Merge pull request #22666 from zihaomu:support_onnx_qdq_model

DNN: let Quant and Dequant of ONNX_importer support the Constant input.

* let Quant and Dequant support the Constant input.

* fix negative value of axis.
pull/22737/head
Zihao Mu 2 years ago committed by GitHub
parent 540aa13300
commit 903bf0147e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 8
      modules/dnn/include/opencv2/dnn/all_layers.hpp
  2. 161
      modules/dnn/src/int8layers/quantization_utils.cpp
  3. 125
      modules/dnn/src/onnx/onnx_importer.cpp
  4. 13
      modules/dnn/test/test_onnx_importer.cpp

@ -422,16 +422,16 @@ CV__DNN_INLINE_NS_BEGIN
class CV_EXPORTS QuantizeLayer : public Layer
{
public:
float scale;
int zeropoint;
std::vector<float> scales;
std::vector<int> zeropoints;
static Ptr<QuantizeLayer> create(const LayerParams &params);
};
class CV_EXPORTS DequantizeLayer : public Layer
{
public:
float scale;
int zeropoint;
std::vector<float> scales;
std::vector<int> zeropoints;
static Ptr<DequantizeLayer> create(const LayerParams &params);
};

@ -11,14 +11,88 @@ namespace cv
namespace dnn
{
static void broadcast1D2TargetMat(Mat& data, const MatShape& targetShape, int axis)
{
// The data is the 1-D scales or zeropoints.
CV_Assert(axis >= 0 && targetShape.size() > axis && data.total() == targetShape[axis]);
std::vector<int> broadcast_axes;
for (int i = 0; i < targetShape.size(); i++)
{
if (i != axis)
broadcast_axes.push_back(i);
}
MatShape subTargetShape = shape(data);
// convert std::vector to 1D Mat.
for (auto broadcast_axis : broadcast_axes)
{
subTargetShape[broadcast_axis] = targetShape[broadcast_axis];
data = data.reshape(0, total(data, 0, broadcast_axis));
Mat tmp = cv::repeat(data, 1, subTargetShape[broadcast_axis]);
data = tmp.reshape(0, subTargetShape);
}
}
static void broadcastScaleAndZeropoint(Mat& scalesMat, Mat& zeropointsMat, const std::vector<float>& scales,
const std::vector<int>& zeropoints, const MatShape& targetShape, int axis)
{
// broad cast the scales and zeropoint to the input shape.
MatShape subTargetShape(targetShape.size(), 1);
subTargetShape[axis] = scales.size();
zeropointsMat.create(subTargetShape.size(), subTargetShape.data(), CV_32FC1);
scalesMat.create(subTargetShape.size(), subTargetShape.data(), CV_32FC1);
const int len = scales.size();
// Deep copy the scales and zeropoint data and prevent the original data from being changed.
float * scalePtr = scalesMat.ptr<float>(0);
for (int i = 0; i < len; i++)
scalePtr[i] = scales[i];
float * zpPtr = zeropointsMat.ptr<float>(0);
for (int i = 0; i < len; i++)
zpPtr[i] = (float )zeropoints[i];
broadcast1D2TargetMat(scalesMat, targetShape, axis);
broadcast1D2TargetMat(zeropointsMat, targetShape, axis);
}
// Quantize FP32/FP16 Inputs to INT8
class QuantizeLayerImpl CV_FINAL : public QuantizeLayer
{
public:
int axis;
bool is1D;
Mat scalesMat, zeropointsMat; // Saving the broadcasetd scales data.
