Merge pull request #1108 from nailbiter:optimLP

pull/1195/merge
Andrey Pavlenko 12 years ago committed by OpenCV Buildbot
commit 93923141d5
  1. 1
      .gitignore
  2. 2
      modules/optim/CMakeLists.txt
  3. 48
      modules/optim/doc/linear_programming.rst
  4. 10
      modules/optim/doc/optim.rst
  5. 62
      modules/optim/include/opencv2/optim.hpp
  6. 48
      modules/optim/include/opencv2/optim/optim.hpp
  7. 322
      modules/optim/src/lpsolver.cpp
  8. 44
      modules/optim/src/precomp.cpp
  9. 48
      modules/optim/src/precomp.hpp
  10. 101
      modules/optim/test/test_lpsolver.cpp
  11. 3
      modules/optim/test/test_main.cpp
  12. 1
      modules/optim/test/test_precomp.cpp
  13. 15
      modules/optim/test/test_precomp.hpp

1
.gitignore vendored

@ -6,3 +6,4 @@ OpenCV4Tegra/
.sw[a-z]
.*.swp
tags
build/

@ -0,0 +1,2 @@
set(the_description "Generic optimization")
ocv_define_module(optim opencv_core)

@ -0,0 +1,48 @@
Linear Programming
==================
.. highlight:: cpp
optim::solveLP
--------------------
Solve given (non-integer) linear programming problem using the Simplex Algorithm (Simplex Method).
What we mean here by "linear programming problem" (or LP problem, for short) can be
formulated as:
.. math::
\mbox{Maximize } c\cdot x\\
\mbox{Subject to:}\\
Ax\leq b\\
x\geq 0
Where :math:`c` is fixed *1*-by-*n* row-vector, :math:`A` is fixed *m*-by-*n* matrix, :math:`b` is fixed *m*-by-*1* column vector and
:math:`x` is an arbitrary *n*-by-*1* column vector, which satisfies the constraints.
Simplex algorithm is one of many algorithms that are designed to handle this sort of problems efficiently. Although it is not optimal in theoretical
sense (there exist algorithms that can solve any problem written as above in polynomial type, while simplex method degenerates to exponential time
for some special cases), it is well-studied, easy to implement and is shown to work well for real-life purposes.
The particular implementation is taken almost verbatim from **Introduction to Algorithms, third edition**
by T. H. Cormen, C. E. Leiserson, R. L. Rivest and Clifford Stein. In particular, the Bland's rule
(`http://en.wikipedia.org/wiki/Bland%27s\_rule <http://en.wikipedia.org/wiki/Bland%27s_rule>`_) is used to prevent cycling.
.. ocv:function:: int optim::solveLP(const Mat& Func, const Mat& Constr, Mat& z)
:param Func: This row-vector corresponds to :math:`c` in the LP problem formulation (see above). It should contain 32- or 64-bit floating point numbers. As a convenience, column-vector may be also submitted, in the latter case it is understood to correspond to :math:`c^T`.
:param Constr: *m*-by-*n\+1* matrix, whose rightmost column corresponds to :math:`b` in formulation above and the remaining to :math:`A`. It should containt 32- or 64-bit floating point numbers.
:param z: The solution will be returned here as a column-vector - it corresponds to :math:`c` in the formulation above. It will contain 64-bit floating point numbers.
:return: One of the return codes:
::
//!the return codes for solveLP() function
enum
{
SOLVELP_UNBOUNDED = -2, //problem is unbounded (target function can achieve arbitrary high values)
SOLVELP_UNFEASIBLE = -1, //problem is unfeasible (there are no points that satisfy all the constraints imposed)
SOLVELP_SINGLE = 0, //there is only one maximum for target function
SOLVELP_MULTI = 1 //there are multiple maxima for target function - the arbitrary one is returned
};

@ -0,0 +1,10 @@
**************************************
optim. Generic numerical optimization
**************************************
.. highlight:: cpp
.. toctree::
:maxdepth: 2
linear_programming

