different interpolation by double image (#23124)

* different interpolation by double image

* fixing scaling mapping

* fixing a test

* added an option to enable previous interpolation

* added doxygen entries for the new parameter

* ASSERT_TRUE -> ASSERT_EQ

* changed log message when using old upscale mode
pull/23268/head
Vaclav Vavra 2 years ago committed by GitHub
parent 6c235c8edb
commit 923dbcc58f
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 12
      modules/features2d/include/opencv2/features2d.hpp
  2. 39
      modules/features2d/src/sift.dispatch.cpp
  3. 47
      modules/features2d/test/test_descriptors_regression.impl.hpp
  4. 2
      modules/features2d/test/test_detectors_invariance.cpp
  5. 5
      modules/features2d/test/test_detectors_invariance.impl.hpp
  6. 4
      modules/features2d/test/test_invariance_utils.hpp

@ -286,10 +286,14 @@ public:
@param sigma The sigma of the Gaussian applied to the input image at the octave \#0. If your image
is captured with a weak camera with soft lenses, you might want to reduce the number.
@param enable_precise_upscale Whether to enable precise upscaling in the scale pyramid, which maps
index \f$\texttt{x}\f$ to \f$\texttt{2x}\f$. This prevents localization bias. The option
to disable it (which is deprecated and issues a warning) is provided to keep the original behavior.
*/
CV_WRAP static Ptr<SIFT> create(int nfeatures = 0, int nOctaveLayers = 3,
double contrastThreshold = 0.04, double edgeThreshold = 10,
double sigma = 1.6);
double sigma = 1.6, bool enable_precise_upscale = true);
/** @brief Create SIFT with specified descriptorType.
@param nfeatures The number of best features to retain. The features are ranked by their scores
@ -313,10 +317,14 @@ public:
is captured with a weak camera with soft lenses, you might want to reduce the number.
@param descriptorType The type of descriptors. Only CV_32F and CV_8U are supported.
@param enable_precise_upscale Whether to enable precise upscaling in the scale pyramid, which maps
index \f$\texttt{x}\f$ to \f$\texttt{2x}\f$. This prevents localization bias. The option
to disable it (which is deprecated and issues a warning) is provided to keep the original behavior.
*/
CV_WRAP static Ptr<SIFT> create(int nfeatures, int nOctaveLayers,
double contrastThreshold, double edgeThreshold,
double sigma, int descriptorType);
double sigma, int descriptorType, bool enable_precise_upscale = true);
CV_WRAP virtual String getDefaultName() const CV_OVERRIDE;

