diff --git a/modules/gapi/include/opencv2/gapi/infer/ie.hpp b/modules/gapi/include/opencv2/gapi/infer/ie.hpp index 5b614de363..0bcb8e6210 100644 --- a/modules/gapi/include/opencv2/gapi/infer/ie.hpp +++ b/modules/gapi/include/opencv2/gapi/infer/ie.hpp @@ -2,7 +2,7 @@ // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // -// Copyright (C) 2019 Intel Corporation +// Copyright (C) 2019-2021 Intel Corporation #ifndef OPENCV_GAPI_INFER_IE_HPP #define OPENCV_GAPI_INFER_IE_HPP @@ -29,7 +29,7 @@ namespace ie { GAPI_EXPORTS cv::gapi::GBackend backend(); /** - * Specify how G-API and IE should trait input data + * Specifies how G-API and IE should trait input data * * In OpenCV, the same cv::Mat is used to represent both * image and tensor data. Sometimes those are hardly distinguishable, @@ -47,34 +47,30 @@ enum class TraitAs: int using IEConfig = std::map; namespace detail { - struct ParamDesc { - std::string model_path; - std::string weights_path; - std::string device_id; +struct ParamDesc { + std::string model_path; + std::string weights_path; + std::string device_id; - // NB: Here order follows the `Net` API - std::vector input_names; - std::vector output_names; + std::vector input_names; + std::vector output_names; - using ConstInput = std::pair; - std::unordered_map const_inputs; + using ConstInput = std::pair; + std::unordered_map const_inputs; - // NB: nun_* may differ from topology's real input/output port numbers - // (e.g. topology's partial execution) - std::size_t num_in; // How many inputs are defined in the operation - std::size_t num_out; // How many outputs are defined in the operation + std::size_t num_in; + std::size_t num_out; - enum class Kind { Load, Import }; - Kind kind; - bool is_generic; - IEConfig config; + enum class Kind {Load, Import}; + Kind kind; + bool is_generic; + IEConfig config; - std::map> reshape_table; - std::unordered_set layer_names_to_reshape; + std::map> reshape_table; + std::unordered_set layer_names_to_reshape; - // NB: Number of asyncrhonious infer requests - size_t nireq; - }; + size_t nireq; +}; } // namespace detail // FIXME: this is probably a shared (reusable) thing @@ -88,8 +84,21 @@ struct PortCfg { , std::tuple_size::value >; }; +/** + * @brief This structure provides functions + * that fill inference parameters for "OpenVINO Toolkit" model. + */ template class Params { public: + /** @brief Class constructor. + + Constructs Params based on model information and specifies default values for other + inference description parameters. Model is loaded and compiled using "OpenVINO Toolkit". + + @param model Path to topology IR (.xml file). + @param weights Path to weights (.bin file). + @param device target device to use. + */ Params(const std::string &model, const std::string &weights, const std::string &device) @@ -104,6 +113,13 @@ public: , 1u} { }; + /** @overload + Use this constructor to work with pre-compiled network. + Model is imported from a pre-compiled blob. + + @param model Path to model. + @param device target device to use. + */ Params(const std::string &model, const std::string &device) : desc{ model, {}, device, {}, {}, {} @@ -117,22 +133,53 @@ public: , 1u} { }; - Params& cfgInputLayers(const typename PortCfg::In &ll) { + /** @brief Specifies sequence of network input layers names for inference. + + The function is used to associate cv::gapi::infer<> inputs with the model inputs. + Number of names has to match the number of network inputs as defined in G_API_NET(). + In case a network has only single input layer, there is no need to specify name manually. + + @param layer_names std::array where N is the number of inputs + as defined in the @ref G_API_NET. Contains names of input layers. + @return reference to this parameter structure. + */ + Params& cfgInputLayers(const typename PortCfg::In &layer_names) { desc.input_names.clear(); - desc.input_names.reserve(ll.size()); - std::copy(ll.begin(), ll.end(), + desc.input_names.reserve(layer_names.size()); + std::copy(layer_names.begin(), layer_names.end(), std::back_inserter(desc.input_names)); return *this; } - Params& cfgOutputLayers(const typename PortCfg::Out &ll) { + /** @brief Specifies sequence of network output layers names for inference. + + The function is used to associate cv::gapi::infer<> outputs with the model outputs. + Number of names has to match the number of network outputs as defined in G_API_NET(). + In case a network has only single output layer, there is no need to specify name manually. + + @param layer_names std::array where N is the number of outputs + as defined in the @ref G_API_NET. Contains names of output layers. + @return reference to this parameter structure. + */ + Params& cfgOutputLayers(const typename PortCfg::Out &layer_names) { desc.output_names.clear(); - desc.output_names.reserve(ll.size()); - std::copy(ll.begin(), ll.end(), + desc.output_names.reserve(layer_names.size()); + std::copy(layer_names.begin(), layer_names.end(), std::back_inserter(desc.output_names)); return *this; } + /** @brief Specifies a constant input. + + The function is used to set a constant input. This input has to be + a preprocessed tensor if its type is TENSOR. Need