@ -0,0 +1,62 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2008-2012, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_OPTIM_HPP__
#define __OPENCV_OPTIM_HPP__
#include "opencv2/core.hpp"
namespace cv{namespace optim
{
//!the return codes for solveLP() function
enum
{
SOLVELP_UNBOUNDED = -2, //problem is unbounded (target function can achieve arbitrary high values)
SOLVELP_UNFEASIBLE = -1, //problem is unfeasible (there are no points that satisfy all the constraints imposed)
SOLVELP_SINGLE = 0, //there is only one maximum for target function
SOLVELP_MULTI = 1 //there are multiple maxima for target function - the arbitrary one is returned
};
CV_EXPORTS_W int solveLP(const Mat& Func, const Mat& Constr, Mat& z);
}}// cv
#endif

@ -0,0 +1,48 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifdef __OPENCV_BUILD
#error this is a compatibility header which should not be used inside the OpenCV library
#endif
#include "opencv2/optim.hpp"

@ -0,0 +1,322 @@
#include "precomp.hpp"
#include <climits>
#include <algorithm>
#include <cstdarg>
namespace cv{namespace optim{
using std::vector;
#ifdef ALEX_DEBUG
#define dprintf(x) printf x
static void print_matrix(const Mat& x){
print(x);
printf("\n");
}
static void print_simplex_state(const Mat& c,const Mat& b,double v,const std::vector<int> N,const std::vector<int> B){
printf("\tprint simplex state\n");
printf("v=%g\n",v);
printf("here c goes\n");
print_matrix(c);
printf("non-basic: ");
print(Mat(N));
printf("\n");
printf("here b goes\n");
print_matrix(b);
printf("basic: ");
print(Mat(B));
printf("\n");
}
#else
#define dprintf(x)
#define print_matrix(x)
#define print_simplex_state(c,b,v,N,B)
#endif
/**Due to technical considerations, the format of input b and c is somewhat special:
*both b and c should be one column bigger than corresponding b and c of linear problem and the leftmost column will be used internally
by this procedure - it should not be cleaned before the call to procedure and may contain mess after
it also initializes N and B and does not make any assumptions about their init values
* @return SOLVELP_UNFEASIBLE if problem is unfeasible, 0 if feasible.
*/
static int initialize_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B,vector<unsigned int>& indexToRow);
static inline void pivot(Mat_<double>& c,Mat_<double>& b,double& v,vector<int>& N,vector<int>& B,int leaving_index,
int entering_index,vector<unsigned int>& indexToRow);
/**@return SOLVELP_UNBOUNDED means the problem is unbdd, SOLVELP_MULTI means multiple solutions, SOLVELP_SINGLE means one solution.
*/
static int inner_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B,vector<unsigned int>& indexToRow);
static void swap_columns(Mat_<double>& A,int col1,int col2);
#define SWAP(type,a,b) {type tmp=(a);(a)=(b);(b)=tmp;}
//return codes:-2 (no_sol - unbdd),-1(no_sol - unfsbl), 0(single_sol), 1(multiple_sol=>least_l2_norm)
int solveLP(const Mat& Func, const Mat& Constr, Mat& z){
dprintf(("call to solveLP\n"));