QuantizeLayerImpl(const LayerParams& params)
{
scale = params.get<float>("scales", 1.0f);
zeropoint = params.get<int>("zeropoints", 0);
is1D = params.get<bool>("is1D", false);
axis = params.get<int>("axis", 1);
if (!is1D)
{
scales.push_back(params.get<float>("scales", 1.0f));
zeropoints.push_back(params.get<int>("zeropoints", 0));
}
else
{
DictValue paramScales = params.get("scales");
int i, n = paramScales.size();
CV_Assert(n > 0);
scales.resize(n, 0.);
for (i = 0; i < n; i++)
scales[i] = paramScales.get<float>(i);
zeropoints.resize(n, 0);
DictValue paramZp = params.get("zeropoints");
n = paramZp.size();
for (i = 0; i < n; i++)
zeropoints[i] = paramZp.get<int>(i);
}
setParamsFrom(params);
}
@ -42,6 +116,14 @@ public:
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
axis = normalize_axis(axis, shape(inputs[0]).size());
if (is1D)
{
MatShape inputShape = shape(inputs[0]);
broadcastScaleAndZeropoint(scalesMat, zeropointsMat, scales, zeropoints, inputShape, axis);
}
}
#ifdef HAVE_OPENCL
@ -58,7 +140,7 @@ public:
inputs[0] = inputFp32; // replace
}
inputs[0].convertTo(outputs[0], CV_8S, 1.f/scale, zeropoint);
inputs[0].convertTo(outputs[0], CV_8S, 1.f/scales[0], zeropoints[0]);
return true;
}
#endif
@ -68,14 +150,26 @@ public:
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) && !is1D,
forward_ocl(inputs_arr, outputs_arr, internals_arr))
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
inputs[0].convertTo(outputs[0], CV_8S, 1.f/scale, zeropoint);
if (outputs[0].depth() != CV_8S)
outputs[0].convertTo(outputs[0], CV_8S);
if (is1D)
{
Mat inputTmp;
divide(inputs[0], scalesMat, inputTmp);
subtract(inputTmp, zeropointsMat, inputTmp);
inputTmp.convertTo(outputs[0], CV_8S);
}
else
inputs[0].convertTo(outputs[0], CV_8S, 1.f/scales[0], zeropoints[0]);
}
};
@ -83,10 +177,38 @@ public:
class DequantizeLayerImpl CV_FINAL : public DequantizeLayer
{
public:
int axis;
bool is1D;
Mat scalesMat, zeropointsMat; // Saving the broadcasetd scales data.
DequantizeLayerImpl(const LayerParams& params)
{
scale = params.get<float>("scales", 1.0f);
zeropoint = params.get<int>("zeropoints", 0);
is1D = params.get<bool>("is1D", false);
axis = params.get<int>("axis", 1);
if (!is1D)
{
scales.push_back(params.get<float>("scales", 1.0f));
zeropoints.push_back(params.get<int>("zeropoints", 0));
}
else
{
DictValue paramScales = params.get("scales");
int i, n = paramScales.size();
CV_Assert(n > 0);
scales.resize(n);
for (i = 0; i < n; i++)
scales[i] = paramScales.get<float>(i);
zeropoints.resize(n, 0);
DictValue paramZp = params.get("zeropoints");
n = paramZp.size();
for (i = 0; i < n; i++)
zeropoints[i] = paramZp.get<int>(i);
}
setParamsFrom(params);
}
@ -110,6 +232,14 @@ public:
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
axis = normalize_axis(axis, shape(inputs[0]).size());
if (is1D)
{
MatShape inputShape = shape(inputs[0]);
broadcastScaleAndZeropoint(scalesMat, zeropointsMat, scales, zeropoints, inputShape, axis);
}
}
#ifdef HAVE_OPENCL
@ -120,7 +250,7 @@ public:
outputs_.getUMatVector(outputs);
UMat outputFp32;
inputs[0].convertTo(outputFp32, CV_32F, scale, -(scale*zeropoint));
inputs[0].convertTo(outputFp32, CV_32F, scales[0], -(scales[0]*zeropoints[0]));
if (outputs_.depth() == CV_16S)
