|
|
|
@ -38,7 +38,7 @@ public: |
|
|
|
|
void processNet(std::string weights, std::string proto, |
|
|
|
|
Mat inp, const std::string& outputLayer = "", |
|
|
|
|
std::string halideScheduler = "", |
|
|
|
|
double l1 = 0.0, double lInf = 0.0) |
|
|
|
|
double l1 = 0.0, double lInf = 0.0, double detectionConfThresh = 0.2) |
|
|
|
|
{ |
|
|
|
|
if (backend == DNN_BACKEND_OPENCV && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) |
|
|
|
|
{ |
|
|
|
@ -87,7 +87,7 @@ public: |
|
|
|
|
} |
|
|
|
|
Mat out = net.forward(outputLayer).clone(); |
|
|
|
|
|
|
|
|
|
check(outDefault, out, outputLayer, l1, lInf, "First run"); |
|
|
|
|
check(outDefault, out, outputLayer, l1, lInf, detectionConfThresh, "First run"); |
|
|
|
|
|
|
|
|
|
// Test 2: change input.
|
|
|
|
|
float* inpData = (float*)inp.data; |
|
|
|
@ -101,10 +101,11 @@ public: |
|
|
|
|
net.setInput(inp); |
|
|
|
|
outDefault = netDefault.forward(outputLayer).clone(); |
|
|
|
|
out = net.forward(outputLayer).clone(); |
|
|
|
|
check(outDefault, out, outputLayer, l1, lInf, "Second run"); |
|
|
|
|
check(outDefault, out, outputLayer, l1, lInf, detectionConfThresh, "Second run"); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void check(Mat& ref, Mat& out, const std::string& outputLayer, double l1, double lInf, const char* msg) |
|
|
|
|
void check(Mat& ref, Mat& out, const std::string& outputLayer, double l1, double lInf, |
|
|
|
|
double detectionConfThresh, const char* msg) |
|
|
|
|
{ |
|
|
|
|
if (outputLayer == "detection_out") |
|
|
|
|
{ |
|
|
|
@ -119,7 +120,7 @@ public: |
|
|
|
|
} |
|
|
|
|
out = out.rowRange(0, numDetections); |
|
|
|
|
} |
|
|
|
|
normAssertDetections(ref, out, msg, 0.2, l1, lInf); |
|
|
|
|
normAssertDetections(ref, out, msg, detectionConfThresh, l1, lInf); |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
normAssert(ref, out, msg, l1, lInf); |
|
|
|
@ -188,20 +189,30 @@ TEST_P(DNNTestNetwork, MobileNet_SSD_Caffe) |
|
|
|
|
inp, "detection_out", "", l1, lInf); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// TODO: update MobileNet model.
|
|
|
|
|
TEST_P(DNNTestNetwork, MobileNet_SSD_TensorFlow) |
|
|
|
|
TEST_P(DNNTestNetwork, MobileNet_SSD_v1_TensorFlow) |
|
|
|
|
{ |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE || |
|
|
|
|
backend == DNN_BACKEND_INFERENCE_ENGINE) |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
Mat sample = imread(findDataFile("dnn/street.png", false)); |
|
|
|
|
Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false); |
|
|
|
|
float l1 = (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) ? 0.008 : 0.0; |
|
|
|
|
float lInf = (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) ? 0.06 : 0.0; |
|
|
|
|
processNet("dnn/ssd_mobilenet_v1_coco.pb", "dnn/ssd_mobilenet_v1_coco.pbtxt", |
|
|
|
|
float l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.011 : 0.0; |
|
|
|
|
float lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.06 : 0.0; |
|
|
|
|
processNet("dnn/ssd_mobilenet_v1_coco_2017_11_17.pb", "dnn/ssd_mobilenet_v1_coco_2017_11_17.pbtxt", |
|
|
|
|
inp, "detection_out", "", l1, lInf); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
TEST_P(DNNTestNetwork, MobileNet_SSD_v2_TensorFlow) |
|
|
|
|
{ |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
Mat sample = imread(findDataFile("dnn/street.png", false)); |
|
|
|
|
Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false); |
|
|
|
|
float l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.011 : 0.0; |
|
|
|
|
float lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.06 : 0.0; |
|
|
|
|
processNet("dnn/ssd_mobilenet_v2_coco_2018_03_29.pb", "dnn/ssd_mobilenet_v2_coco_2018_03_29.pbtxt", |
|
|
|
|
inp, "detection_out", "", l1, lInf, 0.25); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
TEST_P(DNNTestNetwork, SSD_VGG16) |
|
|
|
|
{ |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE && target == DNN_TARGET_CPU) |
|
|
|
@ -265,9 +276,7 @@ TEST_P(DNNTestNetwork, opencv_face_detector) |
|
|
|
|
|
|
|
|
|
TEST_P(DNNTestNetwork, Inception_v2_SSD_TensorFlow) |
|
|
|
|
{ |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE || |
|
|
|
|
(backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL) || |
|
|
|
|
(backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16)) |
|
|
|
|
if (backend == DNN_BACKEND_HALIDE) |
|
|
|
|
throw SkipTestException(""); |
|
|
|
|
Mat sample = imread(findDataFile("dnn/street.png", false)); |
|
|
|
|
Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false); |
|
|
|
|