//sanity check (size, type, no. of channels)
CV_Assert(Func.type()==CV_64FC1 || Func.type()==CV_32FC1);
CV_Assert(Constr.type()==CV_64FC1 || Constr.type()==CV_32FC1);
CV_Assert((Func.rows==1 && (Constr.cols-Func.cols==1))||
(Func.cols==1 && (Constr.cols-Func.rows==1)));
//copy arguments for we will shall modify them
Mat_<double> bigC=Mat_<double>(1,(Func.rows==1?Func.cols:Func.rows)+1),
bigB=Mat_<double>(Constr.rows,Constr.cols+1);
if(Func.rows==1){
Func.convertTo(bigC.colRange(1,bigC.cols),CV_64FC1);
}else{
Mat FuncT=Func.t();
FuncT.convertTo(bigC.colRange(1,bigC.cols),CV_64FC1);
}
Constr.convertTo(bigB.colRange(1,bigB.cols),CV_64FC1);
double v=0;
vector<int> N,B;
vector<unsigned int> indexToRow;
if(initialize_simplex(bigC,bigB,v,N,B,indexToRow)==SOLVELP_UNFEASIBLE){
return SOLVELP_UNFEASIBLE;
}
Mat_<double> c=bigC.colRange(1,bigC.cols),
b=bigB.colRange(1,bigB.cols);
int res=0;
if((res=inner_simplex(c,b,v,N,B,indexToRow))==SOLVELP_UNBOUNDED){
return SOLVELP_UNBOUNDED;
}
//return the optimal solution
z.create(c.cols,1,CV_64FC1);
MatIterator_<double> it=z.begin<double>();
for(int i=1;i<=c.cols;i++,it++){
if(indexToRow[i]<N.size()){
*it=0;
}else{
*it=b.at<double>(indexToRow[i]-N.size(),b.cols-1);
}
}
return res;
}
static int initialize_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B,vector<unsigned int>& indexToRow){
N.resize(c.cols);
N[0]=0;
for (std::vector<int>::iterator it = N.begin()+1 ; it != N.end(); ++it){
*it=it[-1]+1;
}
B.resize(b.rows);
B[0]=N.size();
for (std::vector<int>::iterator it = B.begin()+1 ; it != B.end(); ++it){
*it=it[-1]+1;
}
indexToRow.resize(c.cols+b.rows);
indexToRow[0]=0;
for (std::vector<unsigned int>::iterator it = indexToRow.begin()+1 ; it != indexToRow.end(); ++it){
*it=it[-1]+1;
}
v=0;
int k=0;
{
double min=DBL_MAX;
for(int i=0;i<b.rows;i++){
if(b(i,b.cols-1)<min){
min=b(i,b.cols-1);
k=i;
}
}
}
if(b(k,b.cols-1)>=0){
N.erase(N.begin());
for (std::vector<unsigned int>::iterator it = indexToRow.begin()+1 ; it != indexToRow.end(); ++it){
--(*it);
}
return 0;
}
Mat_<double> old_c=c.clone();
c=0;
c(0,0)=-1;
for(int i=0;i<b.rows;i++){
b(i,0)=-1;
}
print_simplex_state(c,b,v,N,B);
dprintf(("\tWE MAKE PIVOT\n"));
pivot(c,b,v,N,B,k,0,indexToRow);
print_simplex_state(c,b,v,N,B);
inner_simplex(c,b,v,N,B,indexToRow);
dprintf(("\tAFTER INNER_SIMPLEX\n"));
print_simplex_state(c,b,v,N,B);
if(indexToRow[0]>=N.size()){
int iterator_offset=indexToRow[0]-N.size();
if(b(iterator_offset,b.cols-1)>0){
return SOLVELP_UNFEASIBLE;
}
pivot(c,b,v,N,B,iterator_offset,0,indexToRow);
}
vector<int>::iterator iterator;
{
int iterator_offset=indexToRow[0];
iterator=N.begin()+iterator_offset;
std::iter_swap(iterator,N.begin());
SWAP(int,indexToRow[*iterator],indexToRow[0]);
swap_columns(c,iterator_offset,0);
swap_columns(b,iterator_offset,0);
}
dprintf(("after swaps\n"));
print_simplex_state(c,b,v,N,B);
//start from 1, because we ignore x_0
c=0;
v=0;
for(int I=1;I<old_c.cols;I++){
if(indexToRow[I]<N.size()){
