|
|
|
@ -10,7 +10,7 @@ |
|
|
|
|
// License Agreement
|
|
|
|
|
// For Open Source Computer Vision Library
|
|
|
|
|
//
|
|
|
|
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
|
|
|
|
// Copyright (C) 2000-2018, Intel Corporation, all rights reserved.
|
|
|
|
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
|
|
|
|
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
|
|
|
|
// Third party copyrights are property of their respective owners.
|
|
|
|
@ -51,101 +51,91 @@ namespace cv |
|
|
|
|
|
|
|
|
|
static int CV_KMEANS_PARALLEL_GRANULARITY = (int)utils::getConfigurationParameterSizeT("OPENCV_KMEANS_PARALLEL_GRANULARITY", 1000); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static void generateRandomCenter(const std::vector<Vec2f>& box, float* center, RNG& rng) |
|
|
|
|
static void generateRandomCenter(int dims, const Vec2f* box, float* center, RNG& rng) |
|
|
|
|
{ |
|
|
|
|
size_t j, dims = box.size(); |
|
|
|
|
float margin = 1.f/dims; |
|
|
|
|
for( j = 0; j < dims; j++ ) |
|
|
|
|
for (int j = 0; j < dims; j++) |
|
|
|
|
center[j] = ((float)rng*(1.f+margin*2.f)-margin)*(box[j][1] - box[j][0]) + box[j][0]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
class KMeansPPDistanceComputer : public ParallelLoopBody |
|
|
|
|
{ |
|
|
|
|
public: |
|
|
|
|
KMeansPPDistanceComputer( float *_tdist2, |
|
|
|
|
const float *_data, |
|
|
|
|
const float *_dist, |
|
|
|
|
int _dims, |
|
|
|
|
size_t _step, |
|
|
|
|
size_t _stepci ) |
|
|
|
|
: tdist2(_tdist2), |
|
|
|
|
data(_data), |
|
|
|
|
dist(_dist), |
|
|
|
|
dims(_dims), |
|
|
|
|
step(_step), |
|
|
|
|
stepci(_stepci) { } |
|
|
|
|
KMeansPPDistanceComputer(float *tdist2_, const Mat& data_, const float *dist_, int ci_) : |
|
|
|
|
tdist2(tdist2_), data(data_), dist(dist_), ci(ci_) |
|
|
|
|
{ } |
|
|
|
|
|
|
|
|
|
void operator()( const cv::Range& range ) const |
|
|
|
|
{ |
|
|
|
|
CV_TRACE_FUNCTION(); |
|
|
|
|
const int begin = range.start; |
|
|
|
|
const int end = range.end; |
|
|
|
|
const int dims = data.cols; |
|
|
|
|
|
|
|
|
|
for ( int i = begin; i<end; i++ ) |
|
|
|
|
for (int i = begin; i<end; i++) |
|
|
|
|
{ |
|
|
|
|
tdist2[i] = std::min(normL2Sqr(data + step*i, data + stepci, dims), dist[i]); |
|
|
|
|
tdist2[i] = std::min(normL2Sqr(data.ptr<float>(i), data.ptr<float>(ci), dims), dist[i]); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
private: |
|
|
|
|
KMeansPPDistanceComputer& operator=(const KMeansPPDistanceComputer&); // to quiet MSVC
|
|
|
|
|
KMeansPPDistanceComputer& operator=(const KMeansPPDistanceComputer&); // = delete
|
|
|
|
|
|
|
|
|
|
float *tdist2; |
|
|
|
|
const float *data; |
|
|
|
|
const Mat& data; |
|
|
|
|
const float *dist; |
|
|
|
|
const int dims; |
|
|
|
|
const size_t step; |
|
|
|
|
const size_t stepci; |
|
|
|
|
const int ci; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
|
