mirror of https://github.com/opencv/opencv.git
Merge pull request #22005 from lukasalexanderweber:delete_stitching_tool
Move stitching package and tool to a dedicated repository * deleted moved files * Update README.mdpull/22048/head
parent
08c270f65a
commit
8ca394efaf
30 changed files with 2 additions and 2637 deletions
@ -1,3 +1,3 @@ |
|||||||
## In-Depth Stitching Tool for experiments and research |
## MOVED: opencv_stitching_tool |
||||||
|
|
||||||
Visit [opencv_stitching_tutorial](https://github.com/lukasalexanderweber/opencv_stitching_tutorial) for a detailed Tutorial |
As the stitching package is now available on [PyPI](https://pypi.org/project/stitching/) the tool and belonging package are now maintained [here](https://github.com/lukasalexanderweber/stitching). The Tutorial is maintained [here](https://github.com/lukasalexanderweber/stitching_tutorial). |
||||||
|
@ -1,4 +0,0 @@ |
|||||||
# python binary files |
|
||||||
*.pyc |
|
||||||
__pycache__ |
|
||||||
.pylint* |
|
@ -1,56 +0,0 @@ |
|||||||
import cv2 as cv |
|
||||||
import numpy as np |
|
||||||
|
|
||||||
|
|
||||||
class Blender: |
|
||||||
|
|
||||||
BLENDER_CHOICES = ('multiband', 'feather', 'no',) |
|
||||||
DEFAULT_BLENDER = 'multiband' |
|
||||||
DEFAULT_BLEND_STRENGTH = 5 |
|
||||||
|
|
||||||
def __init__(self, blender_type=DEFAULT_BLENDER, |
|
||||||
blend_strength=DEFAULT_BLEND_STRENGTH): |
|
||||||
self.blender_type = blender_type |
|
||||||
self.blend_strength = blend_strength |
|
||||||
self.blender = None |
|
||||||
|
|
||||||
def prepare(self, corners, sizes): |
|
||||||
dst_sz = cv.detail.resultRoi(corners=corners, sizes=sizes) |
|
||||||
blend_width = (np.sqrt(dst_sz[2] * dst_sz[3]) * |
|
||||||
self.blend_strength / 100) |
|
||||||
|
|
||||||
if self.blender_type == 'no' or blend_width < 1: |
|
||||||
self.blender = cv.detail.Blender_createDefault( |
|
||||||
cv.detail.Blender_NO |
|
||||||
) |
|
||||||
|
|
||||||
elif self.blender_type == "multiband": |
|
||||||
self.blender = cv.detail_MultiBandBlender() |
|
||||||
self.blender.setNumBands(int((np.log(blend_width) / |
|
||||||
np.log(2.) - 1.))) |
|
||||||
|
|
||||||
elif self.blender_type == "feather": |
|
||||||
self.blender = cv.detail_FeatherBlender() |
|
||||||
self.blender.setSharpness(1. / blend_width) |
|
||||||
|
|
||||||
self.blender.prepare(dst_sz) |
|
||||||
|
|
||||||
def feed(self, img, mask, corner): |
|
||||||
"""https://docs.opencv.org/4.x/d6/d4a/classcv_1_1detail_1_1Blender.html#a64837308bcf4e414a6219beff6cbe37a""" # noqa |
|
||||||
self.blender.feed(cv.UMat(img.astype(np.int16)), mask, corner) |
|
||||||
|
|
||||||
def blend(self): |
|
||||||
"""https://docs.opencv.org/4.x/d6/d4a/classcv_1_1detail_1_1Blender.html#aa0a91ce0d6046d3a63e0123cbb1b5c00""" # noqa |
|
||||||
result = None |
|
||||||
result_mask = None |
|
||||||
result, result_mask = self.blender.blend(result, result_mask) |
|
||||||
result = cv.convertScaleAbs(result) |
|
||||||
return result, result_mask |
|
||||||
|
|
||||||
@classmethod |
|
||||||
def create_panorama(cls, imgs, masks, corners, sizes): |
|
||||||
blender = cls("no") |
|
||||||
blender.prepare(corners, sizes) |
|
||||||
for img, mask, corner in zip(imgs, masks, corners): |
|
||||||
blender.feed(img, mask, corner) |
|
||||||
return blender.blend() |
|
@ -1,49 +0,0 @@ |
|||||||
from collections import OrderedDict |
|
||||||
import cv2 as cv |
|
||||||
import numpy as np |
|
||||||
|
|
||||||
from .stitching_error import StitchingError |
|
||||||
|
|
||||||
|
|
||||||
class CameraAdjuster: |
|
||||||
"""https://docs.opencv.org/4.x/d5/d56/classcv_1_1detail_1_1BundleAdjusterBase.html""" # noqa |
|
||||||
|
|
||||||
CAMERA_ADJUSTER_CHOICES = OrderedDict() |
|
||||||
CAMERA_ADJUSTER_CHOICES['ray'] = cv.detail_BundleAdjusterRay |
|
||||||
CAMERA_ADJUSTER_CHOICES['reproj'] = cv.detail_BundleAdjusterReproj |
|
||||||
CAMERA_ADJUSTER_CHOICES['affine'] = cv.detail_BundleAdjusterAffinePartial |
|
||||||
CAMERA_ADJUSTER_CHOICES['no'] = cv.detail_NoBundleAdjuster |
|
||||||
|
|
||||||
DEFAULT_CAMERA_ADJUSTER = list(CAMERA_ADJUSTER_CHOICES.keys())[0] |
|
||||||
DEFAULT_REFINEMENT_MASK = "xxxxx" |
|
||||||
|
|
||||||
def __init__(self, |
|
||||||
adjuster=DEFAULT_CAMERA_ADJUSTER, |
|
||||||
refinement_mask=DEFAULT_REFINEMENT_MASK): |
|
||||||
|
|
||||||
self.adjuster = CameraAdjuster.CAMERA_ADJUSTER_CHOICES[adjuster]() |
|
||||||
self.set_refinement_mask(refinement_mask) |
|
||||||
self.adjuster.setConfThresh(1) |
|
||||||
|
|
||||||
def set_refinement_mask(self, refinement_mask): |
|
||||||
mask_matrix = np.zeros((3, 3), np.uint8) |
|
||||||
if refinement_mask[0] == 'x': |
|
||||||
mask_matrix[0, 0] = 1 |
|
||||||
if refinement_mask[1] == 'x': |
|
||||||
mask_matrix[0, 1] = 1 |
|
||||||
if refinement_mask[2] == 'x': |
|
||||||
mask_matrix[0, 2] = 1 |
|
||||||
if refinement_mask[3] == 'x': |
|
||||||
mask_matrix[1, 1] = 1 |
|
||||||
if refinement_mask[4] == 'x': |
|
||||||
mask_matrix[1, 2] = 1 |
|
||||||
self.adjuster.setRefinementMask(mask_matrix) |
|
||||||
|
|
||||||
def adjust(self, features, pairwise_matches, estimated_cameras): |
|
||||||
b, cameras = self.adjuster.apply(features, |
|
||||||
pairwise_matches, |
|
||||||
estimated_cameras) |
|
||||||
if not b: |
|
||||||
raise StitchingError("Camera parameters adjusting failed.") |
|
||||||
|
|
||||||
return cameras |
|
@ -1,27 +0,0 @@ |
|||||||
from collections import OrderedDict |
|
||||||
import cv2 as cv |
|
||||||
import numpy as np |
|
||||||
|
|
||||||
from .stitching_error import StitchingError |
|
||||||
|
|
||||||
|
|
||||||
class CameraEstimator: |
|
||||||
|
|
||||||
CAMERA_ESTIMATOR_CHOICES = OrderedDict() |
|
||||||
CAMERA_ESTIMATOR_CHOICES['homography'] = cv.detail_HomographyBasedEstimator |
|
||||||
CAMERA_ESTIMATOR_CHOICES['affine'] = cv.detail_AffineBasedEstimator |
|
||||||
|
|
||||||
DEFAULT_CAMERA_ESTIMATOR = list(CAMERA_ESTIMATOR_CHOICES.keys())[0] |
|
||||||
|
|
||||||
def __init__(self, estimator=DEFAULT_CAMERA_ESTIMATOR, **kwargs): |
|
||||||
self.estimator = CameraEstimator.CAMERA_ESTIMATOR_CHOICES[estimator]( |
|
||||||
**kwargs |
|
||||||
) |
|
||||||
|
|
||||||
def estimate(self, features, pairwise_matches): |
|
||||||
b, cameras = self.estimator.apply(features, pairwise_matches, None) |
|
||||||
if not b: |
|
||||||
raise StitchingError("Homography estimation failed.") |
|
||||||
for cam in cameras: |
|
||||||
cam.R = cam.R.astype(np.float32) |
|
||||||
return cameras |
|
@ -1,28 +0,0 @@ |
|||||||
from collections import OrderedDict |
|
||||||
import cv2 as cv |
|
||||||
import numpy as np |
|
||||||
|
|
||||||
|
|
||||||
class WaveCorrector: |
|
||||||
"""https://docs.opencv.org/4.x/d7/d74/group__stitching__rotation.html#ga83b24d4c3e93584986a56d9e43b9cf7f""" # noqa |
|
||||||
WAVE_CORRECT_CHOICES = OrderedDict() |
|
||||||
WAVE_CORRECT_CHOICES['horiz'] = cv.detail.WAVE_CORRECT_HORIZ |
|
||||||
WAVE_CORRECT_CHOICES['vert'] = cv.detail.WAVE_CORRECT_VERT |
|
||||||
WAVE_CORRECT_CHOICES['auto'] = cv.detail.WAVE_CORRECT_AUTO |
|
||||||
WAVE_CORRECT_CHOICES['no'] = None |
|
||||||
|
|
||||||
DEFAULT_WAVE_CORRECTION = list(WAVE_CORRECT_CHOICES.keys())[0] |
|
||||||
|
|
||||||
def __init__(self, wave_correct_kind=DEFAULT_WAVE_CORRECTION): |
|
||||||
self.wave_correct_kind = WaveCorrector.WAVE_CORRECT_CHOICES[ |
|
||||||
wave_correct_kind |
|
||||||
] |
|
||||||
|
|
||||||
def correct(self, cameras): |
|
||||||
if self.wave_correct_kind is not None: |
|
||||||
rmats = [np.copy(cam.R) for cam in cameras] |
|
||||||
rmats = cv.detail.waveCorrect(rmats, self.wave_correct_kind) |
|
||||||
for idx, cam in enumerate(cameras): |
|
||||||
cam.R = rmats[idx] |
|
||||||
return cameras |
|
||||||
return cameras |
|
@ -1,149 +0,0 @@ |
|||||||
from collections import namedtuple |
|
||||||
import cv2 as cv |
|
||||||
|
|
||||||
from .blender import Blender |
|
||||||
from .stitching_error import StitchingError |
|
||||||
|
|
||||||
|
|
||||||
class Rectangle(namedtuple('Rectangle', 'x y width height')): |
|
||||||
__slots__ = () |
|
||||||
|
|
||||||
@property |
|
||||||
def area(self): |
|
||||||
return self.width * self.height |