dprintf(("I=%d from nonbasic\n",I));
int iterator_offset=indexToRow[I];
c(0,iterator_offset)+=old_c(0,I);
print_matrix(c);
}else{
dprintf(("I=%d from basic\n",I));
int iterator_offset=indexToRow[I]-N.size();
c-=old_c(0,I)*b.row(iterator_offset).colRange(0,b.cols-1);
v+=old_c(0,I)*b(iterator_offset,b.cols-1);
print_matrix(c);
}
}
dprintf(("after restore\n"));
print_simplex_state(c,b,v,N,B);
N.erase(N.begin());
for (std::vector<unsigned int>::iterator it = indexToRow.begin()+1 ; it != indexToRow.end(); ++it){
--(*it);
}
return 0;
}
static int inner_simplex(Mat_<double>& c, Mat_<double>& b,double& v,vector<int>& N,vector<int>& B,vector<unsigned int>& indexToRow){
int count=0;
for(;;){
dprintf(("iteration #%d\n",count));
count++;
static MatIterator_<double> pos_ptr;
int e=-1,pos_ctr=0,min_var=INT_MAX;
bool all_nonzero=true;
for(pos_ptr=c.begin();pos_ptr!=c.end();pos_ptr++,pos_ctr++){
if(*pos_ptr==0){
all_nonzero=false;
}
if(*pos_ptr>0){
if(N[pos_ctr]<min_var){
e=pos_ctr;
min_var=N[pos_ctr];
}
}
}
if(e==-1){
dprintf(("hello from e==-1\n"));
print_matrix(c);
if(all_nonzero==true){
return SOLVELP_SINGLE;
}else{
return SOLVELP_MULTI;
}
}
int l=-1;
min_var=INT_MAX;
double min=DBL_MAX;
int row_it=0;
MatIterator_<double> min_row_ptr=b.begin();
for(MatIterator_<double> it=b.begin();it!=b.end();it+=b.cols,row_it++){
double myite=0;
//check constraints, select the tightest one, reinforcing Bland's rule
if((myite=it[e])>0){
double val=it[b.cols-1]/myite;
if(val<min || (val==min && B[row_it]<min_var)){
min_var=B[row_it];
min_row_ptr=it;
min=val;
l=row_it;
}
}
}
if(l==-1){
return SOLVELP_UNBOUNDED;
}
dprintf(("the tightest constraint is in row %d with %g\n",l,min));
pivot(c,b,v,N,B,l,e,indexToRow);
dprintf(("objective, v=%g\n",v));
print_matrix(c);
dprintf(("constraints\n"));
print_matrix(b);
dprintf(("non-basic: "));
print_matrix(Mat(N));
dprintf(("basic: "));
print_matrix(Mat(B));
}
}
static inline void pivot(Mat_<double>& c,Mat_<double>& b,double& v,vector<int>& N,vector<int>& B,
int leaving_index,int entering_index,vector<unsigned int>& indexToRow){
double Coef=b(leaving_index,entering_index);
for(int i=0;i<b.cols;i++){
if(i==entering_index){
b(leaving_index,i)=1/Coef;
}else{
b(leaving_index,i)/=Coef;
}
}
for(int i=0;i<b.rows;i++){
if(i!=leaving_index){
double coef=b(i,entering_index);
for(int j=0;j<b.cols;j++){
if(j==entering_index){
b(i,j)=-coef*b(leaving_index,j);
}else{
b(i,j)-=(coef*b(leaving_index,j));
}
}
}
}
//objective function
Coef=c(0,entering_index);
for(int i=0;i<(b.cols-1);i++){
if(i==entering_index){
c(0,i)=-Coef*b(leaving_index,i);
}else{
c(0,i)-=Coef*b(leaving_index,i);
}
}
dprintf(("v was %g\n",v));
v+=Coef*b(leaving_index,b.cols-1);
SWAP(int,N[entering_index],B[leaving_index]);
SWAP(int,indexToRow[N[entering_index]],indexToRow[B[leaving_index]]);
}
static inline void swap_columns(Mat_<double>& A,int col1,int col2){
for(int i=0;i<A.rows;i++){
double tmp=A(i,col1);
A(i,col1)=A(i,col2);
A(i,col2)=tmp;
}
}
}}