k-means center initialization using the following algorithm: |
|
|
|
|
Arthur & Vassilvitskii (2007) k-means++: The Advantages of Careful Seeding |
|
|
|
|
*/ |
|
|
|
|
static void generateCentersPP(const Mat& _data, Mat& _out_centers, |
|
|
|
|
static void generateCentersPP(const Mat& data, Mat& _out_centers, |
|
|
|
|
int K, RNG& rng, int trials) |
|
|
|
|
{ |
|
|
|
|
CV_TRACE_FUNCTION(); |
|
|
|
|
int i, j, k, dims = _data.cols, N = _data.rows; |
|
|
|
|
const float* data = _data.ptr<float>(0); |
|
|
|
|
size_t step = _data.step/sizeof(data[0]); |
|
|
|
|
std::vector<int> _centers(K); |
|
|
|
|
const int dims = data.cols, N = data.rows; |
|
|
|
|
cv::AutoBuffer<int, 64> _centers(K); |
|
|
|
|
int* centers = &_centers[0]; |
|
|
|
|
std::vector<float> _dist(N*3); |
|
|
|
|
cv::AutoBuffer<float, 0> _dist(N*3); |
|
|
|
|
float* dist = &_dist[0], *tdist = dist + N, *tdist2 = tdist + N; |
|
|
|
|
double sum0 = 0; |
|
|
|
|
|
|
|
|
|
centers[0] = (unsigned)rng % N; |
|
|
|
|
|
|
|
|
|
for( i = 0; i < N; i++ ) |
|
|
|
|
for (int i = 0; i < N; i++) |
|
|
|
|
{ |
|
|
|
|
dist[i] = normL2Sqr(data + step*i, data + step*centers[0], dims); |
|
|
|
|
dist[i] = normL2Sqr(data.ptr<float>(i), data.ptr<float>(centers[0]), dims); |
|
|
|
|
sum0 += dist[i]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for( k = 1; k < K; k++ ) |
|
|
|
|
for (int k = 1; k < K; k++) |
|
|
|
|
{ |
|
|
|
|
double bestSum = DBL_MAX; |
|
|
|
|
int bestCenter = -1; |
|
|
|
|
|
|
|
|
|
for( j = 0; j < trials; j++ ) |
|
|
|
|
for (int j = 0; j < trials; j++) |
|
|
|
|
{ |
|
|
|
|
double p = (double)rng*sum0, s = 0; |
|
|
|
|
for( i = 0; i < N-1; i++ ) |
|
|
|
|
if( (p -= dist[i]) <= 0 ) |
|
|
|
|
double p = (double)rng*sum0; |
|
|
|
|
int ci = 0; |
|
|
|
|
for (; ci < N - 1; ci++) |
|
|
|
|
{ |
|
|
|
|
p -= dist[ci]; |
|
|
|
|
if (p <= 0) |
|
|
|
|
break; |
|
|
|
|
int ci = i; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
parallel_for_(Range(0, N), |
|
|
|
|
KMeansPPDistanceComputer(tdist2, data, dist, dims, step, step*ci), |
|
|
|
|
KMeansPPDistanceComputer(tdist2, data, dist, ci), |
|
|
|
|
divUp(dims * N, CV_KMEANS_PARALLEL_GRANULARITY)); |
|
|
|
|
for( i = 0; i < N; i++ ) |
|
|
|
|
double s = 0; |
|
|
|
|
for (int i = 0; i < N; i++) |
|
|
|
|
{ |
|
|
|
|
s += tdist2[i]; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if( s < bestSum ) |
|
|
|
|
if (s < bestSum) |
|
|
|
|
{ |
|
|
|
|
bestSum = s; |
|
|
|
|
bestCenter = ci; |
|
|
|
@ -157,39 +147,39 @@ static void generateCentersPP(const Mat& _data, Mat& _out_centers, |
|
|
|
|
std::swap(dist, tdist); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for( k = 0; k < K; k++ ) |
|
|
|
|
for (int k = 0; k < K; k++) |
|
|
|
|
{ |
|
|
|
|
const float* src = data + step*centers[k]; |
|
|
|
|
const float* src = data.ptr<float>(centers[k]); |
|
|
|
|
float* dst = _out_centers.ptr<float>(k); |
|
|
|
|
for( j = 0; j < dims; j++ ) |
|
|
|
|
