|
|
|
@ -794,13 +794,22 @@ double cv::fisheye::calibrate(InputArrayOfArrays objectPoints, InputArrayOfArray |
|
|
|
|
|
|
|
|
|
if (K.needed()) cv::Mat(_K).convertTo(K, K.empty() ? CV_64FC1 : K.type()); |
|
|
|
|
if (D.needed()) cv::Mat(finalParam.k).convertTo(D, D.empty() ? CV_64FC1 : D.type()); |
|
|
|
|
if (rvecs.kind()==_InputArray::STD_VECTOR_MAT) |
|
|
|
|
if (rvecs.isMatVector()) |
|
|
|
|
{ |
|
|
|
|
int i; |
|
|
|
|
for( i = 0; i < (int)objectPoints.total(); i++ ) |
|
|
|
|
int N = (int)objectPoints.total(); |
|
|
|
|
|
|
|
|
|
if(rvecs.empty()) |
|
|
|
|
rvecs.create(N, 1, CV_64FC3); |
|
|
|
|
|
|
|
|
|
if(tvecs.empty()) |
|
|
|
|
tvecs.create(N, 1, CV_64FC3); |
|
|
|
|
|
|
|
|
|
for(int i = 0; i < N; i++ ) |
|
|
|
|
{ |
|
|
|
|
rvecs.getMat(i)=omc[i]; |
|
|
|
|
tvecs.getMat(i)=Tc[i]; |
|
|
|
|
rvecs.create(3, 1, CV_64F, i, true); |
|
|
|
|
tvecs.create(3, 1, CV_64F, i, true); |
|
|
|
|
memcpy(rvecs.getMat(i).ptr(), omc[i].val, sizeof(Vec3d)); |
|
|
|
|
memcpy(tvecs.getMat(i).ptr(), Tc[i].val, sizeof(Vec3d)); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
else |
|
|
|
@ -1295,12 +1304,12 @@ cv::Mat cv::internal::NormalizePixels(const Mat& imagePoints, const IntrinsicPar |
|
|
|
|
CV_Assert(!imagePoints.empty() && imagePoints.type() == CV_64FC2); |
|
|
|
|
|
|
|
|
|
Mat distorted((int)imagePoints.total(), 1, CV_64FC2), undistorted; |
|
|
|
|
const Vec2d* ptr = imagePoints.ptr<Vec2d>(0); |
|
|
|
|
Vec2d* ptr_d = distorted.ptr<Vec2d>(0); |
|
|
|
|
const Vec2d* ptr = imagePoints.ptr<Vec2d>(); |
|
|
|
|
Vec2d* ptr_d = distorted.ptr<Vec2d>(); |
|
|
|
|
for (size_t i = 0; i < imagePoints.total(); ++i) |
|
|
|
|
{ |
|
|
|
|
ptr_d[i] = (ptr[i] - param.c).mul(Vec2d(1.0 / param.f[0], 1.0 / param.f[1])); |
|
|
|
|
ptr_d[i][0] = ptr_d[i][0] - param.alpha * ptr_d[i][1]; |
|
|
|
|
ptr_d[i][0] -= param.alpha * ptr_d[i][1]; |
|
|
|
|
} |
|
|
|
|
cv::fisheye::undistortPoints(distorted, undistorted, Matx33d::eye(), param.k); |
|
|
|
|
return undistorted; |
|
|
|
@ -1308,12 +1317,11 @@ cv::Mat cv::internal::NormalizePixels(const Mat& imagePoints, const IntrinsicPar |
|
|
|
|
|
|
|
|
|
void cv::internal::InitExtrinsics(const Mat& _imagePoints, const Mat& _objectPoints, const IntrinsicParams& param, Mat& omckk, Mat& Tckk) |
|
|
|
|
{ |
|
|
|
|
|
|
|
|
|
CV_Assert(!_objectPoints.empty() && _objectPoints.type() == CV_64FC3); |
|
|
|
|
CV_Assert(!_imagePoints.empty() && _imagePoints.type() == CV_64FC2); |
|
|
|
|
|
|
|
|
|
Mat imagePointsNormalized = NormalizePixels(_imagePoints.t(), param).reshape(1).t(); |
|
|
|
|
Mat objectPoints = Mat(_objectPoints.t()).reshape(1).t(); |
|
|
|
|
Mat imagePointsNormalized = NormalizePixels(_imagePoints, param).reshape(1).t(); |
|
|
|
|
Mat objectPoints = _objectPoints.reshape(1).t(); |
|
|
|
|
Mat objectPointsMean, covObjectPoints; |