|
||||||
|
|
||||||
@property |
|
||||||
def corner(self): |
|
||||||
return (self.x, self.y) |
|
||||||
|
|
||||||
@property |
|
||||||
def size(self): |
|
||||||
return (self.width, self.height) |
|
||||||
|
|
||||||
@property |
|
||||||
def x2(self): |
|
||||||
return self.x + self.width |
|
||||||
|
|
||||||
@property |
|
||||||
def y2(self): |
|
||||||
return self.y + self.height |
|
||||||
|
|
||||||
def times(self, x): |
|
||||||
return Rectangle(*(int(round(i*x)) for i in self)) |
|
||||||
|
|
||||||
def draw_on(self, img, color=(0, 0, 255), size=1): |
|
||||||
if len(img.shape) == 2: |
|
||||||
img = cv.cvtColor(img, cv.COLOR_GRAY2RGB) |
|
||||||
start_point = (self.x, self.y) |
|
||||||
end_point = (self.x2-1, self.y2-1) |
|
||||||
cv.rectangle(img, start_point, end_point, color, size) |
|
||||||
return img |
|
||||||
|
|
||||||
|
|
||||||
class Cropper: |
|
||||||
|
|
||||||
DEFAULT_CROP = False |
|
||||||
|
|
||||||
def __init__(self, crop=DEFAULT_CROP): |
|
||||||
self.do_crop = crop |
|
||||||
self.overlapping_rectangles = [] |
|
||||||
self.cropping_rectangles = [] |
|
||||||
|
|
||||||
def prepare(self, imgs, masks, corners, sizes): |
|
||||||
if self.do_crop: |
|
||||||
mask = self.estimate_panorama_mask(imgs, masks, corners, sizes) |
|
||||||
self.compile_numba_functionality() |
|
||||||
lir = self.estimate_largest_interior_rectangle(mask) |
|
||||||
corners = self.get_zero_center_corners(corners) |
|
||||||
rectangles = self.get_rectangles(corners, sizes) |
|
||||||
self.overlapping_rectangles = self.get_overlaps( |
|
||||||
rectangles, lir) |
|
||||||
self.intersection_rectangles = self.get_intersections( |
|
||||||
rectangles, self.overlapping_rectangles) |
|
||||||
|
|
||||||
def crop_images(self, imgs, aspect=1): |
|
||||||
for idx, img in enumerate(imgs): |
|
||||||
yield self.crop_img(img, idx, aspect) |
|
||||||
|
|
||||||
def crop_img(self, img, idx, aspect=1): |
|
||||||
if self.do_crop: |
|
||||||
intersection_rect = self.intersection_rectangles[idx] |
|
||||||
scaled_intersection_rect = intersection_rect.times(aspect) |
|
||||||
cropped_img = self.crop_rectangle(img, scaled_intersection_rect) |
|
||||||
return cropped_img |
|
||||||
return img |
|
||||||
|
|
||||||
def crop_rois(self, corners, sizes, aspect=1): |
|
||||||
if self.do_crop: |
|
||||||
scaled_overlaps = \ |
|
||||||
[r.times(aspect) for r in self.overlapping_rectangles] |
|
||||||
cropped_corners = [r.corner for r in scaled_overlaps] |
|
||||||
cropped_corners = self.get_zero_center_corners(cropped_corners) |
|
||||||
cropped_sizes = [r.size for r in scaled_overlaps] |
|
||||||
return cropped_corners, cropped_sizes |
|
||||||
return corners, sizes |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def estimate_panorama_mask(imgs, masks, corners, sizes): |
|
||||||
_, mask = Blender.create_panorama(imgs, masks, corners, sizes) |
|
||||||
return mask |
|
||||||
|
|
||||||
def compile_numba_functionality(self): |
|
||||||
# numba functionality is only imported if cropping |
|
||||||
# is explicitely desired |
|
||||||
try: |
|
||||||
import numba |
|
||||||
except ModuleNotFoundError: |
|
||||||
raise StitchingError("Numba is needed for cropping but not installed") |
|
||||||
from .largest_interior_rectangle import largest_interior_rectangle |
|
||||||
self.largest_interior_rectangle = largest_interior_rectangle |
|
||||||
|
|
||||||
def estimate_largest_interior_rectangle(self, mask): |
|
||||||
lir = self.largest_interior_rectangle(mask) |
|
||||||
lir = Rectangle(*lir) |
|
||||||
return lir |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def get_zero_center_corners(corners): |
|
||||||
min_corner_x = min([corner[0] for corner in corners]) |
|
||||||
min_corner_y = min([corner[1] for corner in corners]) |
|
||||||
return [(x - min_corner_x, y - min_corner_y) for x, y in corners] |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def get_rectangles(corners, sizes): |
|
||||||
rectangles = [] |
|
||||||
for corner, size in zip(corners, sizes): |
|
||||||
rectangle = Rectangle(*corner, *size) |
|
||||||
rectangles.append(rectangle) |
|
||||||
return rectangles |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def get_overlaps(rectangles, lir): |
|
||||||
return [Cropper.get_overlap(r, lir) for r in rectangles] |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def get_overlap(rectangle1, rectangle2): |
|
||||||
x1 = max(rectangle1.x, rectangle2.x) |
|
||||||
y1 = max(rectangle1.y, rectangle2.y) |
|
||||||
x2 = min(rectangle1.x2, rectangle2.x2) |
|
||||||
y2 = min(rectangle1.y2, rectangle2.y2) |
|
||||||
if x2 < x1 or y2 < y1: |
|
||||||
raise StitchingError("Rectangles do not overlap!") |
|
||||||
return Rectangle(x1, y1, x2-x1, y2-y1) |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def get_intersections(rectangles, overlapping_rectangles): |
|
||||||
return [Cropper.get_intersection(r, overlap_r) for r, overlap_r |
|
||||||
in zip(rectangles, overlapping_rectangles)] |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def get_intersection(rectangle, overlapping_rectangle): |
|
||||||
x = abs(overlapping_rectangle.x - rectangle.x) |
|
||||||
y = abs(overlapping_rectangle.y - rectangle.y) |
|
||||||
width = overlapping_rectangle.width |
|
||||||
height = overlapping_rectangle.height |
|
||||||
return Rectangle(x, y, width, height) |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def crop_rectangle(img, rectangle): |
|
||||||
return img[rectangle.y:rectangle.y2, rectangle.x:rectangle.x2] |
|
@ -1,40 +0,0 @@ |
|||||||
from collections import OrderedDict |
|
||||||
import cv2 as cv |
|
||||||
|
|
||||||
|
|
||||||
class ExposureErrorCompensator: |
|
||||||
|
|
||||||
COMPENSATOR_CHOICES = OrderedDict() |
|
||||||
COMPENSATOR_CHOICES['gain_blocks'] = cv.detail.ExposureCompensator_GAIN_BLOCKS # noqa |
|
||||||
COMPENSATOR_CHOICES['gain'] = cv.detail.ExposureCompensator_GAIN |
|
||||||
COMPENSATOR_CHOICES['channel'] = cv.detail.ExposureCompensator_CHANNELS |
|
||||||
COMPENSATOR_CHOICES['channel_blocks'] = cv.detail.ExposureCompensator_CHANNELS_BLOCKS # noqa |
|
||||||
COMPENSATOR_CHOICES['no'] = cv.detail.ExposureCompensator_NO |
|
||||||
|
|
||||||
DEFAULT_COMPENSATOR = list(COMPENSATOR_CHOICES.keys())[0] |
|
||||||
DEFAULT_NR_FEEDS = 1 |
|
||||||
DEFAULT_BLOCK_SIZE = 32 |
|
||||||
|
|
||||||
def __init__(self, |
|
||||||
compensator=DEFAULT_COMPENSATOR, |
|
||||||
nr_feeds=DEFAULT_NR_FEEDS, |
|
||||||
block_size=DEFAULT_BLOCK_SIZE): |
|
||||||
|
|
||||||
if compensator == 'channel': |
|
||||||
self.compensator = cv.detail_ChannelsCompensator(nr_feeds) |
|
||||||
elif compensator == 'channel_blocks': |
|
||||||
self.compensator = cv.detail_BlocksChannelsCompensator( |
|
||||||
block_size, block_size, nr_feeds |
|
||||||
) |
|
||||||
else: |
|
||||||
self.compensator = cv.detail.ExposureCompensator_createDefault( |
|
||||||
ExposureErrorCompensator.COMPENSATOR_CHOICES[compensator] |
|
||||||
) |
|
||||||
|
|
||||||
def feed(self, *args): |
|
||||||
"""https://docs.opencv.org/4.x/d2/d37/classcv_1_1detail_1_1ExposureCompensator.html#ae6b0cc69a7bc53818ddea53eddb6bdba""" # noqa |
|
||||||
self.compensator.feed(*args) |
|
||||||
|
|
||||||
def apply(self, *args): |
|
||||||
"""https://docs.opencv.org/4.x/d2/d37/classcv_1_1detail_1_1ExposureCompensator.html#a473eaf1e585804c08d77c91e004f93aa""" # noqa |
|
||||||
return self.compensator.apply(*args) |
|
@ -1,44 +0,0 @@ |
|||||||
from collections import OrderedDict |
|
||||||
import cv2 as cv |
|
||||||
|
|
||||||
|
|
||||||
class FeatureDetector: |
|
||||||
DETECTOR_CHOICES = OrderedDict() |
|
||||||
try: |
|
||||||
cv.xfeatures2d_SURF.create() # check if the function can be called |
|
||||||
DETECTOR_CHOICES['surf'] = cv.xfeatures2d_SURF.create |
|
||||||
except (AttributeError, cv.error): |
|
||||||
print("SURF not available") |
|
||||||
|
|
||||||
# if SURF not available, ORB is default |
|
||||||
DETECTOR_CHOICES['orb'] = cv.ORB.create |
|
||||||
|
|
||||||
try: |
|
||||||
DETECTOR_CHOICES['sift'] = cv.SIFT_create |
|
||||||
except AttributeError: |
|
||||||
print("SIFT not available") |
|
||||||