convertFp16(outputFp32, outputs[0]);
@ -135,14 +265,25 @@ public:
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget),
CV_OCL_RUN(IS_DNN_OPENCL_TARGET(preferableTarget) && !is1D,
forward_ocl(inputs_arr, outputs_arr, internals_arr))
std::vector<Mat> inputs, outputs;
inputs_arr.getMatVector(inputs);
outputs_arr.getMatVector(outputs);
inputs[0].convertTo(outputs[0], CV_32F, scale, -(scale*zeropoint));
if (outputs[0].depth() != CV_32F)
outputs[0].convertTo(outputs[0], CV_32F);
if (is1D)
{
Mat inputTmp;
inputs[0].convertTo(inputTmp, CV_32F);
subtract(inputTmp, zeropointsMat, inputTmp);
multiply(inputTmp, scalesMat, outputs[0]);
}
else
inputs[0].convertTo(outputs[0], CV_32F, scales[0], -(scales[0]*zeropoints[0]));
}
};

@ -53,7 +53,7 @@ extern bool DNN_DIAGNOSTICS_RUN;
class ONNXLayerHandler;
template <typename T>
static T getScaleFromMat(Mat m)
static T getScalarFromMat(Mat m)
{
CV_Assert(m.total() == 1);
return m.at<T>(0);
@ -380,6 +380,9 @@ void runLayer(LayerParams& params, const std::vector<Mat>& inputs,
inpShapes[i] = shape(inputs[i]);
if (i > 0 && ddepth != inputs[i].depth())
CV_Error(Error::StsNotImplemented, "Mixed input data types.");
// Quantize and Dequantize layer have different output type than input.
if (params.type != "Quantize" && params.type != "Dequantize")
ddepth = inputs[i].depth();
}
@ -3240,20 +3243,66 @@ void ONNXImporter::parseQuantDequant(LayerParams& layerParams, const opencv_onnx
{
CV_Assert(node_proto.input_size() == 2 || node_proto.input_size() == 3);
layerParams.type = (node_proto.op_type() == "QuantizeLinear") ? "Quantize" : "Dequantize";
int axis = layerParams.get<int>("axis", 1);
// For QuantizeLinear and DequantizeLinear, the scale and zeropoint can be a Scalar (per-tensor quantized)
// or 1-D tensor (per-channel quantized).
bool is1D = false;
Mat scaleMat = getBlob(node_proto, 1);
if(scaleMat.total() > 1) is1D = true;
float scale = getScaleFromMat<float>(getBlob(node_proto, 1));
int zeropoint = 0;
Mat zpMat;
if (node_proto.input_size() == 3)
zeropoint = (int)getScaleFromMat<int8_t>(getBlob(node_proto, 2));
{
zpMat = getBlob(node_proto, 2);
CV_Assert(zpMat.total() == scaleMat.total()); // zero point should has the same shape as scale.
}
if (is1D)
{
const int num = scaleMat.total();
std::vector<int> zeropoints(num, 0);
std::vector<float> scales(num, 0);
for (int i = 0; i < num; i++)
{
scales[i] = scaleMat.at<float>(i);
if (!zpMat.empty())
zeropoints[i] = zpMat.depth() == CV_32S ?
zpMat.at<int>(i) : (int)zpMat.at<int8_t>(i);
}
layerParams.set("is1D", true);
layerParams.set("axis", axis);
layerParams.set("scales", DictValue::arrayReal(scales.data(), scales.size()));
layerParams.set("zeropoints", DictValue::arrayInt(zeropoints.data(), zeropoints.size()));
}
else
{
int zeropoint = zpMat.empty() ? 0 : zpMat.depth() == CV_32S ?
getScalarFromMat<int>(zpMat) : (int)getScalarFromMat<int8_t>(zpMat);
float scale = getScalarFromMat<float>(scaleMat);
layerParams.set("is1D", false);
layerParams.set("scales", scale);
layerParams.set("zeropoints", zeropoint);
}
if (layerParams.type == "Quantize")
layerParams.set("depth", CV_8S);
else // Dequantize
layerParams.set("depth", CV_32F);
if (constBlobs.find(node_proto.input(0)) != constBlobs.end()) // Variable input.