for (int j = 0; j < dims; j++) |
|
|
|
|
dst[j] = src[j]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
template<bool onlyDistance> |
|
|
|
|
class KMeansDistanceComputer : public ParallelLoopBody |
|
|
|
|
{ |
|
|
|
|
public: |
|
|
|
|
KMeansDistanceComputer( double *_distances, |
|
|
|
|
int *_labels, |
|
|
|
|
const Mat& _data, |
|
|
|
|
const Mat& _centers, |
|
|
|
|
bool _onlyDistance = false ) |
|
|
|
|
: distances(_distances), |
|
|
|
|
labels(_labels), |
|
|
|
|
data(_data), |
|
|
|
|
centers(_centers), |
|
|
|
|
onlyDistance(_onlyDistance) |
|
|
|
|
KMeansDistanceComputer( double *distances_, |
|
|
|
|
int *labels_, |
|
|
|
|
const Mat& data_, |
|
|
|
|
const Mat& centers_) |
|
|
|
|
: distances(distances_), |
|
|
|
|
labels(labels_), |
|
|
|
|
data(data_), |
|
|
|
|
centers(centers_) |
|
|
|
|
{ |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
void operator()( const Range& range ) const |
|
|
|
|
{ |
|
|
|
|
CV_TRACE_FUNCTION(); |
|
|
|
|
const int begin = range.start; |
|
|
|
|
const int end = range.end; |
|
|
|
|
const int K = centers.rows; |
|
|
|
|
const int dims = centers.cols; |
|
|
|
|
|
|
|
|
|
for( int i = begin; i<end; ++i) |
|
|
|
|
for (int i = begin; i < end; ++i) |
|
|
|
|
{ |
|
|
|
|
const float *sample = data.ptr<float>(i); |
|
|
|
|
if (onlyDistance) |
|
|
|
@ -198,34 +188,36 @@ public: |
|
|
|
|
distances[i] = normL2Sqr(sample, center, dims); |
|
|
|
|
continue; |
|
|
|
|
} |
|
|
|
|
int k_best = 0; |
|
|
|
|
double min_dist = DBL_MAX; |
|
|
|
|
|
|
|
|
|
for( int k = 0; k < K; k++ ) |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
const float* center = centers.ptr<float>(k); |
|
|
|
|
const double dist = normL2Sqr(sample, center, dims); |
|
|
|
|
int k_best = 0; |
|
|
|
|
double min_dist = DBL_MAX; |
|
|
|
|
|
|
|
|
|
if( min_dist > dist ) |
|
|
|
|
for (int k = 0; k < K; k++) |
|
|
|
|
{ |
|
|
|
|
min_dist = dist; |
|
|
|
|
k_best = k; |
|
|
|
|
const float* center = centers.ptr<float>(k); |
|
|
|
|
const double dist = normL2Sqr(sample, center, dims); |
|
|
|
|
|
|
|
|
|
if (min_dist > dist) |
|
|
|
|
{ |
|
|
|
|
min_dist = dist; |
|
|
|
|
k_best = k; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
distances[i] = min_dist; |
|
|
|
|
labels[i] = k_best; |
|
|
|
|
distances[i] = min_dist; |
|
|
|
|
labels[i] = k_best; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
private: |
|
|
|
|
KMeansDistanceComputer& operator=(const KMeansDistanceComputer&); // to quiet MSVC
|
|
|
|
|
KMeansDistanceComputer& operator=(const KMeansDistanceComputer&); // = delete
|
|
|
|
|
|
|
|
|
|
double *distances; |
|
|
|
|
int *labels; |
|
|
|
|
const Mat& data; |
|
|
|
|
const Mat& centers; |
|
|
|
|
bool onlyDistance; |
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
} |
|
|
|
@ -236,13 +228,12 @@ double cv::kmeans( InputArray _data, int K, |
|
|
|
|
int flags, OutputArray _centers ) |
|
|