|
|
||||||
try: |
|
||||||
DETECTOR_CHOICES['brisk'] = cv.BRISK_create |
|
||||||
except AttributeError: |
|
||||||
print("BRISK not available") |
|
||||||
|
|
||||||
try: |
|
||||||
DETECTOR_CHOICES['akaze'] = cv.AKAZE_create |
|
||||||
except AttributeError: |
|
||||||
print("AKAZE not available") |
|
||||||
|
|
||||||
DEFAULT_DETECTOR = list(DETECTOR_CHOICES.keys())[0] |
|
||||||
|
|
||||||
def __init__(self, detector=DEFAULT_DETECTOR, **kwargs): |
|
||||||
self.detector = FeatureDetector.DETECTOR_CHOICES[detector](**kwargs) |
|
||||||
|
|
||||||
def detect_features(self, img, *args, **kwargs): |
|
||||||
return cv.detail.computeImageFeatures2(self.detector, img, |
|
||||||
*args, **kwargs) |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def draw_keypoints(img, features, **kwargs): |
|
||||||
kwargs.setdefault('color', (0, 255, 0)) |
|
||||||
keypoints = features.getKeypoints() |
|
||||||
return cv.drawKeypoints(img, keypoints, None, **kwargs) |
|
@ -1,98 +0,0 @@ |
|||||||
import math |
|
||||||
import cv2 as cv |
|
||||||
import numpy as np |
|
||||||
|
|
||||||
|
|
||||||
class FeatureMatcher: |
|
||||||
|
|
||||||
MATCHER_CHOICES = ('homography', 'affine') |
|
||||||
DEFAULT_MATCHER = 'homography' |
|
||||||
DEFAULT_RANGE_WIDTH = -1 |
|
||||||
|
|
||||||
def __init__(self, |
|
||||||
matcher_type=DEFAULT_MATCHER, |
|
||||||
range_width=DEFAULT_RANGE_WIDTH, |
|
||||||
**kwargs): |
|
||||||
|
|
||||||
if matcher_type == "affine": |
|
||||||
"""https://docs.opencv.org/4.x/d3/dda/classcv_1_1detail_1_1AffineBestOf2NearestMatcher.html""" # noqa |
|
||||||
self.matcher = cv.detail_AffineBestOf2NearestMatcher(**kwargs) |
|
||||||
elif range_width == -1: |
|
||||||
"""https://docs.opencv.org/4.x/d4/d26/classcv_1_1detail_1_1BestOf2NearestMatcher.html""" # noqa |
|
||||||
self.matcher = cv.detail_BestOf2NearestMatcher(**kwargs) |
|
||||||
else: |
|
||||||
"""https://docs.opencv.org/4.x/d8/d72/classcv_1_1detail_1_1BestOf2NearestRangeMatcher.html""" # noqa |
|
||||||
self.matcher = cv.detail_BestOf2NearestRangeMatcher( |
|
||||||
range_width, **kwargs |
|
||||||
) |
|
||||||
|
|
||||||
def match_features(self, features, *args, **kwargs): |
|
||||||
pairwise_matches = self.matcher.apply2(features, *args, **kwargs) |
|
||||||
self.matcher.collectGarbage() |
|
||||||
return pairwise_matches |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def draw_matches_matrix(imgs, features, matches, conf_thresh=1, |
|
||||||
inliers=False, **kwargs): |
|
||||||
matches_matrix = FeatureMatcher.get_matches_matrix(matches) |
|
||||||
for idx1, idx2 in FeatureMatcher.get_all_img_combinations(len(imgs)): |
|
||||||
match = matches_matrix[idx1, idx2] |
|
||||||
if match.confidence < conf_thresh: |
|
||||||
continue |
|
||||||
if inliers: |
|
||||||
kwargs['matchesMask'] = match.getInliers() |
|
||||||
yield idx1, idx2, FeatureMatcher.draw_matches( |
|
||||||
imgs[idx1], features[idx1], |
|
||||||
imgs[idx2], features[idx2], |
|
||||||
match, |
|
||||||
**kwargs |
|
||||||
) |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def draw_matches(img1, features1, img2, features2, match1to2, **kwargs): |
|
||||||
kwargs.setdefault('flags', cv.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS) |
|
||||||
|
|
||||||
keypoints1 = features1.getKeypoints() |
|
||||||
keypoints2 = features2.getKeypoints() |
|
||||||
matches = match1to2.getMatches() |
|
||||||
|
|
||||||
return cv.drawMatches( |
|
||||||
img1, keypoints1, img2, keypoints2, matches, None, **kwargs |
|
||||||
) |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def get_matches_matrix(pairwise_matches): |
|
||||||
return FeatureMatcher.array_in_sqare_matrix(pairwise_matches) |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def get_confidence_matrix(pairwise_matches): |
|
||||||
matches_matrix = FeatureMatcher.get_matches_matrix(pairwise_matches) |
|
||||||
match_confs = [[m.confidence for m in row] for row in matches_matrix] |
|
||||||
match_conf_matrix = np.array(match_confs) |
|
||||||
return match_conf_matrix |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def array_in_sqare_matrix(array): |
|
||||||
matrix_dimension = int(math.sqrt(len(array))) |
|
||||||
rows = [] |
|
||||||
for i in range(0, len(array), matrix_dimension): |
|
||||||
rows.append(array[i:i+matrix_dimension]) |
|
||||||
return np.array(rows) |
|
||||||
|
|
||||||
def get_all_img_combinations(number_imgs): |
|
||||||
ii, jj = np.triu_indices(number_imgs, k=1) |
|
||||||
for i, j in zip(ii, jj): |
|
||||||
yield i, j |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def get_match_conf(match_conf, feature_detector_type): |
|
||||||
if match_conf is None: |
|
||||||
match_conf = \ |
|
||||||
FeatureMatcher.get_default_match_conf(feature_detector_type) |
|
||||||
return match_conf |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def get_default_match_conf(feature_detector_type): |
|
||||||
if feature_detector_type == 'orb': |
|
||||||
return 0.3 |
|
||||||
return 0.65 |
|
@ -1,105 +0,0 @@ |
|||||||
import cv2 as cv |
|
||||||
|
|
||||||
from .megapix_scaler import MegapixDownscaler |
|
||||||
from .stitching_error import StitchingError |
|
||||||
|
|
||||||
class ImageHandler: |
|
||||||
|
|
||||||
DEFAULT_MEDIUM_MEGAPIX = 0.6 |
|
||||||
DEFAULT_LOW_MEGAPIX = 0.1 |
|
||||||
DEFAULT_FINAL_MEGAPIX = -1 |
|
||||||
|
|
||||||
def __init__(self, |
|
||||||
medium_megapix=DEFAULT_MEDIUM_MEGAPIX, |
|
||||||
low_megapix=DEFAULT_LOW_MEGAPIX, |
|
||||||
final_megapix=DEFAULT_FINAL_MEGAPIX): |
|
||||||
|
|
||||||
if medium_megapix < low_megapix: |
|
||||||
raise StitchingError("Medium resolution megapix need to be " |
|
||||||
"greater or equal than low resolution " |
|
||||||
"megapix") |
|
||||||
|
|
||||||
self.medium_scaler = MegapixDownscaler(medium_megapix) |
|
||||||
self.low_scaler = MegapixDownscaler(low_megapix) |
|
||||||
self.final_scaler = MegapixDownscaler(final_megapix) |
|
||||||
|
|
||||||
self.scales_set = False |
|
||||||
self.img_names = [] |
|
||||||
self.img_sizes = [] |
|
||||||
|
|
||||||
def set_img_names(self, img_names): |
|
||||||
self.img_names = img_names |
|
||||||
|
|
||||||
def resize_to_medium_resolution(self): |
|
||||||
return self.read_and_resize_imgs(self.medium_scaler) |
|
||||||
|
|
||||||
def resize_to_low_resolution(self, medium_imgs=None): |
|
||||||
if medium_imgs and self.scales_set: |
|
||||||
return self.resize_imgs_by_scaler(medium_imgs, self.low_scaler) |
|
||||||
return self.read_and_resize_imgs(self.low_scaler) |
|
||||||
|
|
||||||
def resize_to_final_resolution(self): |
|
||||||
return self.read_and_resize_imgs(self.final_scaler) |
|
||||||
|
|
||||||
def read_and_resize_imgs(self, scaler): |
|
||||||
for img, size in self.input_images(): |
|
||||||
yield self.resize_img_by_scaler(scaler, size, img) |
|
||||||
|
|
||||||
def resize_imgs_by_scaler(self, medium_imgs, scaler): |
|
||||||
for img, size in zip(medium_imgs, self.img_sizes): |
|
||||||
yield self.resize_img_by_scaler(scaler, size, img) |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def resize_img_by_scaler(scaler, size, img): |
|
||||||
desired_size = scaler.get_scaled_img_size(size) |
|
||||||
return cv.resize(img, desired_size, |
|
||||||
interpolation=cv.INTER_LINEAR_EXACT) |
|
||||||
|
|
||||||
def input_images(self): |
|
||||||
self.img_sizes = [] |
|
||||||
for name in self.img_names: |
|
||||||
img = self.read_image(name) |
|
||||||
size = self.get_image_size(img) |
|
||||||
self.img_sizes.append(size) |
|
||||||
self.set_scaler_scales() |
|
||||||
yield img, size |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def get_image_size(img): |
|
||||||
"""(width, height)""" |
|
||||||
return (img.shape[1], img.shape[0]) |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def read_image(img_name): |
|
||||||
img = cv.imread(img_name) |
|
||||||
if img is None: |
|
||||||
raise StitchingError("Cannot read image " + img_name) |
|
||||||
return img |
|
||||||
|
|
||||||
def set_scaler_scales(self): |
|
||||||
if not self.scales_set: |
|
||||||
first_img_size = self.img_sizes[0] |
|
||||||
