mirror of https://github.com/opencv/opencv.git
Overloaded PCA constructor and ( ) operator to implement Feature#2287 - PCA that retains a specified amount of variance from the data. A sample was added to samples/cpp to demonstrate the new functionality. Docs and Tests were also updated
parent
a74a2302aa
commit
93155c6ae0
4 changed files with 335 additions and 4 deletions
@ -0,0 +1,184 @@ |
||||
/*
|
||||
* pca.cpp |
||||
* |
||||
* Author:
|
||||
* Kevin Hughes <kevinhughes27[at]gmail[dot]com> |
||||
* |
||||
* Special Thanks to: |
||||
* Philipp Wagner <bytefish[at]gmx[dot]de> |
||||
* |
||||
* This program demonstrates how to use OpenCV PCA with a
|
||||
* specified amount of variance to retain. The effect |
||||
* is illustrated further by using a trackbar to |
||||
* change the value for retained varaince. |
||||
* |
||||
* The program takes as input a text file with each line |
||||
* begin the full path to an image. PCA will be performed |
||||
* on this list of images. The author recommends using |
||||
* the first 15 faces of the AT&T face data set: |
||||
* http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
|
||||
*
|
||||
* so for example your input text file would look like this: |
||||
*
|
||||
* <path_to_at&t_faces>/orl_faces/s1/1.pgm |
||||
* <path_to_at&t_faces>/orl_faces/s2/1.pgm |
||||
* <path_to_at&t_faces>/orl_faces/s3/1.pgm |
||||
* <path_to_at&t_faces>/orl_faces/s4/1.pgm |
||||
* <path_to_at&t_faces>/orl_faces/s5/1.pgm |
||||
* <path_to_at&t_faces>/orl_faces/s6/1.pgm |
||||
* <path_to_at&t_faces>/orl_faces/s7/1.pgm |
||||
* <path_to_at&t_faces>/orl_faces/s8/1.pgm |
||||
* <path_to_at&t_faces>/orl_faces/s9/1.pgm |
||||
* <path_to_at&t_faces>/orl_faces/s10/1.pgm |
||||
* <path_to_at&t_faces>/orl_faces/s11/1.pgm |
||||
* <path_to_at&t_faces>/orl_faces/s12/1.pgm |
||||
* <path_to_at&t_faces>/orl_faces/s13/1.pgm |
||||
* <path_to_at&t_faces>/orl_faces/s14/1.pgm |
||||
* <path_to_at&t_faces>/orl_faces/s15/1.pgm |
||||
* |
||||
*/ |
||||
|
||||
#include <iostream> |
||||
#include <fstream> |
||||
#include <sstream> |
||||
|
||||
#include <opencv2/core/core.hpp> |
||||
#include <opencv2/highgui/highgui.hpp> |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
|
||||
///////////////////////
|
||||
// Functions
|
||||
void read_imgList(const string& filename, vector<Mat>& images) { |
||||
std::ifstream file(filename.c_str(), ifstream::in); |
||||
if (!file) { |
||||
string error_message = "No valid input file was given, please check the given filename."; |
||||
CV_Error(CV_StsBadArg, error_message); |
||||
} |
||||
string line; |
||||
while (getline(file, line)) { |
||||
images.push_back(imread(line, 0)); |
||||
} |
||||
} |
||||
|
||||
Mat formatImagesForPCA(const vector<Mat> &data) |
||||
{ |
||||
Mat dst(data.size(), data[0].rows*data[0].cols, CV_32F); |
||||
for(unsigned int i = 0; i < data.size(); i++) |
||||
{ |
||||
Mat image_row = data[i].clone().reshape(1,1); |
||||
Mat row_i = dst.row(i); |
||||
image_row.convertTo(row_i,CV_32F);
|
||||
} |
||||
return dst; |
||||
} |
||||
|
||||
Mat toGrayscale(InputArray _src) { |
||||
Mat src = _src.getMat(); |
||||
// only allow one channel
|
||||
if(src.channels() != 1) { |
||||
CV_Error(CV_StsBadArg, "Only Matrices with one channel are supported"); |
||||
} |
||||
// create and return normalized image
|
||||
Mat dst; |
||||