|
|
{ |
|
|
|
|
CV_INSTRUMENT_REGION() |
|
|
|
|
|
|
|
|
|
const int SPP_TRIALS = 3; |
|
|
|
|
Mat data0 = _data.getMat(); |
|
|
|
|
bool isrow = data0.rows == 1; |
|
|
|
|
int N = isrow ? data0.cols : data0.rows; |
|
|
|
|
int dims = (isrow ? 1 : data0.cols)*data0.channels(); |
|
|
|
|
int type = data0.depth(); |
|
|
|
|
const bool isrow = data0.rows == 1; |
|
|
|
|
const int N = isrow ? data0.cols : data0.rows; |
|
|
|
|
const int dims = (isrow ? 1 : data0.cols)*data0.channels(); |
|
|
|
|
const int type = data0.depth(); |
|
|
|
|
|
|
|
|
|
attempts = std::max(attempts, 1); |
|
|
|
|
CV_Assert( data0.dims <= 2 && type == CV_32F && K > 0 ); |
|
|
|
@ -253,129 +244,115 @@ double cv::kmeans( InputArray _data, int K, |
|
|
|
|
_bestLabels.create(N, 1, CV_32S, -1, true); |
|
|
|
|
|
|
|
|
|
Mat _labels, best_labels = _bestLabels.getMat(); |
|
|
|
|
if( flags & CV_KMEANS_USE_INITIAL_LABELS ) |
|
|
|
|
if (flags & CV_KMEANS_USE_INITIAL_LABELS) |
|
|
|
|
{ |
|
|
|
|
CV_Assert( (best_labels.cols == 1 || best_labels.rows == 1) && |
|
|
|
|
best_labels.cols*best_labels.rows == N && |
|
|
|
|
best_labels.type() == CV_32S && |
|
|
|
|
best_labels.isContinuous()); |
|
|
|
|
best_labels.copyTo(_labels); |
|
|
|
|
best_labels.reshape(1, N).copyTo(_labels); |
|
|
|
|
for (int i = 0; i < N; i++) |
|
|
|
|
{ |
|
|
|
|
CV_Assert((unsigned)_labels.at<int>(i) < (unsigned)K); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
if( !((best_labels.cols == 1 || best_labels.rows == 1) && |
|
|
|
|
if (!((best_labels.cols == 1 || best_labels.rows == 1) && |
|
|
|
|
best_labels.cols*best_labels.rows == N && |
|
|
|
|
best_labels.type() == CV_32S && |
|
|
|
|
best_labels.isContinuous())) |
|
|
|
|
best_labels.create(N, 1, CV_32S); |
|
|
|
|
best_labels.type() == CV_32S && |
|
|
|
|
best_labels.isContinuous())) |
|
|
|
|
{ |
|
|
|
|
_bestLabels.create(N, 1, CV_32S); |
|
|
|
|
best_labels = _bestLabels.getMat(); |
|
|
|
|
} |
|
|
|
|
_labels.create(best_labels.size(), best_labels.type()); |
|
|
|
|
} |
|
|
|
|
int* labels = _labels.ptr<int>(); |
|
|
|
|
|
|
|
|
|
Mat centers(K, dims, type), old_centers(K, dims, type), temp(1, dims, type); |
|
|
|
|
std::vector<int> counters(K); |
|
|
|
|
std::vector<Vec2f> _box(dims); |
|
|
|
|
Mat dists(1, N, CV_64F); |
|
|
|
|
Vec2f* box = &_box[0]; |
|
|
|
|
double best_compactness = DBL_MAX, compactness = 0; |
|
|
|
|
cv::AutoBuffer<int, 64> counters(K); |
|
|
|
|
cv::AutoBuffer<double, 64> dists(N); |
|
|
|
|
RNG& rng = theRNG(); |
|
|
|
|
int a, iter, i, j, k; |
|
|
|
|
|
|
|
|
|
if( criteria.type & TermCriteria::EPS ) |
|
|
|
|
if (criteria.type & TermCriteria::EPS) |
|
|
|
|
criteria.epsilon = std::max(criteria.epsilon, 0.); |
|
|
|
|
else |
|
|
|
|
criteria.epsilon = FLT_EPSILON; |
|
|
|
|
criteria.epsilon *= criteria.epsilon; |
|
|
|
|
|
|
|
|
|
if( criteria.type & TermCriteria::COUNT ) |
|
|
|
|