self.medium_scaler.set_scale_by_img_size(first_img_size) |
|
||||||
self.low_scaler.set_scale_by_img_size(first_img_size) |
|
||||||
self.final_scaler.set_scale_by_img_size(first_img_size) |
|
||||||
self.scales_set = True |
|
||||||
|
|
||||||
def get_medium_to_final_ratio(self): |
|
||||||
return self.final_scaler.scale / self.medium_scaler.scale |
|
||||||
|
|
||||||
def get_medium_to_low_ratio(self): |
|
||||||
return self.low_scaler.scale / self.medium_scaler.scale |
|
||||||
|
|
||||||
def get_final_to_low_ratio(self): |
|
||||||
return self.low_scaler.scale / self.final_scaler.scale |
|
||||||
|
|
||||||
def get_low_to_final_ratio(self): |
|
||||||
return self.final_scaler.scale / self.low_scaler.scale |
|
||||||
|
|
||||||
def get_final_img_sizes(self): |
|
||||||
return [self.final_scaler.get_scaled_img_size(sz) |
|
||||||
for sz in self.img_sizes] |
|
||||||
|
|
||||||
def get_low_img_sizes(self): |
|
||||||
return [self.low_scaler.get_scaled_img_size(sz) |
|
||||||
for sz in self.img_sizes] |
|
@ -1,303 +0,0 @@ |
|||||||
import numpy as np |
|
||||||
import numba as nb |
|
||||||
import cv2 as cv |
|
||||||
|
|
||||||
from .stitching_error import StitchingError |
|
||||||
|
|
||||||
|
|
||||||
def largest_interior_rectangle(cells): |
|
||||||
outline = get_outline(cells) |
|
||||||
adjacencies = adjacencies_all_directions(cells) |
|
||||||
s_map, _, saddle_candidates_map = create_maps(outline, adjacencies) |
|
||||||
lir1 = biggest_span_in_span_map(s_map) |
|
||||||
|
|
||||||
candidate_cells = cells_of_interest(saddle_candidates_map) |
|
||||||
s_map = span_map(adjacencies[0], adjacencies[2], candidate_cells) |
|
||||||
lir2 = biggest_span_in_span_map(s_map) |
|
||||||
|
|
||||||
lir = biggest_rectangle(lir1, lir2) |
|
||||||
return lir |
|
||||||
|
|
||||||
|
|
||||||
def get_outline(cells): |
|
||||||
contours, hierarchy = \ |
|
||||||
cv.findContours(cells, cv.RETR_TREE, cv.CHAIN_APPROX_NONE) |
|
||||||
# TODO support multiple contours |
|
||||||
# test that only one regular contour exists |
|
||||||
if not hierarchy.shape == (1, 1, 4) or not np.all(hierarchy == -1): |
|
||||||
raise StitchingError("Invalid Contour. Try without cropping.") |
|
||||||
contour = contours[0][:, 0, :] |
|
||||||
x_values = contour[:, 0].astype("uint32", order="C") |
|
||||||
y_values = contour[:, 1].astype("uint32", order="C") |
|
||||||
return x_values, y_values |
|
||||||
|
|
||||||
|
|
||||||
@nb.njit('uint32[:,::1](uint8[:,::1], boolean)', parallel=True, cache=True) |
|
||||||
def horizontal_adjacency(cells, direction): |
|
||||||
result = np.zeros(cells.shape, dtype=np.uint32) |
|
||||||
for y in nb.prange(cells.shape[0]): |
|
||||||
span = 0 |
|
||||||
if direction: |
|
||||||
iterator = range(cells.shape[1]-1, -1, -1) |
|
||||||
else: |
|
||||||
iterator = range(cells.shape[1]) |
|
||||||
for x in iterator: |
|
||||||
if cells[y, x] > 0: |
|
||||||
span += 1 |
|
||||||
else: |
|
||||||
span = 0 |
|
||||||
result[y, x] = span |
|
||||||
return result |
|
||||||
|
|
||||||
|
|
||||||
@nb.njit('uint32[:,::1](uint8[:,::1], boolean)', parallel=True, cache=True) |
|
||||||
def vertical_adjacency(cells, direction): |
|
||||||
result = np.zeros(cells.shape, dtype=np.uint32) |
|
||||||
for x in nb.prange(cells.shape[1]): |
|
||||||
span = 0 |
|
||||||
if direction: |
|
||||||
iterator = range(cells.shape[0]-1, -1, -1) |
|
||||||
else: |
|
||||||
iterator = range(cells.shape[0]) |
|
||||||
for y in iterator: |
|
||||||
if cells[y, x] > 0: |
|
||||||
span += 1 |
|
||||||
else: |
|
||||||
span = 0 |
|
||||||
result[y, x] = span |
|
||||||
return result |
|
||||||
|
|
||||||
|
|
||||||
@nb.njit(cache=True) |
|
||||||
def adjacencies_all_directions(cells): |
|
||||||
h_left2right = horizontal_adjacency(cells, 1) |
|
||||||
h_right2left = horizontal_adjacency(cells, 0) |
|
||||||
v_top2bottom = vertical_adjacency(cells, 1) |
|
||||||
v_bottom2top = vertical_adjacency(cells, 0) |
|
||||||
return h_left2right, h_right2left, v_top2bottom, v_bottom2top |
|
||||||
|
|
||||||
|
|
||||||
@nb.njit('uint32(uint32[:])', cache=True) |
|
||||||
def predict_vector_size(array): |
|
||||||
zero_indices = np.where(array == 0)[0] |
|
||||||
if len(zero_indices) == 0: |
|
||||||
if len(array) == 0: |
|
||||||
return 0 |
|
||||||
return len(array) |
|
||||||
return zero_indices[0] |
|
||||||
|
|
||||||
|
|
||||||
@nb.njit('uint32[:](uint32[:,::1], uint32, uint32)', cache=True) |
|
||||||
def h_vector_top2bottom(h_adjacency, x, y): |
|
||||||
vector_size = predict_vector_size(h_adjacency[y:, x]) |
|
||||||
h_vector = np.zeros(vector_size, dtype=np.uint32) |
|
||||||
h = np.Inf |
|
||||||
for p in range(vector_size): |
|
||||||
h = np.minimum(h_adjacency[y+p, x], h) |
|
||||||
h_vector[p] = h |
|
||||||
h_vector = np.unique(h_vector)[::-1] |
|
||||||
return h_vector |
|
||||||
|
|
||||||
|
|
||||||
@nb.njit('uint32[:](uint32[:,::1], uint32, uint32)', cache=True) |
|
||||||
def h_vector_bottom2top(h_adjacency, x, y): |
|
||||||
vector_size = predict_vector_size(np.flip(h_adjacency[:y+1, x])) |
|
||||||
h_vector = np.zeros(vector_size, dtype=np.uint32) |
|
||||||
h = np.Inf |
|
||||||
for p in range(vector_size): |
|
||||||
h = np.minimum(h_adjacency[y-p, x], h) |
|
||||||
h_vector[p] = h |
|
||||||
h_vector = np.unique(h_vector)[::-1] |
|
||||||
return h_vector |
|
||||||
|
|
||||||
|
|
||||||
@nb.njit(cache=True) |
|
||||||
def h_vectors_all_directions(h_left2right, h_right2left, x, y): |
|
||||||
h_l2r_t2b = h_vector_top2bottom(h_left2right, x, y) |
|
||||||
h_r2l_t2b = h_vector_top2bottom(h_right2left, x, y) |
|
||||||
h_l2r_b2t = h_vector_bottom2top(h_left2right, x, y) |
|
||||||
h_r2l_b2t = h_vector_bottom2top(h_right2left, x, y) |
|
||||||
return h_l2r_t2b, h_r2l_t2b, h_l2r_b2t, h_r2l_b2t |
|
||||||
|
|
||||||
|
|
||||||
@nb.njit('uint32[:](uint32[:,::1], uint32, uint32)', cache=True) |
|
||||||
def v_vector_left2right(v_adjacency, x, y): |
|
||||||
vector_size = predict_vector_size(v_adjacency[y, x:]) |
|
||||||
v_vector = np.zeros(vector_size, dtype=np.uint32) |
|
||||||
v = np.Inf |
|
||||||
for q in range(vector_size): |
|
||||||
v = np.minimum(v_adjacency[y, x+q], v) |
|
||||||
v_vector[q] = v |
|
||||||
v_vector = np.unique(v_vector)[::-1] |
|
||||||
return v_vector |
|
||||||
|
|
||||||
|
|
||||||
@nb.njit('uint32[:](uint32[:,::1], uint32, uint32)', cache=True) |
|
||||||
def v_vector_right2left(v_adjacency, x, y): |
|
||||||
vector_size = predict_vector_size(np.flip(v_adjacency[y, :x+1])) |
|
||||||
v_vector = np.zeros(vector_size, dtype=np.uint32) |
|
||||||
v = np.Inf |
|
||||||
for q in range(vector_size): |
|
||||||
v = np.minimum(v_adjacency[y, x-q], v) |
|
||||||
v_vector[q] = v |
|
||||||
v_vector = np.unique(v_vector)[::-1] |
|
||||||
return v_vector |
|
||||||
|
|
||||||
|
|
||||||
@nb.njit(cache=True) |
|
||||||
def v_vectors_all_directions(v_top2bottom, v_bottom2top, x, y): |
|
||||||
v_l2r_t2b = v_vector_left2right(v_top2bottom, x, y) |
|
||||||
v_r2l_t2b = v_vector_right2left(v_top2bottom, x, y) |
|
||||||
v_l2r_b2t = v_vector_left2right(v_bottom2top, x, y) |
|
||||||
v_r2l_b2t = v_vector_right2left(v_bottom2top, x, y) |
|
||||||
return v_l2r_t2b, v_r2l_t2b, v_l2r_b2t, v_r2l_b2t |
|
||||||
|
|
||||||
|
|
||||||
@nb.njit('uint32[:,:](uint32[:], uint32[:])', cache=True) |
|
||||||
def spans(h_vector, v_vector): |
|
||||||
spans = np.stack((h_vector, v_vector[::-1]), axis=1) |
|
||||||
return spans |
|
||||||
|
|
||||||
|
|
||||||
@nb.njit('uint32[:](uint32[:,:])', cache=True) |
|
||||||
def biggest_span(spans): |
|
||||||
if len(spans) == 0: |
|
||||||
return np.array([0, 0], dtype=np.uint32) |
|
||||||
areas = spans[:, 0] * spans[:, 1] |
|
||||||
biggest_span_index = np.where(areas == np.amax(areas))[0][0] |
|
||||||
return spans[biggest_span_index] |
|
||||||
|
|
||||||
|
|
||||||
@nb.njit(cache=True) |
|
||||||
def spans_all_directions(h_vectors, v_vectors): |
|
||||||
span_l2r_t2b = spans(h_vectors[0], v_vectors[0]) |
|
||||||
span_r2l_t2b = spans(h_vectors[1], v_vectors[1]) |
|
||||||
span_l2r_b2t = spans(h_vectors[2], v_vectors[2]) |
|
||||||
span_r2l_b2t = spans(h_vectors[3], v_vectors[3]) |