to provide name of the + network layer which will receive provided data. + + @param layer_name Name of network layer. + @param data cv::Mat that contains data which will be associated with network layer. + @param hint Input type @sa cv::gapi::ie::TraitAs. + @return reference to this parameter structure. + */ Params& constInput(const std::string &layer_name, const cv::Mat &data, TraitAs hint = TraitAs::TENSOR) { @@ -140,52 +187,100 @@ public: return *this; } - Params& pluginConfig(IEConfig&& cfg) { - desc.config = std::move(cfg); + /** @brief Specifies OpenVINO plugin configuration. + + The function is used to set configuration for OpenVINO plugin. Some parameters + can be different for each plugin. Please follow https://docs.openvinotoolkit.org/latest/index.html + to check information about specific plugin. + + @param cfg Map of pairs: (config parameter name, config parameter value). + @return reference to this parameter structure. + */ + Params& pluginConfig(const IEConfig& cfg) { + desc.config = cfg; return *this; } - Params& pluginConfig(const IEConfig& cfg) { - desc.config = cfg; + /** @overload + Function with a rvalue parameter. + + @param cfg rvalue map of pairs: (config parameter name, config parameter value). + @return reference to this parameter structure. + */ + Params& pluginConfig(IEConfig&& cfg) { + desc.config = std::move(cfg); return *this; } + /** @brief Specifies number of asynchronous inference requests. + + @param nireq Number of inference asynchronous requests. + @return reference to this parameter structure. + */ Params& cfgNumRequests(size_t nireq) { GAPI_Assert(nireq > 0 && "Number of infer requests must be greater than zero!"); desc.nireq = nireq; return *this; } - Params& cfgInputReshape(std::map>&& reshape_table) { - desc.reshape_table = std::move(reshape_table); - return *this; - } + /** @brief Specifies new input shapes for the network inputs. + The function is used to specify new input shapes for the network inputs. + Follow https://docs.openvinotoolkit.org/latest/classInferenceEngine_1_1networkNetwork.html + for additional information. + + @param reshape_table Map of pairs: name of corresponding data and its dimension. + @return reference to this parameter structure. + */ Params& cfgInputReshape(const std::map>& reshape_table) { desc.reshape_table = reshape_table; return *this; } - Params& cfgInputReshape(std::string&& layer_name, std::vector&& layer_dims) { - desc.reshape_table.emplace(layer_name, layer_dims); + /** @overload */ + Params& cfgInputReshape(std::map>&& reshape_table) { + desc.reshape_table = std::move(reshape_table); return *this; } + /** @overload + + @param layer_name Name of layer. + @param layer_dims New dimensions for this layer. + @return reference to this parameter structure. + */ Params& cfgInputReshape(const std::string& layer_name, const std::vector& layer_dims) { desc.reshape_table.emplace(layer_name, layer_dims); return *this; } - Params& cfgInputReshape(std::unordered_set&& layer_names) { - desc.layer_names_to_reshape = std::move(layer_names); + /** @overload */ + Params& cfgInputReshape(std::string&& layer_name, std::vector&& layer_dims) { + desc.reshape_table.emplace(layer_name, layer_dims); return *this; } + /** @overload + + @param layer_names set of names of network layers that will be used for network reshape. + @return reference to this parameter structure. + */ Params& cfgInputReshape(const std::unordered_set& layer_names) { desc.layer_names_to_reshape = layer_names; return *this; } + /** @overload + + @param layer_names rvalue set of the selected layers will be reshaped automatically + its input image size. + @return reference to this parameter structure. + */ + Params& cfgInputReshape(std::unordered_set&& layer_names) { + desc.layer_names_to_reshape = std::move(layer_names); + return *this; + } + // BEGIN(G-API's network parametrization API) GBackend backend() const { return cv::gapi::ie::backend(); } std::string tag() const { return Net::tag(); } diff --git a/modules/gapi/include/opencv2/gapi/infer/onnx.hpp b/modules/gapi/include/opencv2/gapi/infer/onnx.hpp index 3a4e35fb09..761f688669 100644 --- a/modules/gapi/include/opencv2/gapi/infer/onnx.hpp +++ b/modules/gapi/include/opencv2/gapi/infer/onnx.hpp @@ -2,7 +2,7 @@ // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // -// Copyright (C) 2020 Intel Corporation +// Copyright (C) 2020-2021 Intel Corporation #ifndef OPENCV_GAPI_INFER_ONNX_HPP #define OPENCV_GAPI_INFER_ONNX_HPP @@ -34,32 +34,35 @@ enum class TraitAs: int { using PostProc = std::function &, std::unordered_map &)>; - namespace detail { +/** +* @brief This structure contains description of inference parameters +* which is specific to ONNX models. +*/ struct ParamDesc { - std::string model_path; + std::string model_path; //!< Path to model. // NB: nun_* may differ from topology's real input/output port numbers // (e.g. topology's partial execution) - std::size_t num_in; // How many inputs are defined in the operation - std::size_t num_out; // How many outputs are defined in the operation + std::size_t num_in; //!< How many inputs are defined in the operation + std::size_t num_out; //!