@ -72,6 +72,7 @@
#include "precomp.hpp"
#include <opencv2/core/hal/hal.hpp>
#include <opencv2/core/utils/tls.hpp>
#include <opencv2/core/utils/logger.hpp>
#include "sift.simd.hpp"
#include "sift.simd_declarations.hpp" // defines CV_CPU_DISPATCH_MODES_ALL=AVX2,...,BASELINE based on CMakeLists.txt content
@ -88,7 +89,8 @@ class SIFT_Impl : public SIFT
public:
explicit SIFT_Impl( int nfeatures = 0, int nOctaveLayers = 3,
double contrastThreshold = 0.04, double edgeThreshold = 10,
double sigma = 1.6, int descriptorType = CV_32F );
double sigma = 1.6, int descriptorType = CV_32F,
bool enable_precise_upscale = true );
//! returns the descriptor size in floats (128)
int descriptorSize() const CV_OVERRIDE;
@ -136,24 +138,25 @@ protected:
CV_PROP_RW double edgeThreshold;
CV_PROP_RW double sigma;
CV_PROP_RW int descriptor_type;
CV_PROP_RW bool enable_precise_upscale;
};
Ptr<SIFT> SIFT::create( int _nfeatures, int _nOctaveLayers,
double _contrastThreshold, double _edgeThreshold, double _sigma )
double _contrastThreshold, double _edgeThreshold, double _sigma, bool enable_precise_upscale )
{
CV_TRACE_FUNCTION();
return makePtr<SIFT_Impl>(_nfeatures, _nOctaveLayers, _contrastThreshold, _edgeThreshold, _sigma, CV_32F);
return makePtr<SIFT_Impl>(_nfeatures, _nOctaveLayers, _contrastThreshold, _edgeThreshold, _sigma, CV_32F, enable_precise_upscale);
}
Ptr<SIFT> SIFT::create( int _nfeatures, int _nOctaveLayers,
double _contrastThreshold, double _edgeThreshold, double _sigma, int _descriptorType )
double _contrastThreshold, double _edgeThreshold, double _sigma, int _descriptorType, bool enable_precise_upscale )
{
CV_TRACE_FUNCTION();
// SIFT descriptor supports 32bit floating point and 8bit unsigned int.
CV_Assert(_descriptorType == CV_32F || _descriptorType == CV_8U);
return makePtr<SIFT_Impl>(_nfeatures, _nOctaveLayers, _contrastThreshold, _edgeThreshold, _sigma, _descriptorType);
return makePtr<SIFT_Impl>(_nfeatures, _nOctaveLayers, _contrastThreshold, _edgeThreshold, _sigma, _descriptorType, enable_precise_upscale);
}
String SIFT::getDefaultName() const
@ -170,7 +173,7 @@ unpackOctave(const KeyPoint& kpt, int& octave, int& layer, float& scale)
scale = octave >= 0 ? 1.f/(1 << octave) : (float)(1 << -octave);
}
static Mat createInitialImage( const Mat& img, bool doubleImageSize, float sigma )
static Mat createInitialImage( const Mat& img, bool doubleImageSize, float sigma, bool enable_precise_upscale )
{
CV_TRACE_FUNCTION();
@ -188,12 +191,22 @@ static Mat createInitialImage( const Mat& img, bool doubleImageSize, float sigma
if( doubleImageSize )
{
sig_diff = sqrtf( std::max(sigma * sigma - SIFT_INIT_SIGMA * SIFT_INIT_SIGMA * 4, 0.01f) );
Mat dbl;
if (enable_precise_upscale) {
dbl.create(Size(gray_fpt.cols*2, gray_fpt.rows*2), gray_fpt.type());
Mat H = Mat::zeros(2, 3, CV_32F);
H.at<float>(0, 0) = 0.5f;
H.at<float>(1, 1) = 0.5f;
cv::warpAffine(gray_fpt, dbl, H, dbl.size(), INTER_LINEAR | WARP_INVERSE_MAP, BORDER_REFLECT);
} else {
#if DoG_TYPE_SHORT
resize(gray_fpt, dbl, Size(gray_fpt.cols*2, gray_fpt.rows*2), 0, 0, INTER_LINEAR_EXACT);
resize(gray_fpt, dbl, Size(gray_fpt.cols*2, gray_fpt.rows*2), 0, 0, INTER_LINEAR_EXACT);
#else
resize(gray_fpt, dbl, Size(gray_fpt.cols*2, gray_fpt.rows*2), 0, 0, INTER_LINEAR);
resize(gray_fpt, dbl, Size(gray_fpt.cols*2, gray_fpt.rows*2), 0, 0, INTER_LINEAR);
#endif
}
Mat result;
GaussianBlur(dbl, result, Size(), sig_diff, sig_diff);
return result;
@ -459,10 +472,14 @@ static void calcDescriptors(const std::vector<Mat>& gpyr, const std::vector<KeyP
//////////////////////////////////////////////////////////////////////////////////////////
SIFT_Impl::SIFT_Impl( int _nfeatures, int _nOctaveLayers,
double _contrastThreshold, double _edgeThreshold, double _sigma, int _descriptorType )
double _contrastThreshold, double _edgeThreshold, double _sigma, int _descriptorType, bool _enable_precise_upscale)
: nfeatures(_nfeatures), nOctaveLayers(_nOctaveLayers),
contrastThreshold(_contrastThreshold), edgeThreshold(_edgeThreshold), sigma(_sigma), descriptor_type(_descriptorType)
contrastThreshold(_contrastThreshold), edgeThreshold(_edgeThreshold), sigma(_sigma), descriptor_type(_descriptorType),
enable_precise_upscale(_enable_precise_upscale)
{
if (!enable_precise_upscale) {
CV_LOG_ONCE_INFO(NULL, "precise upscale disabled, this is now deprecated as it was found to induce a location bias");
}
}
int SIFT_Impl::descriptorSize() const
@ -516,7 +533,7 @@ void SIFT_Impl::detectAndCompute(InputArray _image, InputArray _mask,
actualNOctaves = maxOctave - firstOctave + 1;
}
Mat base = createInitialImage(image, firstOctave < 0, (float)sigma);
Mat base = createInitialImage(image, firstOctave < 0, (float)sigma, enable_precise_upscale);
std::vector<Mat> gpyr;
int nOctaves = actualNOctaves > 0 ? actualNOctaves : cvRound(std::log( (double)std::min( base.cols, base.rows ) ) / std::log(2.) - 2) - firstOctave;