@ -0,0 +1,44 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
/* End of file. */

@ -0,0 +1,48 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_PRECOMP_H__
#define __OPENCV_PRECOMP_H__
#include "opencv2/optim.hpp"
#endif

@ -0,0 +1,101 @@
#include "test_precomp.hpp"
#include <iostream>
TEST(Optim_LpSolver, regression_basic){
cv::Mat A,B,z,etalon_z;
#if 1
//cormen's example #1
A=(cv::Mat_<double>(3,1)<<3,1,2);
B=(cv::Mat_<double>(3,4)<<1,1,3,30,2,2,5,24,4,1,2,36);
std::cout<<"here A goes\n"<<A<<"\n";
cv::optim::solveLP(A,B,z);
std::cout<<"here z goes\n"<<z<<"\n";
etalon_z=(cv::Mat_<double>(3,1)<<8,4,0);
ASSERT_EQ(cv::countNonZero(z!=etalon_z),0);
#endif
#if 1
//cormen's example #2
A=(cv::Mat_<double>(1,2)<<18,12.5);
B=(cv::Mat_<double>(3,3)<<1,1,20,1,0,20,0,1,16);
std::cout<<"here A goes\n"<<A<<"\n";
cv::optim::solveLP(A,B,z);
std::cout<<"here z goes\n"<<z<<"\n";
etalon_z=(cv::Mat_<double>(2,1)<<20,0);
ASSERT_EQ(cv::countNonZero(z!=etalon_z),0);
#endif
#if 1
//cormen's example #3
A=(cv::Mat_<double>(1,2)<<5,-3);
B=(cv::Mat_<double>(2,3)<<1,-1,1,2,1,2);
std::cout<<"here A goes\n"<<A<<"\n";
cv::optim::solveLP(A,B,z);
std::cout<<"here z goes\n"<<z<<"\n";
etalon_z=(cv::Mat_<double>(2,1)<<1,0);
ASSERT_EQ(cv::countNonZero(z!=etalon_z),0);
#endif
}
TEST(Optim_LpSolver, regression_init_unfeasible){
cv::Mat A,B,z,etalon_z;
#if 1
//cormen's example #4 - unfeasible
A=(cv::Mat_<double>(1,3)<<-1,-1,-1);
B=(cv::Mat_<double>(2,4)<<-2,-7.5,-3,-10000,-20,-5,-10,-30000);
std::cout<<"here A goes\n"<<A<<"\n";
cv::optim::solveLP(A,B,z);
std::cout<<"here z goes\n"<<z<<"\n";
etalon_z=(cv::Mat_<double>(3,1)<<1250,1000,0);
ASSERT_EQ(cv::countNonZero(z!=etalon_z),0);
#endif
}
TEST(Optim_LpSolver, regression_absolutely_unfeasible){
cv::Mat A,B,z,etalon_z;
#if 1
//trivial absolutely unfeasible example
A=(cv::Mat_<double>(1,1)<<1);
B=(cv::Mat_<double>(2,2)<<1,-1);
std::cout<<"here A goes\n"<<A<<"\n";
int res=cv::optim::solveLP(A,B,z);
ASSERT_EQ(res,-1);
#endif
}
TEST(Optim_LpSolver, regression_multiple_solutions){
cv::Mat A,B,z,etalon_z;
#if 1
//trivial example with multiple solutions
A=(cv::Mat_<double>(2,1)<<1,1);
B=(cv::Mat_<double>(1,3)<<1,1,1);
std::cout<<"here A goes\n"<<A<<"\n";
int res=cv::optim::solveLP(A,B,z);
printf("res=%d\n",res);
printf("scalar %g\n",z.dot(A));
std::cout<<"here z goes\n"<<z<<"\n";
ASSERT_EQ(res,1);
ASSERT_EQ(z.dot(A),1);
#endif
}
TEST(Optim_LpSolver, regression_cycling){
cv::Mat A,B,z,etalon_z;
#if 1
//example with cycling from http://people.orie.cornell.edu/miketodd/or630/SimplexCyclingExample.pdf
A=(cv::Mat_<double>(4,1)<<10,-57,-9,-24);
B=(cv::Mat_<double>(3,5)<<0.5,-5.5,-2.5,9,0,0.5,-1.5,-0.5,1,0,1,0,0,0,1);
std::cout<<"here A goes\n"<<A<<"\n";
int res=cv::optim::solveLP(A,B,z);
printf("res=%d\n",res);
printf("scalar %g\n",z.dot(A));
std::cout<<"here z goes\n"<<z<<"\n";
ASSERT_EQ(z.dot(A),1);
//ASSERT_EQ(res,1);
#endif
}

@ -0,0 +1,3 @@
#include "test_precomp.hpp"
CV_TEST_MAIN("cv")

@ -0,0 +1 @@
#include "test_precomp.hpp"

@ -0,0 +1,15 @@
#ifdef __GNUC__
# pragma GCC diagnostic ignored "-Wmissing-declarations"
# if defined __clang__ || defined __APPLE__
# pragma GCC diagnostic ignored "-Wmissing-prototypes"
# pragma GCC diagnostic ignored "-Wextra"
# endif
#endif
#ifndef __OPENCV_TEST_PRECOMP_HPP__
#define __OPENCV_TEST_PRECOMP_HPP__
#include "opencv2/ts.hpp"
#include "opencv2/optim.hpp"
#endif
Loading…
Cancel
Save