< How many outputs are defined in the operation // NB: Here order follows the `Net` API - std::vector input_names; - std::vector output_names; + std::vector input_names; //!< Names of input network layers. + std::vector output_names; //!< Names of output network layers. using ConstInput = std::pair; - std::unordered_map const_inputs; + std::unordered_map const_inputs; //!< Map with pair of name of network layer and ConstInput which will be associated with this. - std::vector mean; - std::vector stdev; + std::vector mean; //!< Mean values for preprocessing. + std::vector stdev; //!< Standard deviation values for preprocessing. - std::vector out_metas; - PostProc custom_post_proc; + std::vector out_metas; //!< Out meta information about your output (type, dimension). + PostProc custom_post_proc; //!< Post processing function. - std::vector normalize; + std::vector normalize; //!< Vector of bool values that enabled or disabled normalize of input data. - std::vector names_to_remap; + std::vector names_to_remap; //!< Names of output layers that will be processed in PostProc function. }; } // namespace detail @@ -79,30 +82,71 @@ struct PortCfg { , std::tuple_size::value >; }; +/** + * Contains description of inference parameters and kit of functions that + * fill this parameters. + */ template class Params { public: + /** @brief Class constructor. + + Constructs Params based on model information and sets default values for other + inference description parameters. + + @param model Path to model (.onnx file). + */ Params(const std::string &model) { desc.model_path = model; desc.num_in = std::tuple_size::value; desc.num_out = std::tuple_size::value; }; - // BEGIN(G-API's network parametrization API) - GBackend backend() const { return cv::gapi::onnx::backend(); } - std::string tag() const { return Net::tag(); } - cv::util::any params() const { return { desc }; } - // END(G-API's network parametrization API) + /** @brief Specifies sequence of network input layers names for inference. + + The function is used to associate data of graph inputs with input layers of + network topology. Number of names has to match the number of network inputs. If a network + has only one input layer, there is no need to call it as the layer is + associated with input automatically but this doesn't prevent you from + doing it yourself. Count of names has to match to number of network inputs. - Params& cfgInputLayers(const typename PortCfg::In &ll) { - desc.input_names.assign(ll.begin(), ll.end()); + @param layer_names std::array where N is the number of inputs + as defined in the @ref G_API_NET. Contains names of input layers. + @return the reference on modified object. + */ + Params& cfgInputLayers(const typename PortCfg::In &layer_names) { + desc.input_names.assign(layer_names.begin(), layer_names.end()); return *this; } - Params& cfgOutputLayers(const typename PortCfg::Out &ll) { - desc.output_names.assign(ll.begin(), ll.end()); + /** @brief Specifies sequence of output layers names for inference. + + The function is used to associate data of graph outputs with output layers of + network topology. If a network has only one output layer, there is no need to call it + as the layer is associated with ouput automatically but this doesn't prevent + you from doing it yourself. Count of names has to match to number of network + outputs or you can set your own output but for this case you have to + additionally use @ref cfgPostProc function. + + @param layer_names std::array where N is the number of outputs + as defined in the @ref G_API_NET. Contains names of output layers. + @return the reference on modified object. + */ + Params& cfgOutputLayers(const typename PortCfg::Out &layer_names) { + desc.output_names.assign(layer_names.begin(), layer_names.end()); return *this; } + /** @brief Sets a constant input. + + The function is used to set constant input. This input has to be + a prepared tensor since preprocessing is disabled for this case. You should + provide name of network layer which will receive provided data. + + @param layer_name Name of network layer. + @param data cv::Mat that contains data which will be associated with network layer. + @param hint Type of input (TENSOR). + @return the reference on modified object. + */ Params& constInput(const std::string &layer_name, const cv::Mat &data, TraitAs hint = TraitAs::TENSOR) { @@ -110,6 +154,17 @@ public: return *this; } + /** @brief Specifies mean value and standard deviation for preprocessing. + + The function is used to set mean value and standard deviation for preprocessing + of input data. + + @param m std::array where N is the number of inputs + as defined in the @ref G_API_NET. Contains mean values. + @param s std::array where N is the number of inputs + as defined in the @ref G_API_NET. Contains standard deviation values. + @return the reference on modified object. + */ Params& cfgMeanStd(const typename PortCfg::NormCoefs &m, const typename PortCfg::NormCoefs &s) { desc.mean.assign(m.begin(), m.end()); @@ -117,75 +172,103 @@ public: return *this; } - /** @brief Configures graph output and sets the post processing function from user. + /** @brief Configures graph output and