@ -7,6 +7,34 @@ namespace opencv_test { namespace {
/****************************************************************************************\
* Regression tests for descriptor extractors. *
\****************************************************************************************/
static void double_image(Mat& src, Mat& dst) {
dst.create(Size(src.cols*2, src.rows*2), src.type());
Mat H = Mat::zeros(2, 3, CV_32F);
H.at<float>(0, 0) = 0.5f;
H.at<float>(1, 1) = 0.5f;
cv::warpAffine(src, dst, H, dst.size(), INTER_LINEAR | WARP_INVERSE_MAP, BORDER_REFLECT);
}
static Mat prepare_img(bool rows_indexed) {
int rows = 5;
int columns = 5;
Mat img(rows, columns, CV_32F);
for (int i = 0; i < rows; i++) {
for (int j = 0; j < columns; j++) {
if (rows_indexed) {
img.at<float>(i, j) = (float)i;
} else {
img.at<float>(i, j) = (float)j;
}
}
}
return img;
}
static void writeMatInBin( const Mat& mat, const string& filename )
{
FILE* f = fopen( filename.c_str(), "wb");
@ -145,6 +173,25 @@ protected:
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
}
image = prepare_img(false);
Mat dbl;
try
{
double_image(image, dbl);
Mat downsized_back(dbl.rows/2, dbl.cols/2, CV_32F);
resize(dbl, downsized_back, Size(dbl.cols/2, dbl.rows/2), 0, 0, INTER_NEAREST);
cv::Mat diff = (image != downsized_back);
ASSERT_EQ(0, cv::norm(image, downsized_back, NORM_INF));
}
catch(...)
{
ts->printf( cvtest::TS::LOG, "double_image() must not generate exception (1).\n");
ts->printf( cvtest::TS::LOG, "double_image() when downsized back by NEAREST must generate the same original image (1).\n");
ts->set_failed_test_info( cvtest::TS::FAIL_INVALID_TEST_DATA );
}
// Several images.
vector<Mat> images;
vector<vector<KeyPoint> > keypointsCollection;

@ -37,7 +37,7 @@ INSTANTIATE_TEST_CASE_P(AKAZE_DESCRIPTOR_KAZE, DetectorRotationInvariance,
*/
INSTANTIATE_TEST_CASE_P(SIFT, DetectorScaleInvariance,
Value(IMAGE_BIKES, SIFT::create(0, 3, 0.09), 0.65f, 0.98f));
Value(IMAGE_BIKES, SIFT::create(0, 3, 0.09), 0.60f, 0.98f));
INSTANTIATE_TEST_CASE_P(BRISK, DetectorScaleInvariance,
Value(IMAGE_BIKES, BRISK::create(), 0.08f, 0.49f));

@ -25,7 +25,6 @@ void matchKeyPoints(const vector<KeyPoint>& keypoints0, const Mat& H,
perspectiveTransform(Mat(points0), points0t, H);
matches.clear();
vector<uchar> usedMask(keypoints1.size(), 0);
for(int i0 = 0; i0 < static_cast<int>(keypoints0.size()); i0++)
{
int nearestPointIndex = -1;
@ -33,8 +32,6 @@ void matchKeyPoints(const vector<KeyPoint>& keypoints0, const Mat& H,
const float r0 = 0.5f * keypoints0[i0].size;
for(size_t i1 = 0; i1 < keypoints1.size(); i1++)
{
if(nearestPointIndex >= 0 && usedMask[i1])
continue;
float r1 = 0.5f * keypoints1[i1].size;
float intersectRatio = calcIntersectRatio(points0t.at<Point2f>(i0), r0,
@ -47,8 +44,6 @@ void matchKeyPoints(const vector<KeyPoint>& keypoints0, const Mat& H,
}
matches.push_back(DMatch(i0, nearestPointIndex, maxIntersectRatio));
if(nearestPointIndex >= 0)
usedMask[nearestPointIndex] = 1;
}
}

@ -75,8 +75,8 @@ void scaleKeyPoints(const vector<KeyPoint>& src, vector<KeyPoint>& dst, float sc
dst.resize(src.size());
for (size_t i = 0; i < src.size(); i++) {
dst[i] = src[i];
dst[i].pt.x *= scale;
dst[i].pt.y *= scale;
dst[i].pt.x = dst[i].pt.x * scale + (scale - 1.0f) / 2.0f;
dst[i].pt.y = dst[i].pt.y * scale + (scale - 1.0f) / 2.0f;
dst[i].size *= scale;
}
}

Loading…
Cancel
Save