Merge pull request #14390 from dkurt:dnn_onnx_const_reshape

pull/14392/head^2
Alexander Alekhin 6 years ago
commit 8eb685de9d
  1. 17
      modules/dnn/src/onnx/onnx_importer.cpp

@ -140,9 +140,10 @@ Mat getMatFromTensor(opencv_onnx::TensorProto& tensor_proto)
return blob;
}
void runLayer(Ptr<Layer> layer, const std::vector<Mat>& inputs,
void runLayer(LayerParams& params, const std::vector<Mat>& inputs,
std::vector<Mat>& outputs)
{
Ptr<Layer> layer = LayerFactory::createLayerInstance(params.type, params);
std::vector<MatShape> inpShapes(inputs.size());
int ddepth = CV_32F;
for (size_t i = 0; i < inputs.size(); ++i)
@ -669,14 +670,15 @@ void ONNXImporter::populateNet(Net dstNet)
Mat blob = getBlob(node_proto, constBlobs, 1);
CV_Assert(blob.type() == CV_32SC1);
layerParams.set("dim", DictValue::arrayInt<int*>(
blob.ptr<int>(), blob.total() ));
if (layer_id.find(node_proto.input(0)) == layer_id.end()) {
Mat input = getBlob(node_proto, constBlobs, 0);
Mat out = input.reshape(0, static_cast<std::vector<int> >(blob));
constBlobs.insert(std::make_pair(layerParams.name, out));
std::vector<Mat> inputs(1, getBlob(node_proto, constBlobs, 0)), outputs;
runLayer(layerParams, inputs, outputs);
constBlobs.insert(std::make_pair(layerParams.name, outputs[0]));
continue;
}
layerParams.set("dim", DictValue::arrayInt<int*>(
blob.ptr<int>(), blob.total() ));
}
else {
DictValue shape = layerParams.get("shape");
@ -749,8 +751,7 @@ void ONNXImporter::populateNet(Net dstNet)
{
inputs[i] = getBlob(node_proto, constBlobs, i);
}
Ptr<Layer> concat = ConcatLayer::create(layerParams);
runLayer(concat, inputs, concatenated);
runLayer(layerParams, inputs, concatenated);
CV_Assert(concatenated.size() == 1);
constBlobs.insert(std::make_pair(layerParams.name, concatenated[0]));

Loading…
Cancel
Save