{
std::vector<Mat> inputs, outputs;
inputs.push_back(getBlob(node_proto, 0));
runLayer(layerParams, inputs, outputs);
addConstant(node_proto.output(0), outputs[0]);
}
else
addLayer(layerParams, node_proto);
}
@ -3263,8 +3312,8 @@ void ONNXImporter::parseQConv(LayerParams& layerParams, const opencv_onnx::NodeP
int ninputs = node_proto.input_size();
CV_Assert(ninputs == 8 || ninputs == 9);
float inp_sc = getScaleFromMat<float>(getBlob(node_proto, 1));
int inp_zp = (int)getScaleFromMat<int8_t>(getBlob(node_proto, 2));
float inp_sc = getScalarFromMat<float>(getBlob(node_proto, 1));
int inp_zp = (int)getScalarFromMat<int8_t>(getBlob(node_proto, 2));
if (layerParams.has("pad"))
{
@ -3312,8 +3361,8 @@ void ONNXImporter::parseQConv(LayerParams& layerParams, const opencv_onnx::NodeP
bool per_channel = w_scale.total() == outCn;
Mat wt_sc = (w_scale.total() == outCn) ? w_scale : Mat(1, outCn, CV_32F, Scalar(w_scale.at<float>(0)));
float out_sc = getScaleFromMat<float>(getBlob(node_proto, 6));
int8_t out_zp = getScaleFromMat<int8_t>(getBlob(node_proto, 7));
float out_sc = getScalarFromMat<float>(getBlob(node_proto, 6));
int8_t out_zp = getScalarFromMat<int8_t>(getBlob(node_proto, 7));
Mat bias = (ninputs == 9) ? getBlob(node_proto, 8) : Mat::zeros(1, outCn, CV_32S);
@ -3349,8 +3398,8 @@ void ONNXImporter::parseQMatMul(LayerParams& layerParams, const opencv_onnx::Nod
int firstInpDims = outShapes[node_proto.input(0)].size();
float inp_sc = getScaleFromMat<float>(getBlob(node_proto, 1));
int8_t inp_zp = getScaleFromMat<int8_t>(getBlob(node_proto, 2));
float inp_sc = getScalarFromMat<float>(getBlob(node_proto, 1));
int8_t inp_zp = getScalarFromMat<int8_t>(getBlob(node_proto, 2));
Mat weights = getBlob(node_proto, 3).t();
int outCn = weights.size[0];
@ -3361,8 +3410,8 @@ void ONNXImporter::parseQMatMul(LayerParams& layerParams, const opencv_onnx::Nod
bool per_channel = w_scale.total() == outCn ? true : false;
Mat wt_sc = (w_scale.total() == outCn) ? w_scale : Mat(1, outCn, CV_32F, Scalar(w_scale.at<float>(0)));
float out_sc = getScaleFromMat<float>(getBlob(node_proto, 6));
int8_t out_zp = getScaleFromMat<int8_t>(getBlob(node_proto, 7));
float out_sc = getScalarFromMat<float>(getBlob(node_proto, 6));
int8_t out_zp = getScalarFromMat<int8_t>(getBlob(node_proto, 7));
Mat bias(1, outCn, CV_32S);
Mat outputMultiplier(1, outCn, CV_32F);
@ -3411,8 +3460,8 @@ void ONNXImporter::parseQGemm(LayerParams& layerParams, const opencv_onnx::NodeP
int firstInpDims = outShapes[node_proto.input(0)].size();
float inp_sc = getScaleFromMat<float>(getBlob(node_proto, 1));
int8_t inp_zp = getScaleFromMat<int8_t>(getBlob(node_proto, 2));
float inp_sc = getScalarFromMat<float>(getBlob(node_proto, 1));
int8_t inp_zp = getScalarFromMat<int8_t>(getBlob(node_proto, 2));
int outCn = weights.size[0];
int secondInpDims = weights.dims;
@ -3431,8 +3480,8 @@ void ONNXImporter::parseQGemm(LayerParams& layerParams, const opencv_onnx::NodeP
