diff --git a/modules/dnn/src/onnx/onnx_importer.cpp b/modules/dnn/src/onnx/onnx_importer.cpp index 47ec830313..736f3a27de 100644 --- a/modules/dnn/src/onnx/onnx_importer.cpp +++ b/modules/dnn/src/onnx/onnx_importer.cpp @@ -455,7 +455,11 @@ void ONNXImporter::addLayer(LayerParams& layerParams, int id = dstNet.addLayer(layerParams.name, layerParams.type, layerParams); for (int i = 0; i < node_proto.output_size(); ++i) { - layer_id.insert(std::make_pair(node_proto.output(i), LayerInfo(id, i))); + const std::string& output_name = node_proto.output(i); + if (!output_name.empty()) + { + layer_id.insert(std::make_pair(output_name, LayerInfo(id, i))); + } } std::vector layerInpShapes, layerOutShapes, layerInternalShapes; @@ -478,7 +482,11 @@ void ONNXImporter::addLayer(LayerParams& layerParams, layer->getMemoryShapes(layerInpShapes, 0, layerOutShapes, layerInternalShapes); for (int i = 0; i < node_proto.output_size() && i < (int)layerOutShapes.size(); ++i) { - outShapes[node_proto.output(i)] = layerOutShapes[i]; + const std::string& output_name = node_proto.output(i); + if (!output_name.empty()) + { + outShapes[node_proto.output(i)] = layerOutShapes[i]; + } } } @@ -678,10 +686,30 @@ void ONNXImporter::populateNet() CV_LOG_DEBUG(NULL, "DNN/ONNX: import completed!"); } +const std::string& extractNodeName(const opencv_onnx::NodeProto& node_proto) +{ + if (node_proto.has_name() && !node_proto.name().empty()) + { + return node_proto.name(); + } + for (int i = 0; i < node_proto.output_size(); ++i) + { + const std::string& name = node_proto.output(i); + // There are two ways to leave an optional input or output unspecified: + // the first, available only for trailing inputs and outputs, is to simply not provide that input; + // the second method is to use an empty string in place of an input or output name. + if (!name.empty()) + { + return name; + } + } + CV_Error(Error::StsAssert, "Couldn't deduce Node name."); +} + void ONNXImporter::handleNode(const opencv_onnx::NodeProto& node_proto) { CV_Assert(node_proto.output_size() >= 1); - std::string name = node_proto.output(0); + const std::string& name = extractNodeName(node_proto); const std::string& layer_type = node_proto.op_type(); const std::string& layer_type_domain = node_proto.has_domain() ? node_proto.domain() : std::string(); if (!layer_type_domain.empty() && layer_type_domain != "ai.onnx") @@ -802,6 +830,7 @@ void ONNXImporter::parseReduce(LayerParams& layerParams, const opencv_onnx::Node { opencv_onnx::NodeProto node_proto = node_proto_; const std::string& layer_type = node_proto.op_type(); + const std::string output_name = node_proto.output(0); CV_Assert(node_proto.input_size() == 1); layerParams.type = "Pooling"; @@ -922,7 +951,7 @@ void ONNXImporter::parseReduce(LayerParams& layerParams, const opencv_onnx::Node layerParams.set("dim", DictValue::arrayInt(&targetShape[0], targetShape.size())); node_proto.set_input(0, node_proto.output(0)); - node_proto.set_output(0, layerParams.name); + node_proto.set_output(0, output_name); } else if (!layerParams.has("axes") && (layer_type == "ReduceMean" || layer_type == "ReduceSum" || layer_type == "ReduceMax")) { @@ -955,7 +984,7 @@ void ONNXImporter::parseReduce(LayerParams& layerParams, const opencv_onnx::Node layerParams.set("dim", DictValue::arrayInt(targetShape.data(), targetShape.size())); node_proto.set_input(0, node_proto.output(0)); - node_proto.set_output(0, layerParams.name); + node_proto.set_output(0, output_name); } addLayer(layerParams, node_proto); } @@ -1045,7 +1074,7 @@ void ONNXImporter::parseSlice(LayerParams& layerParams, const opencv_onnx::NodeP { Mat flipped; flip(inp, flipped, 0); - addConstant(layerParams.name, flipped); + addConstant(node_proto.output(0), flipped); return; } } @@ -1065,7 +1094,7 @@ void ONNXImporter::parseSlice(LayerParams& layerParams, const opencv_onnx::NodeP inputs.push_back(inp); runLayer(layerParams, inputs, sliced); CV_Assert(sliced.size() == 1); - addConstant(layerParams.name, sliced[0]); + addConstant(node_proto.output(0), sliced[0]); return; } addLayer(layerParams, node_proto); @@ -1130,7 +1159,7 @@ void ONNXImporter::parseBias(LayerParams& layerParams, const opencv_onnx::NodePr Mat blob_1 = getBlob(node_proto, 1); CV_Assert(blob_0.size == blob_1.size); Mat output = isSub ? (blob_0 - blob_1) : (blob_0 + blob_1); - addConstant(layerParams.name, output); + addConstant(node_proto.output(0), output); return; } else if (is_const_0 || is_const_1) @@ -1244,12 +1273,13 @@ void ONNXImporter::parseConstant(LayerParams& layerParams, const opencv_onnx::No { CV_Assert(node_proto.input_size() == 0); CV_Assert(layerParams.blobs.size() == 1); - addConstant(layerParams.name, layerParams.blobs[0]); + addConstant(node_proto.output(0), layerParams.blobs[0]); } void ONNXImporter::parseLSTM(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto_) { opencv_onnx::NodeProto node_proto = node_proto_; + const std::string output_name = node_proto.output(0); LayerParams lstmParams = layerParams; lstmParams.name += "/lstm"; @@ -1331,7 +1361,7 @@ void ONNXImporter::parseLSTM(LayerParams& layerParams, const opencv_onnx::NodePr layerParams.type = "Reshape"; layerParams.set("dim", DictValue::arrayInt(&lstmShape[0], lstmShape.size())); node_proto.set_input(0, lstmParams.name); // redirect input to LSTM - node_proto.set_output(0, layerParams.name); // keep origin LSTM's name + node_proto.set_output(0, output_name); // keep origin LSTM's name addLayer(layerParams, node_proto); } @@ -1573,6 +1603,7 @@ void ONNXImporter::parseMul(LayerParams& layerParams, const opencv_onnx::NodePro { opencv_onnx::NodeProto node_proto = node_proto_; const std::string& layer_type = node_proto.op_type(); + const std::string output_name = node_proto.output(0); CV_Assert(node_proto.input_size() == 2); bool isDiv = layer_type == "Div"; @@ -1657,7 +1688,7 @@ void ONNXImporter::parseMul(LayerParams& layerParams, const opencv_onnx::NodePro if (inp0.dims == 1 && inp1.dims == 1) out.dims = 1; // to workaround dims == 1 - addConstant(layerParams.name, out); + addConstant(output_name, out); return; } else if (outShapes[node_proto.input(0)] == outShapes[node_proto.input(1)]) @@ -1673,7 +1704,7 @@ void ONNXImporter::parseMul(LayerParams& layerParams, const opencv_onnx::NodePro opencv_onnx::NodeProto proto; proto.add_input(node_proto.input(1)); proto.add_input(node_proto.input(0)); - proto.add_output(layerParams.name); + proto.add_output(output_name); node_proto = proto; } @@ -1851,7 +1882,7 @@ void ONNXImporter::parseTranspose(LayerParams& layerParams, const opencv_onnx::N std::vector inputs(1, getBlob(node_proto, 0)), transposed; runLayer(layerParams, inputs, transposed); CV_Assert(transposed.size() == 1); - addConstant(layerParams.name, transposed[0]); + addConstant(node_proto.output(0), transposed[0]); return; } addLayer(layerParams, node_proto); @@ -1903,7 +1934,7 @@ void ONNXImporter::parseSqueeze(LayerParams& layerParams, const opencv_onnx::Nod Mat inp = getBlob(node_proto, 0); Mat out = inp.reshape(1, outShape); out.dims = outShape.size(); // to workaround dims == 1 - addConstant(layerParams.name, out); + addConstant(node_proto.output(0), out); return; } addLayer(layerParams, node_proto); @@ -1930,7 +1961,7 @@ void ONNXImporter::parseFlatten(LayerParams& layerParams, const opencv_onnx::Nod } Mat output = input.reshape(1, 2, out_size); - addConstant(layerParams.name, output); + addConstant(node_proto.output(0), output); return; } IterShape_t shapeIt = outShapes.find(node_proto.input(0)); @@ -2002,7 +2033,7 @@ void ONNXImporter::parseUnsqueeze(LayerParams& layerParams, const opencv_onnx::N } Mat out = input.reshape(0, dims); - addConstant(layerParams.name, out); + addConstant(node_proto.output(0), out); return; } @@ -2039,6 +2070,7 @@ void ONNXImporter::parseExpand(LayerParams& layerParams, const opencv_onnx::Node CV_CheckEQ(node_proto.input_size(), 2, ""); const std::string& input0 = node_proto.input(0); const std::string& input1 = node_proto.input(1); + const std::string output_name = node_proto.output(0); Mat newShapeMat = getBlob(input1); MatShape targetShape(newShapeMat.ptr(), newShapeMat.ptr() + newShapeMat.total()); @@ -2108,7 +2140,7 @@ void ONNXImporter::parseExpand(LayerParams& layerParams, const opencv_onnx::Node input = input.reshape(0, total(inpShape, 0, broadcast_axes[0])); Mat output = cv::repeat(input, 1, targetShape[broadcast_axes[0]]); output = output.reshape(0, targetShape); - addConstant(layerParams.name, output); + addConstant(output_name, output); return; } @@ -2138,7 +2170,7 @@ void ONNXImporter::parseExpand(LayerParams& layerParams, const opencv_onnx::Node layerParams.set("axis", broadcast_axes[0]); layerParams.type = "Concat"; - node_proto.set_output(0, layerParams.name); + node_proto.set_output(0, output_name); } else if (broadcast_axes.empty()) { @@ -2163,7 +2195,7 @@ void ONNXImporter::parseReshape(LayerParams& layerParams, const opencv_onnx::Nod if (layer_id.find(node_proto.input(0)) == layer_id.end()) { std::vector inputs(1, getBlob(node_proto, 0)), outputs; runLayer(layerParams, inputs, outputs); - addConstant(layerParams.name, outputs[0]); + addConstant(node_proto.output(0), outputs[0]); return; } } @@ -2177,7 +2209,7 @@ void ONNXImporter::parseReshape(LayerParams& layerParams, const opencv_onnx::Nod if (layer_id.find(node_proto.input(0)) == layer_id.end()) { Mat input = getBlob(node_proto, 0); Mat out = input.reshape(0, dim); - addConstant(layerParams.name, out); + addConstant(node_proto.output(0), out); return; } replaceLayerParam(layerParams, "shape", "dim"); @@ -2229,7 +2261,7 @@ void ONNXImporter::parseShape(LayerParams& layerParams, const opencv_onnx::NodeP CV_LOG_ERROR(NULL, "DNN/ONNX(Shape): dynamic 'zero' shapes are not supported, input " << toString(inpShape, node_proto.input(0))); CV_Assert(!isDynamicShape); // not supported } - addConstant(layerParams.name, shapeMat); + addConstant(node_proto.output(0), shapeMat); } void ONNXImporter::parseCast(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto) @@ -2253,7 +2285,7 @@ void ONNXImporter::parseCast(LayerParams& layerParams, const opencv_onnx::NodePr Mat dst; blob.convertTo(dst, type); dst.dims = blob.dims; - addConstant(layerParams.name, dst); + addConstant(node_proto.output(0), dst); return; } else @@ -2281,7 +2313,7 @@ void ONNXImporter::parseConstantFill(LayerParams& layerParams, const opencv_onnx for (int i = 0; i < inpShape.size(); i++) CV_CheckGT(inpShape[i], 0, ""); Mat tensor(inpShape.size(), &inpShape[0], depth, Scalar(fill_value)); - addConstant(layerParams.name, tensor); + addConstant(node_proto.output(0), tensor); } void ONNXImporter::parseGather(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto_) @@ -2309,7 +2341,7 @@ void ONNXImporter::parseGather(LayerParams& layerParams, const opencv_onnx::Node } else { out.dims = 1; } - addConstant(layerParams.name, out); + addConstant(node_proto.output(0), out); return; } else @@ -2403,7 +2435,7 @@ void ONNXImporter::parseConcat(LayerParams& layerParams, const opencv_onnx::Node runLayer(layerParams, inputs, concatenated); CV_Assert(concatenated.size() == 1); - addConstant(layerParams.name, concatenated[0]); + addConstant(node_proto.output(0), concatenated[0]); return; } else