|
|
|
|
Mat Rckk; |
|
|
|
|
int Np = imagePointsNormalized.cols; |
|
|
|
@ -1366,9 +1374,12 @@ void cv::internal::CalibrateExtrinsics(InputArrayOfArrays objectPoints, InputArr |
|
|
|
|
objectPoints.getMat(image_idx).convertTo(object, CV_64FC3); |
|
|
|
|
imagePoints.getMat (image_idx).convertTo(image, CV_64FC2); |
|
|
|
|
|
|
|
|
|
InitExtrinsics(image, object, param, omckk, Tckk); |
|
|
|
|
bool imT = image.rows < image.cols; |
|
|
|
|
bool obT = object.rows < object.cols; |
|
|
|
|
|
|
|
|
|
ComputeExtrinsicRefine(image, object, omckk, Tckk, JJ_kk, maxIter, param, thresh_cond); |
|
|
|
|
InitExtrinsics(imT ? image.t() : image, obT ? object.t() : object, param, omckk, Tckk); |
|
|
|
|
|
|
|
|
|
ComputeExtrinsicRefine(!imT ? image.t() : image, !obT ? object.t() : object, omckk, Tckk, JJ_kk, maxIter, param, thresh_cond); |
|
|
|
|
if (check_cond) |
|
|
|
|
{ |
|
|
|
|
SVD svd(JJ_kk, SVD::NO_UV); |
|
|
|
@ -1379,7 +1390,6 @@ void cv::internal::CalibrateExtrinsics(InputArrayOfArrays objectPoints, InputArr |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void cv::internal::ComputeJacobians(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, |
|
|
|
|
const IntrinsicParams& param, InputArray omc, InputArray Tc, |
|
|
|
|
const int& check_cond, const double& thresh_cond, Mat& JJ2, Mat& ex3) |
|
|
|
@ -1401,12 +1411,13 @@ void cv::internal::ComputeJacobians(InputArrayOfArrays objectPoints, InputArrayO |
|
|
|
|
objectPoints.getMat(image_idx).convertTo(object, CV_64FC3); |
|
|
|
|
imagePoints.getMat (image_idx).convertTo(image, CV_64FC2); |
|
|
|
|
|
|
|
|
|
bool imT = image.rows < image.cols; |
|
|
|
|
Mat om(omc.getMat().col(image_idx)), T(Tc.getMat().col(image_idx)); |
|
|
|
|
|
|
|
|
|
std::vector<Point2d> x; |
|
|
|
|
Mat jacobians; |
|
|
|
|
projectPoints(object, x, om, T, param, jacobians); |
|
|
|
|
Mat exkk = image.t() - Mat(x); |
|
|
|
|
Mat exkk = (imT ? image.t() : image) - Mat(x); |
|
|
|
|
|
|
|
|
|
Mat A(jacobians.rows, 9, CV_64FC1); |
|
|
|
|
jacobians.colRange(0, 4).copyTo(A.colRange(0, 4)); |
|
|
|
@ -1460,11 +1471,13 @@ void cv::internal::EstimateUncertainties(InputArrayOfArrays objectPoints, InputA |
|
|
|
|
objectPoints.getMat(image_idx).convertTo(object, CV_64FC3); |
|
|
|
|
imagePoints.getMat (image_idx).convertTo(image, CV_64FC2); |
|
|
|
|
|
|
|
|
|
bool imT = image.rows < image.cols; |
|
|
|
|
|
|
|
|
|
Mat om(omc.getMat().col(image_idx)), T(Tc.getMat().col(image_idx)); |
|
|
|
|
|
|
|
|
|
std::vector<Point2d> x; |
|
|
|
|
projectPoints(object, x, om, T, params, noArray()); |
|
|
|
|
Mat ex_ = image.t() - Mat(x); |
|
|
|
|
Mat ex_ = (imT ? image.t() : image) - Mat(x); |
|
|
|
|
ex_.copyTo(ex.rowRange(ex_.rows * image_idx, ex_.rows * (image_idx + 1))); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|