CV_Error(Error::StsUnsupportedFormat, "The zero-point non-zero case of W is not supported!");
}
float out_sc = getScaleFromMat<float>(getBlob(node_proto, 7));
int8_t out_zp = ninputs == 9 ? getScaleFromMat<int8_t>(getBlob(node_proto, 8)) : 0;
float out_sc = getScalarFromMat<float>(getBlob(node_proto, 7));
int8_t out_zp = ninputs == 9 ? getScalarFromMat<int8_t>(getBlob(node_proto, 8)) : 0;
Mat bias;
if (constBlobs.find(node_proto.input(6)) != constBlobs.end())
@ -3475,11 +3524,11 @@ void ONNXImporter::parseQEltwise(LayerParams& layerParams, const opencv_onnx::No
constId = i;
}
float inp_0_sc = getScaleFromMat<float>(getBlob(node_proto, 1));
int8_t inp_0_zp = getScaleFromMat<int8_t>(getBlob(node_proto, 2));
float inp_0_sc = getScalarFromMat<float>(getBlob(node_proto, 1));
int8_t inp_0_zp = getScalarFromMat<int8_t>(getBlob(node_proto, 2));
float inp_1_sc = getScaleFromMat<float>(getBlob(node_proto, 4));
int8_t inp_1_zp = getScaleFromMat<int8_t>(getBlob(node_proto, 5));
float inp_1_sc = getScalarFromMat<float>(getBlob(node_proto, 4));
int8_t inp_1_zp = getScalarFromMat<int8_t>(getBlob(node_proto, 5));
// Set 2nd input as the const input
if (constId == 0)
@ -3488,11 +3537,11 @@ void ONNXImporter::parseQEltwise(LayerParams& layerParams, const opencv_onnx::No
cv::swap(inp_0_zp, inp_1_zp);
}
float out_sc = getScaleFromMat<float>(getBlob(node_proto, 6));
float out_sc = getScalarFromMat<float>(getBlob(node_proto, 6));
int8_t out_zp = 0;
if (node_proto.input_size() == 8)
out_zp = getScaleFromMat<int8_t>(getBlob(node_proto, 7));
out_zp = getScalarFromMat<int8_t>(getBlob(node_proto, 7));
std::vector<float> inp_scales = {inp_0_sc, inp_1_sc};
std::vector<int8_t> inp_zps = {inp_0_zp, inp_1_zp};
@ -3608,10 +3657,10 @@ void ONNXImporter::parseQLeakyRelu(LayerParams& layerParams, const opencv_onnx::
CV_Assert(node_proto.input_size() == 4 || node_proto.input_size() == 5);
float slope = layerParams.get<float>("alpha");
float inp_sc = getScaleFromMat<float>(getBlob(node_proto, 1));
int8_t inp_zp = getScaleFromMat<int8_t>(getBlob(node_proto, 2));
float out_sc = getScaleFromMat<float>(getBlob(node_proto, 3));
int8_t out_zp = node_proto.input_size() == 4 ? 0 : getScaleFromMat<int8_t>(getBlob(node_proto, 4));
float inp_sc = getScalarFromMat<float>(getBlob(node_proto, 1));
int8_t inp_zp = getScalarFromMat<int8_t>(getBlob(node_proto, 2));
float out_sc = getScalarFromMat<float>(getBlob(node_proto, 3));
int8_t out_zp = node_proto.input_size() == 4 ? 0 : getScalarFromMat<int8_t>(getBlob(node_proto, 4));
Mat lookUpTable(1, 256, CV_8S);
int8_t* table = lookUpTable.ptr<int8_t>();
@ -3637,10 +3686,10 @@ void ONNXImporter::parseQSigmoid(LayerParams& layerParams, const opencv_onnx::No
{
CV_Assert(node_proto.input_size() == 4 || node_proto.input_size() == 5);
float inp_sc = getScaleFromMat<float>(getBlob(node_proto, 1));
int8_t inp_zp = getScaleFromMat<int8_t>(getBlob(node_proto, 2));
float out_sc = getScaleFromMat<float>(getBlob(node_proto, 3));