provides the post processing function from user. - The function is used for the case of infer of networks with dynamic outputs. - Since these networks haven't known output parameters needs provide them for - construction of output of graph. - The function provides meta information of outputs and post processing function. - Post processing function is used for copy information from ONNX infer's result - to output of graph which is allocated by out meta information. + The function is used when you work with networks with dynamic outputs. + Since we can't know dimensions of inference result needs provide them for + construction of graph output. This dimensions can differ from inference result. + So you have to provide @ref PostProc function that gets information from inference + result and fill output which is constructed by dimensions from out_metas. - @param out_metas out meta information. - @param pp post processing function, which has two parameters. First is onnx + @param out_metas Out meta information about your output (type, dimension). + @param remap_function Post processing function, which has two parameters. First is onnx result, second is graph output. Both parameters is std::map that contain pair of layer's name and cv::Mat. - @return reference to object of class Params. + @return the reference on modified object. */ Params& cfgPostProc(const std::vector &out_metas, - const PostProc &pp) { + const PostProc &remap_function) { desc.out_metas = out_metas; - desc.custom_post_proc = pp; + desc.custom_post_proc = remap_function; return *this; } /** @overload - The function has rvalue parameters. + Function with a rvalue parameters. + + @param out_metas rvalue out meta information about your output (type, dimension). + @param remap_function rvalue post processing function, which has two parameters. First is onnx + result, second is graph output. Both parameters is std::map that contain pair of + layer's name and cv::Mat. + @return the reference on modified object. */ Params& cfgPostProc(std::vector &&out_metas, - PostProc &&pp) { + PostProc &&remap_function) { desc.out_metas = std::move(out_metas); - desc.custom_post_proc = std::move(pp); + desc.custom_post_proc = std::move(remap_function); return *this; } /** @overload The function has additional parameter names_to_remap. This parameter provides - information about output layers which will be used for infer and in post + information about output layers which will be used for inference and post processing function. - @param out_metas out meta information. - @param pp post processing function. - @param names_to_remap contains names of output layers. CNN's infer will be done on these layers. - Infer's result will be processed in post processing function using these names. - @return reference to object of class Params. + @param out_metas Out meta information. + @param remap_function Post processing function. + @param names_to_remap Names of output layers. network's inference will + be done on these layers. Inference's result will be processed in post processing + function using these names. + @return the reference on modified object. */ Params& cfgPostProc(const std::vector &out_metas, - const PostProc &pp, + const PostProc &remap_function, const std::vector &names_to_remap) { desc.out_metas = out_metas; - desc.custom_post_proc = pp; + desc.custom_post_proc = remap_function; desc.names_to_remap = names_to_remap; return *this; } /** @overload - The function has rvalue parameters. + Function with a rvalue parameters and additional parameter names_to_remap. + + @param out_metas rvalue out meta information. + @param remap_function rvalue post processing function. + @param names_to_remap rvalue names of output layers. network's inference will + be done on these layers. Inference's result will be processed in post processing + function using these names. + @return the reference on modified object. */ Params& cfgPostProc(std::vector &&out_metas, - PostProc &&pp, + PostProc &&remap_function, std::vector &&names_to_remap) { desc.out_metas = std::move(out_metas); - desc.custom_post_proc = std::move(pp); + desc.custom_post_proc = std::move(remap_function); desc.names_to_remap = std::move(names_to_remap); return *this; } - Params& cfgNormalize(const typename PortCfg::Normalize &n) { - desc.normalize.assign(n.begin(), n.end()); + /** @brief Specifies normalize parameter for preprocessing. + + The function is used to set normalize parameter for preprocessing of input data. + + @param normalizations std::array where N is the number of inputs + as defined in the @ref G_API_NET. Сontains bool values that enabled or disabled + normalize of input data. + @return the reference on modified object. + */ + Params& cfgNormalize(const typename PortCfg::Normalize &normalizations) { + desc.normalize.assign(normalizations.begin(), normalizations.end()); return *this; } + // BEGIN(G-API's network parametrization API) + GBackend backend() const { return cv::gapi::onnx::backend(); } + std::string tag() const { return Net::tag(); } + cv::util::any params() const { return { desc }; } + // END(G-API's network parametrization API) + protected: detail::ParamDesc desc; };