|
||||||
return span_l2r_t2b, span_r2l_t2b, span_l2r_b2t, span_r2l_b2t |
|
||||||
|
|
||||||
|
|
||||||
@nb.njit(cache=True) |
|
||||||
def get_n_directions(spans_all_directions): |
|
||||||
n_directions = 1 |
|
||||||
for spans in spans_all_directions: |
|
||||||
all_x_1 = np.all(spans[:, 0] == 1) |
|
||||||
all_y_1 = np.all(spans[:, 1] == 1) |
|
||||||
if not all_x_1 and not all_y_1: |
|
||||||
n_directions += 1 |
|
||||||
return n_directions |
|
||||||
|
|
||||||
|
|
||||||
@nb.njit(cache=True) |
|
||||||
def get_xy_array(x, y, spans, mode=0): |
|
||||||
"""0 - flip none, 1 - flip x, 2 - flip y, 3 - flip both""" |
|
||||||
xy = spans.copy() |
|
||||||
xy[:, 0] = x |
|
||||||
xy[:, 1] = y |
|
||||||
if mode == 1: |
|
||||||
xy[:, 0] = xy[:, 0] - spans[:, 0] + 1 |
|
||||||
if mode == 2: |
|
||||||
xy[:, 1] = xy[:, 1] - spans[:, 1] + 1 |
|
||||||
if mode == 3: |
|
||||||
xy[:, 0] = xy[:, 0] - spans[:, 0] + 1 |
|
||||||
xy[:, 1] = xy[:, 1] - spans[:, 1] + 1 |
|
||||||
return xy |
|
||||||
|
|
||||||
|
|
||||||
@nb.njit(cache=True) |
|
||||||
def get_xy_arrays(x, y, spans_all_directions): |
|
||||||
xy_l2r_t2b = get_xy_array(x, y, spans_all_directions[0], 0) |
|
||||||
xy_r2l_t2b = get_xy_array(x, y, spans_all_directions[1], 1) |
|
||||||
xy_l2r_b2t = get_xy_array(x, y, spans_all_directions[2], 2) |
|
||||||
xy_r2l_b2t = get_xy_array(x, y, spans_all_directions[3], 3) |
|
||||||
return xy_l2r_t2b, xy_r2l_t2b, xy_l2r_b2t, xy_r2l_b2t |
|
||||||
|
|
||||||
|
|
||||||
@nb.njit(cache=True) |
|
||||||
def point_on_outline(x, y, outline): |
|
||||||
x_vals, y_vals = outline |
|
||||||
x_true = x_vals == x |
|
||||||
y_true = y_vals == y |
|
||||||
both_true = np.logical_and(x_true, y_true) |
|
||||||
return np.any(both_true) |
|
||||||
|
|
||||||
|
|
||||||
@nb.njit('Tuple((uint32[:,:,::1], uint8[:,::1], uint8[:,::1]))' |
|
||||||
'(UniTuple(uint32[:], 2), UniTuple(uint32[:,::1], 4))', |
|
||||||
parallel=True, cache=True) |
|
||||||
def create_maps(outline, adjacencies): |
|
||||||
x_values, y_values = outline |
|
||||||
h_left2right, h_right2left, v_top2bottom, v_bottom2top = adjacencies |
|
||||||
|
|
||||||
shape = h_left2right.shape |
|
||||||
span_map = np.zeros(shape + (2,), "uint32") |
|
||||||
direction_map = np.zeros(shape, "uint8") |
|
||||||
saddle_candidates_map = np.zeros(shape, "uint8") |
|
||||||
|
|
||||||
for idx in nb.prange(len(x_values)): |
|
||||||
x, y = x_values[idx], y_values[idx] |
|
||||||
h_vectors = h_vectors_all_directions(h_left2right, h_right2left, x, y) |
|
||||||
v_vectors = v_vectors_all_directions(v_top2bottom, v_bottom2top, x, y) |
|
||||||
span_arrays = spans_all_directions(h_vectors, v_vectors) |
|
||||||
n = get_n_directions(span_arrays) |
|
||||||
direction_map[y, x] = n |
|
||||||
xy_arrays = get_xy_arrays(x, y, span_arrays) |
|
||||||
for direction_idx in range(4): |
|
||||||
xy_array = xy_arrays[direction_idx] |
|
||||||
span_array = span_arrays[direction_idx] |
|
||||||
for span_idx in range(span_array.shape[0]): |
|
||||||
x, y = xy_array[span_idx][0], xy_array[span_idx][1] |
|
||||||
w, h = span_array[span_idx][0], span_array[span_idx][1] |
|
||||||
if w*h > span_map[y, x, 0] * span_map[y, x, 1]: |
|
||||||
span_map[y, x, :] = np.array([w, h], "uint32") |
|
||||||
if n == 3 and not point_on_outline(x, y, outline): |
|
||||||
saddle_candidates_map[y, x] = np.uint8(255) |
|
||||||
|
|
||||||
return span_map, direction_map, saddle_candidates_map |
|
||||||
|
|
||||||
|
|
||||||
def cells_of_interest(cells): |
|
||||||
y_vals, x_vals = cells.nonzero() |
|
||||||
x_vals = x_vals.astype("uint32", order="C") |
|
||||||
y_vals = y_vals.astype("uint32", order="C") |
|
||||||
return x_vals, y_vals |
|
||||||
|
|
||||||
|
|
||||||
@nb.njit('uint32[:, :, :]' |
|
||||||
'(uint32[:,::1], uint32[:,::1], UniTuple(uint32[:], 2))', |
|
||||||
parallel=True, cache=True) |
|
||||||
def span_map(h_adjacency_left2right, |
|
||||||
v_adjacency_top2bottom, |
|
||||||
cells_of_interest): |
|
||||||
|
|
||||||
x_values, y_values = cells_of_interest |
|
||||||
|
|
||||||
span_map = np.zeros(h_adjacency_left2right.shape + (2,), dtype=np.uint32) |
|
||||||
|
|
||||||
for idx in nb.prange(len(x_values)): |
|
||||||
x, y = x_values[idx], y_values[idx] |
|
||||||
h_vector = h_vector_top2bottom(h_adjacency_left2right, x, y) |
|
||||||
v_vector = v_vector_left2right(v_adjacency_top2bottom, x, y) |
|
||||||
s = spans(h_vector, v_vector) |
|
||||||
s = biggest_span(s) |
|
||||||
span_map[y, x, :] = s |
|
||||||
|
|
||||||
return span_map |
|
||||||
|
|
||||||
|
|
||||||
@nb.njit('uint32[:](uint32[:, :, :])', cache=True) |
|
||||||
def biggest_span_in_span_map(span_map): |
|
||||||
areas = span_map[:, :, 0] * span_map[:, :, 1] |
|
||||||
largest_rectangle_indices = np.where(areas == np.amax(areas)) |
|
||||||
x = largest_rectangle_indices[1][0] |
|
||||||
y = largest_rectangle_indices[0][0] |
|
||||||
span = span_map[y, x] |
|
||||||
return np.array([x, y, span[0], span[1]], dtype=np.uint32) |
|
||||||
|
|
||||||
|
|
||||||
def biggest_rectangle(*args): |
|
||||||
biggest_rect = np.array([0, 0, 0, 0], dtype=np.uint32) |
|
||||||
for rect in args: |
|
||||||
if rect[2] * rect[3] > biggest_rect[2] * biggest_rect[3]: |
|
||||||
biggest_rect = rect |
|
||||||
return biggest_rect |
|
@ -1,38 +0,0 @@ |
|||||||
import numpy as np |
|
||||||
|
|
||||||
|
|
||||||
class MegapixScaler: |
|
||||||
def __init__(self, megapix): |
|
||||||
self.megapix = megapix |
|
||||||
self.is_scale_set = False |
|
||||||
self.scale = None |
|
||||||
|
|
||||||
def set_scale_by_img_size(self, img_size): |
|
||||||
self.set_scale( |
|
||||||
self.get_scale_by_resolution(img_size[0] * img_size[1]) |
|
||||||
) |
|
||||||
|
|
||||||
def set_scale(self, scale): |
|
||||||
self.scale = scale |
|
||||||
self.is_scale_set = True |
|
||||||
|
|
||||||
def get_scale_by_resolution(self, resolution): |
|
||||||
if self.megapix > 0: |
|
||||||
return np.sqrt(self.megapix * 1e6 / resolution) |
|
||||||
return 1.0 |
|
||||||
|
|
||||||
def get_scaled_img_size(self, img_size): |
|
||||||
width = int(round(img_size[0] * self.scale)) |
|
||||||
height = int(round(img_size[1] * self.scale)) |
|
||||||
return (width, height) |
|
||||||
|
|
||||||
|
|
||||||
class MegapixDownscaler(MegapixScaler): |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def force_downscale(scale): |
|
||||||
return min(1.0, scale) |
|
||||||
|
|
||||||
def set_scale(self, scale): |
|
||||||
scale = self.force_downscale(scale) |
|
||||||
super().set_scale(scale) |
|
@ -1,126 +0,0 @@ |
|||||||
from collections import OrderedDict |
|
||||||
import cv2 as cv |
|
||||||
import numpy as np |
|
||||||
|
|
||||||
from .blender import Blender |
|
||||||
|
|
||||||
|
|
||||||
class SeamFinder: |
|
||||||
"""https://docs.opencv.org/4.x/d7/d09/classcv_1_1detail_1_1SeamFinder.html""" # noqa |
|
||||||
SEAM_FINDER_CHOICES = OrderedDict() |
|
||||||
SEAM_FINDER_CHOICES['dp_color'] = cv.detail_DpSeamFinder('COLOR') |
|
||||||
SEAM_FINDER_CHOICES['dp_colorgrad'] = cv.detail_DpSeamFinder('COLOR_GRAD') |
|
||||||
SEAM_FINDER_CHOICES['voronoi'] = cv.detail.SeamFinder_createDefault(cv.detail.SeamFinder_VORONOI_SEAM) # noqa |
|
||||||
SEAM_FINDER_CHOICES['no'] = cv.detail.SeamFinder_createDefault(cv.detail.SeamFinder_NO) # noqa |
|
||||||
|
|
||||||
DEFAULT_SEAM_FINDER = list(SEAM_FINDER_CHOICES.keys())[0] |
|
||||||
|
|
||||||
def __init__(self, finder=DEFAULT_SEAM_FINDER): |
|
||||||
self.finder = SeamFinder.SEAM_FINDER_CHOICES[finder] |
|
||||||
|
|
||||||
def find(self, imgs, corners, masks): |
|
||||||
"""https://docs.opencv.org/4.x/d0/dd5/classcv_1_1detail_1_1DpSeamFinder.html#a7914624907986f7a94dd424209a8a609""" # noqa |
|
||||||
imgs_float = [img.astype(np.float32) for img in imgs] |
|
||||||
return self.finder.find(imgs_float, corners, masks) |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def resize(seam_mask, mask): |
|
||||||
dilated_mask = cv.dilate(seam_mask, None) |
|
||||||
resized_seam_mask = cv.resize(dilated_mask, (mask.shape[1], |
|
||||||
mask.shape[0]), |
|
||||||
0, 0, cv.INTER_LINEAR_EXACT) |
|
||||||