int8_t out_zp = node_proto.input_size() == 4 ? 0 : getScaleFromMat<int8_t>(getBlob(node_proto, 4));
float inp_sc = getScalarFromMat<float>(getBlob(node_proto, 1));
int8_t inp_zp = getScalarFromMat<int8_t>(getBlob(node_proto, 2));
float out_sc = getScalarFromMat<float>(getBlob(node_proto, 3));
int8_t out_zp = node_proto.input_size() == 4 ? 0 : getScalarFromMat<int8_t>(getBlob(node_proto, 4));
Mat lookUpTable(1, 256, CV_8S);
int8_t* table = lookUpTable.ptr<int8_t>();
@ -3665,10 +3714,10 @@ void ONNXImporter::parseQAvgPool(LayerParams& layerParams, const opencv_onnx::No
{
CV_Assert(node_proto.input_size() == 4 || node_proto.input_size() == 5);
float inp_sc = getScaleFromMat<float>(getBlob(node_proto, 1));
int8_t inp_zp = getScaleFromMat<int8_t>(getBlob(node_proto, 2));
float out_sc = getScaleFromMat<float>(getBlob(node_proto, 3));
int8_t out_zp = node_proto.input_size() == 4 ? 0 : getScaleFromMat<int8_t>(getBlob(node_proto, 4));
float inp_sc = getScalarFromMat<float>(getBlob(node_proto, 1));
int8_t inp_zp = getScalarFromMat<int8_t>(getBlob(node_proto, 2));
float out_sc = getScalarFromMat<float>(getBlob(node_proto, 3));
int8_t out_zp = node_proto.input_size() == 4 ? 0 : getScalarFromMat<int8_t>(getBlob(node_proto, 4));
layerParams.type = "PoolingInt8";
layerParams.set("pool", "ave");
@ -3687,13 +3736,13 @@ void ONNXImporter::parseQConcat(LayerParams& layerParams, const opencv_onnx::Nod
layerParams.type = "ConcatInt8";
int num_inputs = node_proto.input_size();
float out_scale = getScaleFromMat<float>(getBlob(node_proto, 0));
int8_t out_zp = getScaleFromMat<int8_t>(getBlob(node_proto, 1));
float out_scale = getScalarFromMat<float>(getBlob(node_proto, 0));
int8_t out_zp = getScalarFromMat<int8_t>(getBlob(node_proto, 1));
for (int i = 2; i < num_inputs; i += 3)
{
float inp_scale = getScaleFromMat<float>(getBlob(node_proto, i + 1));
int8_t inp_zp = getScaleFromMat<int8_t>(getBlob(node_proto, i + 2));
float inp_scale = getScalarFromMat<float>(getBlob(node_proto, i + 1));
int8_t inp_zp = getScalarFromMat<int8_t>(getBlob(node_proto, i + 2));
if (inp_scale != out_scale || inp_zp != out_zp)
{

@ -1824,11 +1824,22 @@ TEST_P(Test_ONNX_layers, Gemm)
TEST_P(Test_ONNX_layers, Quantized_Convolution)
{
// The difference of QOperator and QDQ format:
// https://onnxruntime.ai/docs/performance/quantization.html#onnx-quantization-representation-format.
{
SCOPED_TRACE("QOperator quantized model.");
testONNXModels("quantized_conv_uint8_weights", npy, 0.004, 0.02);
testONNXModels("quantized_conv_int8_weights", npy, 0.03, 0.5);
testONNXModels("quantized_conv_per_channel_weights", npy, 0.06, 0.4);
testONNXModels("quantized_conv_asymmetric_pads_int8_weights");
}
{
SCOPED_TRACE("QDQ quantized model.");
testONNXModels("quantized_conv_uint8_weights_qdq", npy, 0.004, 0.02);
testONNXModels("quantized_conv_int8_weights_qdq", npy, 0.03, 0.5);
testONNXModels("quantized_conv_per_channel_weights_qdq", npy, 0.06, 0.4);
}
}
TEST_P(Test_ONNX_layers, Quantized_MatMul)

Loading…
Cancel
Save