if (criteria.type & TermCriteria::COUNT) |
|
|
|
|
criteria.maxCount = std::min(std::max(criteria.maxCount, 2), 100); |
|
|
|
|
else |
|
|
|
|
criteria.maxCount = 100; |
|
|
|
|
|
|
|
|
|
if( K == 1 ) |
|
|
|
|
if (K == 1) |
|
|
|
|
{ |
|
|
|
|
attempts = 1; |
|
|
|
|
criteria.maxCount = 2; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
const float* sample = data.ptr<float>(0); |
|
|
|
|
for( j = 0; j < dims; j++ ) |
|
|
|
|
box[j] = Vec2f(sample[j], sample[j]); |
|
|
|
|
|
|
|
|
|
for( i = 1; i < N; i++ ) |
|
|
|
|
cv::AutoBuffer<Vec2f, 64> box(dims); |
|
|
|
|
if (!(flags & KMEANS_PP_CENTERS)) |
|
|
|
|
{ |
|
|
|
|
sample = data.ptr<float>(i); |
|
|
|
|
for( j = 0; j < dims; j++ ) |
|
|
|
|
{ |
|
|
|
|
float v = sample[j]; |
|
|
|
|
box[j][0] = std::min(box[j][0], v); |
|
|
|
|
box[j][1] = std::max(box[j][1], v); |
|
|
|
|
const float* sample = data.ptr<float>(0); |
|
|
|
|
for (int j = 0; j < dims; j++) |
|
|
|
|
box[j] = Vec2f(sample[j], sample[j]); |
|
|
|
|
} |
|
|
|
|
for (int i = 1; i < N; i++) |
|
|
|
|
{ |
|
|
|
|
const float* sample = data.ptr<float>(i); |
|
|
|
|
for (int j = 0; j < dims; j++) |
|
|
|
|
{ |
|
|
|
|
float v = sample[j]; |
|
|
|
|
box[j][0] = std::min(box[j][0], v); |
|
|
|
|
box[j][1] = std::max(box[j][1], v); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for( a = 0; a < attempts; a++ ) |
|
|
|
|
double best_compactness = DBL_MAX; |
|
|
|
|
for (int a = 0; a < attempts; a++) |
|
|
|
|
{ |
|
|
|
|
double max_center_shift = DBL_MAX; |
|
|
|
|
for( iter = 0;; ) |
|
|
|
|
double compactness = 0; |
|
|
|
|
|
|
|
|
|
for (int iter = 0; ;) |
|
|
|
|
{ |
|
|
|
|
double max_center_shift = iter == 0 ? DBL_MAX : 0.0; |
|
|
|
|
|
|
|
|
|
swap(centers, old_centers); |
|
|
|
|
|
|
|
|
|
if( iter == 0 && (a > 0 || !(flags & KMEANS_USE_INITIAL_LABELS)) ) |
|
|
|
|
if (iter == 0 && (a > 0 || !(flags & KMEANS_USE_INITIAL_LABELS))) |
|
|
|
|
{ |
|
|
|
|
if( flags & KMEANS_PP_CENTERS ) |
|
|
|
|
if (flags & KMEANS_PP_CENTERS) |
|
|
|
|
generateCentersPP(data, centers, K, rng, SPP_TRIALS); |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
for( k = 0; k < K; k++ ) |
|
|
|
|
generateRandomCenter(_box, centers.ptr<float>(k), rng); |
|
|
|
|
for (int k = 0; k < K; k++) |
|
|
|
|
generateRandomCenter(dims, box, centers.ptr<float>(k), rng); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
if( iter == 0 && a == 0 && (flags & KMEANS_USE_INITIAL_LABELS) ) |
|
|
|
|
{ |
|
|
|
|
for( i = 0; i < N; i++ ) |
|
|
|
|
CV_Assert( (unsigned)labels[i] < (unsigned)K ); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// compute centers
|
|
|
|
|
centers = Scalar(0); |
|
|
|
|
for( k = 0; k < K; k++ ) |
|
|
|
|
for (int k = 0; k < K; k++) |
|
|
|
|
counters[k] = 0; |
|
|
|
|
|
|
|
|
|
for( i = 0; i < N; i++ ) |
|
|
|
|
for (int i = 0; i < N; i++) |
|
|
|
|
{ |
|
|
|
|
sample = data.ptr<float>(i); |
|
|
|
|
k = labels[i]; |
|
|
|
|