return cv.bitwise_and(resized_seam_mask, mask) |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def draw_seam_mask(img, seam_mask, color=(0, 0, 0)): |
|
||||||
seam_mask = cv.UMat.get(seam_mask) |
|
||||||
overlayed_img = np.copy(img) |
|
||||||
overlayed_img[seam_mask == 0] = color |
|
||||||
return overlayed_img |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def draw_seam_polygons(panorama, blended_seam_masks, alpha=0.5): |
|
||||||
return add_weighted_image(panorama, blended_seam_masks, alpha) |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def draw_seam_lines(panorama, blended_seam_masks, |
|
||||||
linesize=1, color=(0, 0, 255)): |
|
||||||
seam_lines = \ |
|
||||||
SeamFinder.exctract_seam_lines(blended_seam_masks, linesize) |
|
||||||
panorama_with_seam_lines = panorama.copy() |
|
||||||
panorama_with_seam_lines[seam_lines == 255] = color |
|
||||||
return panorama_with_seam_lines |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def exctract_seam_lines(blended_seam_masks, linesize=1): |
|
||||||
seam_lines = cv.Canny(np.uint8(blended_seam_masks), 100, 200) |
|
||||||
seam_indices = (seam_lines == 255).nonzero() |
|
||||||
seam_lines = remove_invalid_line_pixels( |
|
||||||
seam_indices, seam_lines, blended_seam_masks |
|
||||||
) |
|
||||||
kernelsize = linesize + linesize - 1 |
|
||||||
kernel = np.ones((kernelsize, kernelsize), np.uint8) |
|
||||||
return cv.dilate(seam_lines, kernel) |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def blend_seam_masks(seam_masks, corners, sizes): |
|
||||||
imgs = colored_img_generator(sizes) |
|
||||||
blended_seam_masks, _ = \ |
|
||||||
Blender.create_panorama(imgs, seam_masks, corners, sizes) |
|
||||||
return blended_seam_masks |
|
||||||
|
|
||||||
|
|
||||||
def colored_img_generator(sizes, colors=( |
|
||||||
(255, 000, 000), # Blue |
|
||||||
(000, 000, 255), # Red |
|
||||||
(000, 255, 000), # Green |
|
||||||
(000, 255, 255), # Yellow |
|
||||||
(255, 000, 255), # Magenta |
|
||||||
(128, 128, 255), # Pink |
|
||||||
(128, 128, 128), # Gray |
|
||||||
(000, 000, 128), # Brown |
|
||||||
(000, 128, 255)) # Orange |
|
||||||
): |
|
||||||
for idx, size in enumerate(sizes): |
|
||||||
if idx+1 > len(colors): |
|
||||||
raise ValueError("Not enough default colors! Pass additional " |
|
||||||
"colors to \"colors\" parameter") |
|
||||||
yield create_img_by_size(size, colors[idx]) |
|
||||||
|
|
||||||
|
|
||||||
def create_img_by_size(size, color=(0, 0, 0)): |
|
||||||
width, height = size |
|
||||||
img = np.zeros((height, width, 3), np.uint8) |
|
||||||
img[:] = color |
|
||||||
return img |
|
||||||
|
|
||||||
|
|
||||||
def add_weighted_image(img1, img2, alpha): |
|
||||||
return cv.addWeighted( |
|
||||||
img1, alpha, img2, (1.0 - alpha), 0.0 |
|
||||||
) |
|
||||||
|
|
||||||
|
|
||||||
def remove_invalid_line_pixels(indices, lines, mask): |
|
||||||
for x, y in zip(*indices): |
|
||||||
if check_if_pixel_or_neighbor_is_black(mask, x, y): |
|
||||||
lines[x, y] = 0 |
|
||||||
return lines |
|
||||||
|
|
||||||
|
|
||||||
def check_if_pixel_or_neighbor_is_black(img, x, y): |
|
||||||
check = [is_pixel_black(img, x, y), |
|
||||||
is_pixel_black(img, x+1, y), is_pixel_black(img, x-1, y), |
|
||||||
is_pixel_black(img, x, y+1), is_pixel_black(img, x, y-1)] |
|
||||||
return any(check) |
|
||||||
|
|
||||||
|
|
||||||
def is_pixel_black(img, x, y): |
|
||||||
return np.all(get_pixel_value(img, x, y) == 0) |
|
||||||
|
|
||||||
|
|
||||||
def get_pixel_value(img, x, y): |
|
||||||
try: |
|
||||||
return img[x, y] |
|
||||||
except IndexError: |
|
||||||
pass |
|
@ -1,236 +0,0 @@ |
|||||||
from types import SimpleNamespace |
|
||||||
|
|
||||||
from .image_handler import ImageHandler |
|
||||||
from .feature_detector import FeatureDetector |
|
||||||
from .feature_matcher import FeatureMatcher |
|
||||||
from .subsetter import Subsetter |
|
||||||
from .camera_estimator import CameraEstimator |
|
||||||
from .camera_adjuster import CameraAdjuster |
|
||||||
from .camera_wave_corrector import WaveCorrector |
|
||||||
from .warper import Warper |
|
||||||
from .cropper import Cropper |
|
||||||
from .exposure_error_compensator import ExposureErrorCompensator |
|
||||||
from .seam_finder import SeamFinder |
|
||||||
from .blender import Blender |
|
||||||
from .timelapser import Timelapser |
|
||||||
from .stitching_error import StitchingError |
|
||||||
|
|
||||||
|
|
||||||
class Stitcher: |
|
||||||
DEFAULT_SETTINGS = { |
|
||||||
"medium_megapix": ImageHandler.DEFAULT_MEDIUM_MEGAPIX, |
|
||||||
"detector": FeatureDetector.DEFAULT_DETECTOR, |
|
||||||
"nfeatures": 500, |
|
||||||
"matcher_type": FeatureMatcher.DEFAULT_MATCHER, |
|
||||||
"range_width": FeatureMatcher.DEFAULT_RANGE_WIDTH, |
|
||||||
"try_use_gpu": False, |
|
||||||
"match_conf": None, |
|
||||||
"confidence_threshold": Subsetter.DEFAULT_CONFIDENCE_THRESHOLD, |
|
||||||
"matches_graph_dot_file": Subsetter.DEFAULT_MATCHES_GRAPH_DOT_FILE, |
|
||||||
"estimator": CameraEstimator.DEFAULT_CAMERA_ESTIMATOR, |
|
||||||
"adjuster": CameraAdjuster.DEFAULT_CAMERA_ADJUSTER, |
|
||||||
"refinement_mask": CameraAdjuster.DEFAULT_REFINEMENT_MASK, |
|
||||||
"wave_correct_kind": WaveCorrector.DEFAULT_WAVE_CORRECTION, |
|
||||||
"warper_type": Warper.DEFAULT_WARP_TYPE, |
|
||||||
"low_megapix": ImageHandler.DEFAULT_LOW_MEGAPIX, |
|
||||||
"crop": Cropper.DEFAULT_CROP, |
|
||||||
"compensator": ExposureErrorCompensator.DEFAULT_COMPENSATOR, |
|
||||||
"nr_feeds": ExposureErrorCompensator.DEFAULT_NR_FEEDS, |
|
||||||
"block_size": ExposureErrorCompensator.DEFAULT_BLOCK_SIZE, |
|
||||||
"finder": SeamFinder.DEFAULT_SEAM_FINDER, |
|
||||||
"final_megapix": ImageHandler.DEFAULT_FINAL_MEGAPIX, |
|
||||||
"blender_type": Blender.DEFAULT_BLENDER, |
|
||||||
"blend_strength": Blender.DEFAULT_BLEND_STRENGTH, |
|
||||||
"timelapse": Timelapser.DEFAULT_TIMELAPSE} |
|
||||||
|
|
||||||
def __init__(self, **kwargs): |
|
||||||
self.initialize_stitcher(**kwargs) |
|
||||||
|
|
||||||
def initialize_stitcher(self, **kwargs): |
|
||||||
self.settings = Stitcher.DEFAULT_SETTINGS.copy() |
|
||||||
self.validate_kwargs(kwargs) |
|
||||||
self.settings.update(kwargs) |
|
||||||
|
|
||||||
args = SimpleNamespace(**self.settings) |
|
||||||
self.img_handler = ImageHandler(args.medium_megapix, |
|
||||||
args.low_megapix, |
|
||||||
args.final_megapix) |
|
||||||
self.detector = \ |
|
||||||
FeatureDetector(args.detector, nfeatures=args.nfeatures) |
|
||||||
match_conf = \ |
|
||||||
FeatureMatcher.get_match_conf(args.match_conf, args.detector) |
|
||||||
self.matcher = FeatureMatcher(args.matcher_type, args.range_width, |
|
||||||
try_use_gpu=args.try_use_gpu, |
|
||||||
match_conf=match_conf) |
|
||||||
self.subsetter = \ |
|
||||||
Subsetter(args.confidence_threshold, args.matches_graph_dot_file) |
|
||||||
self.camera_estimator = CameraEstimator(args.estimator) |
|
||||||
self.camera_adjuster = \ |
|
||||||
CameraAdjuster(args.adjuster, args.refinement_mask) |
|
||||||
self.wave_corrector = WaveCorrector(args.wave_correct_kind) |
|
||||||
self.warper = Warper(args.warper_type) |
|
||||||
self.cropper = Cropper(args.crop) |
|
||||||
self.compensator = \ |
|
||||||
ExposureErrorCompensator(args.compensator, args.nr_feeds, |
|
||||||
args.block_size) |
|
||||||
self.seam_finder = SeamFinder(args.finder) |
|
||||||
self.blender = Blender(args.blender_type, args.blend_strength) |
|
||||||
self.timelapser = Timelapser(args.timelapse) |
|
||||||
|
|
||||||
def stitch(self, img_names): |
|
||||||
self.initialize_registration(img_names) |
|
||||||
imgs = self.resize_medium_resolution() |
|
||||||
features = self.find_features(imgs) |
|
||||||
matches = self.match_features(features) |
|
||||||
imgs, features, matches = self.subset(imgs, features, matches) |
|
||||||
cameras = self.estimate_camera_parameters(features, matches) |
|
||||||
cameras = self.refine_camera_parameters(features, matches, cameras) |
|
||||||
cameras = self.perform_wave_correction(cameras) |
|
||||||
self.estimate_scale(cameras) |
|
||||||
|
|
||||||
imgs = self.resize_low_resolution(imgs) |
|
||||||
