN_EXPERIMENTAL_NS_END |
||||
}} // namespace dnn, namespace cv
|
||||
|
||||
#endif // HAVE_PROTOBUF
|
@ -0,0 +1,30 @@ |
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
// Copyright (C) 2018, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
|
||||
#ifndef __OPENCV_DNN_TF_SIMPLIFIER_HPP__ |
||||
#define __OPENCV_DNN_TF_SIMPLIFIER_HPP__ |
||||
|
||||
#include "../precomp.hpp" |
||||
|
||||
#ifdef HAVE_PROTOBUF |
||||
|
||||
#include "tf_io.hpp" |
||||
|
||||
namespace cv { namespace dnn { |
||||
CV__DNN_EXPERIMENTAL_NS_BEGIN |
||||
|
||||
void RemoveIdentityOps(tensorflow::GraphDef& net); |
||||
|
||||
void simplifySubgraphs(tensorflow::GraphDef& net); |
||||
|
||||
Mat getTensorContent(const tensorflow::TensorProto &tensor); |
||||
|
||||
CV__DNN_EXPERIMENTAL_NS_END |
||||
}} // namespace dnn, namespace cv
|
||||
|
||||
#endif // HAVE_PROTOBUF
|
||||
#endif // __OPENCV_DNN_TF_SIMPLIFIER_HPP__
|
Loading…
Reference in new issue