const float* sample = data.ptr<float>(i); |
|
|
|
|
int k = labels[i]; |
|
|
|
|
float* center = centers.ptr<float>(k); |
|
|
|
|
j=0; |
|
|
|
|
#if CV_ENABLE_UNROLLED |
|
|
|
|
for(; j <= dims - 4; j += 4 ) |
|
|
|
|
{ |
|
|
|
|
float t0 = center[j] + sample[j]; |
|
|
|
|
float t1 = center[j+1] + sample[j+1]; |
|
|
|
|
|
|
|
|
|
center[j] = t0; |
|
|
|
|
center[j+1] = t1; |
|
|
|
|
|
|
|
|
|
t0 = center[j+2] + sample[j+2]; |
|
|
|
|
t1 = center[j+3] + sample[j+3]; |
|
|
|
|
|
|
|
|
|
center[j+2] = t0; |
|
|
|
|
center[j+3] = t1; |
|
|
|
|
} |
|
|
|
|
#endif |
|
|
|
|
for( ; j < dims; j++ ) |
|
|
|
|
for (int j = 0; j < dims; j++) |
|
|
|
|
center[j] += sample[j]; |
|
|
|
|
counters[k]++; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if( iter > 0 ) |
|
|
|
|
max_center_shift = 0; |
|
|
|
|
|
|
|
|
|
for( k = 0; k < K; k++ ) |
|
|
|
|
for (int k = 0; k < K; k++) |
|
|
|
|
{ |
|
|
|
|
if( counters[k] != 0 ) |
|
|
|
|
if (counters[k] != 0) |
|
|
|
|
continue; |
|
|
|
|
|
|
|
|
|
// if some cluster appeared to be empty then:
|
|
|
|
@ -383,29 +360,28 @@ double cv::kmeans( InputArray _data, int K, |
|
|
|
|
// 2. find the farthest from the center point in the biggest cluster
|
|
|
|
|
// 3. exclude the farthest point from the biggest cluster and form a new 1-point cluster.
|
|
|
|
|
int max_k = 0; |
|
|
|
|
for( int k1 = 1; k1 < K; k1++ ) |
|
|
|
|
for (int k1 = 1; k1 < K; k1++) |
|
|
|
|
{ |
|
|
|
|
if( counters[max_k] < counters[k1] ) |
|
|
|
|
if (counters[max_k] < counters[k1]) |
|
|
|
|
max_k = k1; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
double max_dist = 0; |
|
|
|
|
int farthest_i = -1; |
|
|
|
|
float* new_center = centers.ptr<float>(k); |
|
|
|
|
float* old_center = centers.ptr<float>(max_k); |
|
|
|
|
float* _old_center = temp.ptr<float>(); // normalized
|
|
|
|
|
float* base_center = centers.ptr<float>(max_k); |
|
|
|
|
float* _base_center = temp.ptr<float>(); // normalized
|
|
|
|
|
float scale = 1.f/counters[max_k]; |
|
|
|
|
for( j = 0; j < dims; j++ ) |
|
|
|
|
_old_center[j] = old_center[j]*scale; |
|
|
|
|
for (int j = 0; j < dims; j++) |
|
|
|
|
_base_center[j] = base_center[j]*scale; |
|
|
|
|
|
|
|
|
|
for( i = 0; i < N; i++ ) |
|
|
|
|
for (int i = 0; i < N; i++) |
|
|
|
|
{ |
|
|
|
|
if( labels[i] != max_k ) |
|
|
|
|
if (labels[i] != max_k) |
|
|
|
|
continue; |
|
|
|
|
sample = data.ptr<float>(i); |
|
|
|
|
double dist = normL2Sqr(sample, _old_center, dims); |
|
|
|
|
const float* sample = data.ptr<float>(i); |
|
|
|
|
double dist = normL2Sqr(sample, _base_center, dims); |
|
|
|
|
|
|
|
|
|
if( max_dist <= dist ) |
|
|
|
|
if (max_dist <= dist) |
|
|
|
|
{ |
|
|
|
|
max_dist = dist; |
|
|
|
|
farthest_i = i; |
|
|
|
@ -415,29 +391,30 @@ double cv::kmeans( InputArray _data, int K, |
|
|
|
|
counters[max_k]--; |
|
|
|
|
counters[k]++; |
|
|
|
|
labels[farthest_i] = k; |
|
|
|
|
sample = data.ptr<float>(farthest_i); |