cv::normalize(_src, dst, 0, 255, NORM_MINMAX, CV_8UC1); |
||||
return dst; |
||||
} |
||||
|
||||
struct params |
||||
{ |
||||
Mat data; |
||||
int ch; |
||||
int rows; |
||||
PCA pca; |
||||
string winName; |
||||
}; |
||||
|
||||
void onTrackbar(int pos, void* ptr)
|
||||
{
|
||||
cout << "Retained Variance = " << pos << "% "; |
||||
cout << "re-calculating PCA..." << std::flush; |
||||
|
||||
double var = pos / 100.0; |
||||
|
||||
struct params *p = (struct params *)ptr; |
||||
|
||||
p->pca = PCA(p->data, cv::Mat(), CV_PCA_DATA_AS_ROW, var); |
||||
|
||||
Mat point = p->pca.project(p->data.row(0)); |
||||
Mat reconstruction = p->pca.backProject(point); |
||||
reconstruction = reconstruction.reshape(p->ch, p->rows); |
||||
reconstruction = toGrayscale(reconstruction); |
||||
|
||||
imshow(p->winName, reconstruction); |
||||
cout << "done! # of principal components: " << p->pca.eigenvectors.rows << endl; |
||||
} |
||||
|
||||
|
||||
///////////////////////
|
||||
// Main
|
||||
int main(int argc, char** argv)
|
||||
{ |
||||
if (argc != 2) { |
||||
cout << "usage: " << argv[0] << " <image_list.txt>" << endl; |
||||
exit(1); |
||||
} |
||||
|
||||
// Get the path to your CSV.
|
||||
string imgList = string(argv[1]); |
||||
|
||||
// vector to hold the images
|
||||
vector<Mat> images; |
||||
|
||||
// Read in the data. This can fail if not valid
|
||||
try { |
||||
read_imgList(imgList, images); |
||||
} catch (cv::Exception& e) { |
||||
cerr << "Error opening file \"" << imgList << "\". Reason: " << e.msg << endl; |
||||
exit(1); |
||||
} |
||||
|
||||
// Quit if there are not enough images for this demo.
|
||||
if(images.size() <= 1) { |
||||
string error_message = "This demo needs at least 2 images to work. Please add more images to your data set!"; |
||||
CV_Error(CV_StsError, error_message); |
||||
} |
||||
|
||||
// Reshape and stack images into a rowMatrix
|
||||
Mat data = formatImagesForPCA(images); |
||||
|
||||
// perform PCA
|
||||
PCA pca(data, cv::Mat(), CV_PCA_DATA_AS_ROW, 0.95); // trackbar is initially set here, also this is a common value for retainedVariance
|
||||
|
||||
// Demonstration of the effect of retainedVariance on the first image
|
||||
Mat point = pca.project(data.row(0)); // project into the eigenspace, thus the image becomes a "point"
|
||||
Mat reconstruction = pca.backProject(point); // re-create the image from the "point"
|
||||
reconstruction = reconstruction.reshape(images[0].channels(), images[0].rows); // reshape from a row vector into image shape
|
||||
reconstruction = toGrayscale(reconstruction); // re-scale for displaying purposes
|
||||
|
||||
// init highgui window
|
||||
string winName = "Reconstruction | press 'q' to quit"; |
||||
namedWindow(winName, CV_WINDOW_NORMAL); |
||||
|
||||
// params struct to pass to the trackbar handler
|
||||
params p; |
||||
p.data = data; |
||||
p.ch = images[0].channels(); |
||||
p.rows = images[0].rows; |
||||
p.pca = pca; |
||||
p.winName = winName; |
||||
|
||||
// create the tracbar
|
||||
int pos = 95; |
||||
createTrackbar("Retained Variance (%)", winName, &pos, 100, onTrackbar, (void*)&p);
|
||||
|
||||
// display until user presses q
|
||||
imshow(winName, reconstruction); |
||||
|
||||
char key = 0; |
||||
while(key != 'q') |
||||
key = waitKey(); |
||||
|
||||
return 0;
|
||||
} |
Loading…
Reference in new issue