imgs, masks, corners, sizes = self.warp_low_resolution(imgs, cameras) |
|
||||||
self.prepare_cropper(imgs, masks, corners, sizes) |
|
||||||
imgs, masks, corners, sizes = \ |
|
||||||
self.crop_low_resolution(imgs, masks, corners, sizes) |
|
||||||
self.estimate_exposure_errors(corners, imgs, masks) |
|
||||||
seam_masks = self.find_seam_masks(imgs, corners, masks) |
|
||||||
|
|
||||||
imgs = self.resize_final_resolution() |
|
||||||
imgs, masks, corners, sizes = self.warp_final_resolution(imgs, cameras) |
|
||||||
imgs, masks, corners, sizes = \ |
|
||||||
self.crop_final_resolution(imgs, masks, corners, sizes) |
|
||||||
self.set_masks(masks) |
|
||||||
imgs = self.compensate_exposure_errors(corners, imgs) |
|
||||||
seam_masks = self.resize_seam_masks(seam_masks) |
|
||||||
|
|
||||||
self.initialize_composition(corners, sizes) |
|
||||||
self.blend_images(imgs, seam_masks, corners) |
|
||||||
return self.create_final_panorama() |
|
||||||
|
|
||||||
def initialize_registration(self, img_names): |
|
||||||
self.img_handler.set_img_names(img_names) |
|
||||||
|
|
||||||
def resize_medium_resolution(self): |
|
||||||
return list(self.img_handler.resize_to_medium_resolution()) |
|
||||||
|
|
||||||
def find_features(self, imgs): |
|
||||||
return [self.detector.detect_features(img) for img in imgs] |
|
||||||
|
|
||||||
def match_features(self, features): |
|
||||||
return self.matcher.match_features(features) |
|
||||||
|
|
||||||
def subset(self, imgs, features, matches): |
|
||||||
names, sizes, imgs, features, matches = \ |
|
||||||
self.subsetter.subset(self.img_handler.img_names, |
|
||||||
self.img_handler.img_sizes, |
|
||||||
imgs, features, matches) |
|
||||||
self.img_handler.img_names, self.img_handler.img_sizes = names, sizes |
|
||||||
return imgs, features, matches |
|
||||||
|
|
||||||
def estimate_camera_parameters(self, features, matches): |
|
||||||
return self.camera_estimator.estimate(features, matches) |
|
||||||
|
|
||||||
def refine_camera_parameters(self, features, matches, cameras): |
|
||||||
return self.camera_adjuster.adjust(features, matches, cameras) |
|
||||||
|
|
||||||
def perform_wave_correction(self, cameras): |
|
||||||
return self.wave_corrector.correct(cameras) |
|
||||||
|
|
||||||
def estimate_scale(self, cameras): |
|
||||||
self.warper.set_scale(cameras) |
|
||||||
|
|
||||||
def resize_low_resolution(self, imgs=None): |
|
||||||
return list(self.img_handler.resize_to_low_resolution(imgs)) |
|
||||||
|
|
||||||
def warp_low_resolution(self, imgs, cameras): |
|
||||||
sizes = self.img_handler.get_low_img_sizes() |
|
||||||
camera_aspect = self.img_handler.get_medium_to_low_ratio() |
|
||||||
imgs, masks, corners, sizes = \ |
|
||||||
self.warp(imgs, cameras, sizes, camera_aspect) |
|
||||||
return list(imgs), list(masks), corners, sizes |
|
||||||
|
|
||||||
def warp_final_resolution(self, imgs, cameras): |
|
||||||
sizes = self.img_handler.get_final_img_sizes() |
|
||||||
camera_aspect = self.img_handler.get_medium_to_final_ratio() |
|
||||||
return self.warp(imgs, cameras, sizes, camera_aspect) |
|
||||||
|
|
||||||
def warp(self, imgs, cameras, sizes, aspect=1): |
|
||||||
imgs = self.warper.warp_images(imgs, cameras, aspect) |
|
||||||
masks = self.warper.create_and_warp_masks(sizes, cameras, aspect) |
|
||||||
corners, sizes = self.warper.warp_rois(sizes, cameras, aspect) |
|
||||||
return imgs, masks, corners, sizes |
|
||||||
|
|
||||||
def prepare_cropper(self, imgs, masks, corners, sizes): |
|
||||||
self.cropper.prepare(imgs, masks, corners, sizes) |
|
||||||
|
|
||||||
def crop_low_resolution(self, imgs, masks, corners, sizes): |
|
||||||
imgs, masks, corners, sizes = self.crop(imgs, masks, corners, sizes) |
|
||||||
return list(imgs), list(masks), corners, sizes |
|
||||||
|
|
||||||
def crop_final_resolution(self, imgs, masks, corners, sizes): |
|
||||||
lir_aspect = self.img_handler.get_low_to_final_ratio() |
|
||||||
return self.crop(imgs, masks, corners, sizes, lir_aspect) |
|
||||||
|
|
||||||
def crop(self, imgs, masks, corners, sizes, aspect=1): |
|
||||||
masks = self.cropper.crop_images(masks, aspect) |
|
||||||
imgs = self.cropper.crop_images(imgs, aspect) |
|
||||||
corners, sizes = self.cropper.crop_rois(corners, sizes, aspect) |
|
||||||
return imgs, masks, corners, sizes |
|
||||||
|
|
||||||
def estimate_exposure_errors(self, corners, imgs, masks): |
|
||||||
self.compensator.feed(corners, imgs, masks) |
|
||||||
|
|
||||||
def find_seam_masks(self, imgs, corners, masks): |
|
||||||
return self.seam_finder.find(imgs, corners, masks) |
|
||||||
|
|
||||||
def resize_final_resolution(self): |
|
||||||
return self.img_handler.resize_to_final_resolution() |
|
||||||
|
|
||||||
def compensate_exposure_errors(self, corners, imgs): |
|
||||||
for idx, (corner, img) in enumerate(zip(corners, imgs)): |
|
||||||
yield self.compensator.apply(idx, corner, img, self.get_mask(idx)) |
|
||||||
|
|
||||||
def resize_seam_masks(self, seam_masks): |
|
||||||
for idx, seam_mask in enumerate(seam_masks): |
|
||||||
yield SeamFinder.resize(seam_mask, self.get_mask(idx)) |
|
||||||
|
|
||||||
def set_masks(self, mask_generator): |
|
||||||
self.masks = mask_generator |
|
||||||
self.mask_index = -1 |
|
||||||
|
|
||||||
def get_mask(self, idx): |
|
||||||
if idx == self.mask_index + 1: |
|
||||||
self.mask_index += 1 |
|
||||||
self.mask = next(self.masks) |
|
||||||
return self.mask |
|
||||||
elif idx == self.mask_index: |
|
||||||
return self.mask |
|
||||||
else: |
|
||||||
raise StitchingError("Invalid Mask Index!") |
|
||||||
|
|
||||||
def initialize_composition(self, corners, sizes): |
|
||||||
if self.timelapser.do_timelapse: |
|
||||||
self.timelapser.initialize(corners, sizes) |
|
||||||
else: |
|
||||||
self.blender.prepare(corners, sizes) |
|
||||||
|
|
||||||
def blend_images(self, imgs, masks, corners): |
|
||||||
for idx, (img, mask, corner) in enumerate(zip(imgs, masks, corners)): |
|
||||||
if self.timelapser.do_timelapse: |
|
||||||
self.timelapser.process_and_save_frame( |
|
||||||
self.img_handler.img_names[idx], img, corner |
|
||||||
) |
|
||||||
else: |
|
||||||
self.blender.feed(img, mask, corner) |
|
||||||
|
|
||||||
def create_final_panorama(self): |
|
||||||
if not self.timelapser.do_timelapse: |
|
||||||
panorama, _ = self.blender.blend() |
|
||||||
return panorama |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def validate_kwargs(kwargs): |
|
||||||
for arg in kwargs: |
|
||||||
if arg not in Stitcher.DEFAULT_SETTINGS: |
|
||||||
raise StitchingError("Invalid Argument: " + arg) |
|
@ -1,2 +0,0 @@ |
|||||||
class StitchingError(Exception): |
|
||||||
pass |
|
@ -1,94 +0,0 @@ |
|||||||
from itertools import chain |
|
||||||
import math |
|
||||||
import cv2 as cv |
|
||||||
import numpy as np |
|
||||||
|
|
||||||
from .feature_matcher import FeatureMatcher |
|
||||||
from .stitching_error import StitchingError |
|
||||||
|
|
||||||
|
|
||||||
class Subsetter: |
|
||||||
|
|
||||||
DEFAULT_CONFIDENCE_THRESHOLD = 1 |
|
||||||
DEFAULT_MATCHES_GRAPH_DOT_FILE = None |
|
||||||
|
|
||||||
def __init__(self, |
|
||||||
confidence_threshold=DEFAULT_CONFIDENCE_THRESHOLD, |
|
||||||
matches_graph_dot_file=DEFAULT_MATCHES_GRAPH_DOT_FILE): |
|
||||||
self.confidence_threshold = confidence_threshold |
|
||||||
self.save_file = matches_graph_dot_file |
|
||||||
|
|
||||||
def subset(self, img_names, img_sizes, imgs, features, matches): |
|
||||||
self.save_matches_graph_dot_file(img_names, matches) |
|
||||||
indices = self.get_indices_to_keep(features, matches) |
|
||||||
|
|
||||||
img_names = Subsetter.subset_list(img_names, indices) |
|
||||||
img_sizes = Subsetter.subset_list(img_sizes, indices) |
|
||||||
imgs = Subsetter.subset_list(imgs, indices) |
|
||||||
features = Subsetter.subset_list(features, indices) |
|
||||||
matches = Subsetter.subset_matches(matches, indices) |
|
||||||
return img_names, img_sizes, imgs, features, matches |
|
||||||
|
|
||||||
def save_matches_graph_dot_file(self, img_names, pairwise_matches): |
|
||||||
if self.save_file: |
|
||||||
with open(self.save_file, 'w') as filehandler: |