|
|
|
|
|
|
|
|
|
for( j = 0; j < dims; j++ ) |
|
|
|
|
const float* sample = data.ptr<float>(farthest_i); |
|
|
|
|
float* cur_center = centers.ptr<float>(k); |
|
|
|
|
for (int j = 0; j < dims; j++) |
|
|
|
|
{ |
|
|
|
|
old_center[j] -= sample[j]; |
|
|
|
|
new_center[j] += sample[j]; |
|
|
|
|
base_center[j] -= sample[j]; |
|
|
|
|
cur_center[j] += sample[j]; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
for( k = 0; k < K; k++ ) |
|
|
|
|
for (int k = 0; k < K; k++) |
|
|
|
|
{ |
|
|
|
|
float* center = centers.ptr<float>(k); |
|
|
|
|
CV_Assert( counters[k] != 0 ); |
|
|
|
|
|
|
|
|
|
float scale = 1.f/counters[k]; |
|
|
|
|
for( j = 0; j < dims; j++ ) |
|
|
|
|
for (int j = 0; j < dims; j++) |
|
|
|
|
center[j] *= scale; |
|
|
|
|
|
|
|
|
|
if( iter > 0 ) |
|
|
|
|
if (iter > 0) |
|
|
|
|
{ |
|
|
|
|
double dist = 0; |
|
|
|
|
const float* old_center = old_centers.ptr<float>(k); |
|
|
|
|
for( j = 0; j < dims; j++ ) |
|
|
|
|
for (int j = 0; j < dims; j++) |
|
|
|
|
{ |
|
|
|
|
double t = center[j] - old_center[j]; |
|
|
|
|
dist += t*t; |
|
|
|
@ -449,26 +426,29 @@ double cv::kmeans( InputArray _data, int K, |
|
|
|
|
|
|
|
|
|
bool isLastIter = (++iter == MAX(criteria.maxCount, 2) || max_center_shift <= criteria.epsilon); |
|
|
|
|
|
|
|
|
|
// assign labels
|
|
|
|
|
dists = 0; |
|
|
|
|
double* dist = dists.ptr<double>(0); |
|
|
|
|
parallel_for_(Range(0, N), KMeansDistanceComputer(dist, labels, data, centers, isLastIter), |
|
|
|
|
divUp(dims * N * (isLastIter ? 1 : K), CV_KMEANS_PARALLEL_GRANULARITY)); |
|
|
|
|
compactness = sum(dists)[0]; |
|
|
|
|
|
|
|
|
|
if (isLastIter) |
|
|
|
|
{ |
|
|
|
|
// don't re-assign labels to avoid creation of empty clusters
|
|
|
|
|
parallel_for_(Range(0, N), KMeansDistanceComputer<true>(dists, labels, data, centers), divUp(dims * N, CV_KMEANS_PARALLEL_GRANULARITY)); |
|
|
|
|
compactness = sum(Mat(Size(N, 1), CV_64F, &dists[0]))[0]; |
|
|
|
|
break; |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
|
{ |
|
|
|
|
// assign labels
|
|
|
|
|
parallel_for_(Range(0, N), KMeansDistanceComputer<false>(dists, labels, data, centers), divUp(dims * N * K, CV_KMEANS_PARALLEL_GRANULARITY)); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
if( compactness < best_compactness ) |
|
|
|
|
if (compactness < best_compactness) |
|
|
|
|
{ |
|
|
|
|
best_compactness = compactness; |
|
|
|
|
if( _centers.needed() ) |
|
|
|
|
if (_centers.needed()) |
|
|
|
|
{ |
|
|
|
|
Mat reshaped = centers; |
|
|
|
|
if(_centers.fixedType() && _centers.channels() == dims) |
|
|
|
|
reshaped = centers.reshape(dims); |
|
|
|
|
reshaped.copyTo(_centers); |
|
|
|
|
if (_centers.fixedType() && _centers.channels() == dims) |
|
|
|
|
centers.reshape(dims).copyTo(_centers); |
|
|
|
|
else |
|
|
|
|
centers.copyTo(_centers); |
|
|
|
|
} |
|
|
|
|
_labels.copyTo(best_labels); |
|
|
|
|
} |
|
|
|
|