|
||||||
filehandler.write(self.get_matches_graph(img_names, |
|
||||||
pairwise_matches) |
|
||||||
) |
|
||||||
|
|
||||||
def get_matches_graph(self, img_names, pairwise_matches): |
|
||||||
return cv.detail.matchesGraphAsString(img_names, pairwise_matches, |
|
||||||
self.confidence_threshold) |
|
||||||
|
|
||||||
def get_indices_to_keep(self, features, pairwise_matches): |
|
||||||
indices = cv.detail.leaveBiggestComponent(features, |
|
||||||
pairwise_matches, |
|
||||||
self.confidence_threshold) |
|
||||||
|
|
||||||
if len(indices) < 2: |
|
||||||
raise StitchingError("No match exceeds the " |
|
||||||
"given confidence theshold.") |
|
||||||
|
|
||||||
return indices |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def subset_list(list_to_subset, indices): |
|
||||||
return [list_to_subset[i] for i in indices] |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def subset_matches(pairwise_matches, indices): |
|
||||||
indices_to_delete = Subsetter.get_indices_to_delete( |
|
||||||
math.sqrt(len(pairwise_matches)), |
|
||||||
indices |
|
||||||
) |
|
||||||
|
|
||||||
matches_matrix = FeatureMatcher.get_matches_matrix(pairwise_matches) |
|
||||||
matches_matrix_subset = Subsetter.subset_matrix(matches_matrix, |
|
||||||
indices_to_delete) |
|
||||||
matches_subset = Subsetter.matrix_rows_to_list(matches_matrix_subset) |
|
||||||
|
|
||||||
return matches_subset |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def get_indices_to_delete(nr_elements, indices_to_keep): |
|
||||||
return list(set(range(int(nr_elements))) - set(indices_to_keep)) |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def subset_matrix(matrix_to_subset, indices_to_delete): |
|
||||||
for idx, idx_to_delete in enumerate(indices_to_delete): |
|
||||||
matrix_to_subset = Subsetter.delete_index_from_matrix( |
|
||||||
matrix_to_subset, |
|
||||||
idx_to_delete-idx # matrix shape reduced by one at each step |
|
||||||
) |
|
||||||
|
|
||||||
return matrix_to_subset |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def delete_index_from_matrix(matrix, idx): |
|
||||||
mask = np.ones(matrix.shape[0], bool) |
|
||||||
mask[idx] = 0 |
|
||||||
return matrix[mask, :][:, mask] |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def matrix_rows_to_list(matrix): |
|
||||||
return list(chain.from_iterable(matrix.tolist())) |
|
@ -1,13 +0,0 @@ |
|||||||
# Ignore everything |
|
||||||
* |
|
||||||
|
|
||||||
# But not these files... |
|
||||||
!.gitignore |
|
||||||
!test_matcher.py |
|
||||||
!test_stitcher.py |
|
||||||
!test_megapix_scaler.py |
|
||||||
!test_registration.py |
|
||||||
!test_composition.py |
|
||||||
!test_performance.py |
|
||||||
!stitching_detailed.py |
|
||||||
!SAMPLE_IMAGES_TO_DOWNLOAD.txt |
|
@ -1,5 +0,0 @@ |
|||||||
https://github.com/opencv/opencv_extra/tree/4.x/testdata/stitching |
|
||||||
|
|
||||||
s1.jpg s2.jpg |
|
||||||
boat1.jpg boat2.jpg boat3.jpg boat4.jpg boat5.jpg boat6.jpg |
|
||||||
budapest1.jpg budapest2.jpg budapest3.jpg budapest4.jpg budapest5.jpg budapest6.jpg |
|
@ -1,406 +0,0 @@ |
|||||||
""" |
|
||||||
Stitching sample (advanced) |
|
||||||
=========================== |
|
||||||
Show how to use Stitcher API from python. |
|
||||||
""" |
|
||||||
|
|
||||||
# Python 2/3 compatibility |
|
||||||
from __future__ import print_function |
|
||||||
|
|
||||||
from types import SimpleNamespace |
|
||||||
from collections import OrderedDict |
|
||||||
|
|
||||||
import cv2 as cv |
|
||||||
import numpy as np |
|
||||||
|
|
||||||
EXPOS_COMP_CHOICES = OrderedDict() |
|
||||||
EXPOS_COMP_CHOICES['gain_blocks'] = cv.detail.ExposureCompensator_GAIN_BLOCKS |
|
||||||
EXPOS_COMP_CHOICES['gain'] = cv.detail.ExposureCompensator_GAIN |
|
||||||
EXPOS_COMP_CHOICES['channel'] = cv.detail.ExposureCompensator_CHANNELS |
|
||||||
EXPOS_COMP_CHOICES['channel_blocks'] = cv.detail.ExposureCompensator_CHANNELS_BLOCKS |
|
||||||
EXPOS_COMP_CHOICES['no'] = cv.detail.ExposureCompensator_NO |
|
||||||
|
|
||||||
BA_COST_CHOICES = OrderedDict() |
|
||||||
BA_COST_CHOICES['ray'] = cv.detail_BundleAdjusterRay |
|
||||||
BA_COST_CHOICES['reproj'] = cv.detail_BundleAdjusterReproj |
|
||||||
BA_COST_CHOICES['affine'] = cv.detail_BundleAdjusterAffinePartial |
|
||||||
BA_COST_CHOICES['no'] = cv.detail_NoBundleAdjuster |
|
||||||
|
|
||||||
FEATURES_FIND_CHOICES = OrderedDict() |
|
||||||
try: |
|
||||||
cv.xfeatures2d_SURF.create() # check if the function can be called |
|
||||||
FEATURES_FIND_CHOICES['surf'] = cv.xfeatures2d_SURF.create |
|
||||||
except (AttributeError, cv.error) as e: |
|
||||||
print("SURF not available") |
|
||||||
# if SURF not available, ORB is default |
|
||||||
FEATURES_FIND_CHOICES['orb'] = cv.ORB.create |
|
||||||
try: |
|
||||||
FEATURES_FIND_CHOICES['sift'] = cv.xfeatures2d_SIFT.create |
|
||||||
except AttributeError: |
|
||||||
print("SIFT not available") |
|
||||||
try: |
|
||||||
FEATURES_FIND_CHOICES['brisk'] = cv.BRISK_create |
|
||||||
except AttributeError: |
|
||||||
print("BRISK not available") |
|
||||||
try: |
|
||||||
FEATURES_FIND_CHOICES['akaze'] = cv.AKAZE_create |
|
||||||
except AttributeError: |
|
||||||
print("AKAZE not available") |
|
||||||
|
|
||||||
SEAM_FIND_CHOICES = OrderedDict() |
|
||||||
SEAM_FIND_CHOICES['dp_color'] = cv.detail_DpSeamFinder('COLOR') |
|
||||||
SEAM_FIND_CHOICES['dp_colorgrad'] = cv.detail_DpSeamFinder('COLOR_GRAD') |
|
||||||
SEAM_FIND_CHOICES['voronoi'] = cv.detail.SeamFinder_createDefault(cv.detail.SeamFinder_VORONOI_SEAM) |
|
||||||
SEAM_FIND_CHOICES['no'] = cv.detail.SeamFinder_createDefault(cv.detail.SeamFinder_NO) |
|
||||||
|
|
||||||
ESTIMATOR_CHOICES = OrderedDict() |
|
||||||
ESTIMATOR_CHOICES['homography'] = cv.detail_HomographyBasedEstimator |
|
||||||
ESTIMATOR_CHOICES['affine'] = cv.detail_AffineBasedEstimator |
|
||||||
|
|
||||||
WARP_CHOICES = ( |
|
||||||
'spherical', |
|
||||||
'plane', |
|
||||||
'affine', |
|
||||||
'cylindrical', |
|
||||||
'fisheye', |
|
||||||
'stereographic', |
|
||||||
'compressedPlaneA2B1', |
|
||||||
'compressedPlaneA1.5B1', |
|
||||||
'compressedPlanePortraitA2B1', |
|
||||||
'compressedPlanePortraitA1.5B1', |
|
||||||
'paniniA2B1', |
|
||||||
'paniniA1.5B1', |
|
||||||
'paniniPortraitA2B1', |
|
||||||
'paniniPortraitA1.5B1', |
|
||||||
'mercator', |
|
||||||
'transverseMercator', |
|
||||||
) |
|
||||||
|
|
||||||
WAVE_CORRECT_CHOICES = OrderedDict() |
|
||||||
WAVE_CORRECT_CHOICES['horiz'] = cv.detail.WAVE_CORRECT_HORIZ |
|
||||||
WAVE_CORRECT_CHOICES['no'] = None |
|
||||||
WAVE_CORRECT_CHOICES['vert'] = cv.detail.WAVE_CORRECT_VERT |
|
||||||
|
|
||||||
BLEND_CHOICES = ('multiband', 'feather', 'no',) |
|
||||||
|
|
||||||
def get_matcher(args): |
|
||||||
try_cuda = args.try_cuda |
|
||||||
matcher_type = args.matcher |
|
||||||
if args.match_conf is None: |
|
||||||
if args.features == 'orb': |
|
||||||
match_conf = 0.3 |
|
||||||
else: |
|
||||||
match_conf = 0.65 |
|
||||||
else: |
|
||||||
match_conf = args.match_conf |
|
||||||
range_width = args.rangewidth |
|
||||||
if matcher_type == "affine": |
|
||||||
matcher = cv.detail_AffineBestOf2NearestMatcher(False, try_cuda, match_conf) |
|
||||||
elif range_width == -1: |
|
||||||
matcher = cv.detail.BestOf2NearestMatcher_create(try_cuda, match_conf) |
|
||||||
else: |
|
||||||
matcher = cv.detail.BestOf2NearestRangeMatcher_create(range_width, try_cuda, match_conf) |
|
||||||
return matcher |
|
||||||
|
|
||||||
|
|
||||||
def get_compensator(args): |
|
||||||
expos_comp_type = EXPOS_COMP_CHOICES[args.expos_comp] |
|
||||||
expos_comp_nr_feeds = args.expos_comp_nr_feeds |
|
||||||
expos_comp_block_size = args.expos_comp_block_size |
|
||||||
# expos_comp_nr_filtering = args.expos_comp_nr_filtering |
|
||||||
if expos_comp_type == cv.detail.ExposureCompensator_CHANNELS: |
|
||||||
compensator = cv.detail_ChannelsCompensator(expos_comp_nr_feeds) |
|
||||||
# compensator.setNrGainsFilteringIterations(expos_comp_nr_filtering) |
|
||||||
elif expos_comp_type == cv.detail.ExposureCompensator_CHANNELS_BLOCKS: |
|
||||||
compensator = cv.detail_BlocksChannelsCompensator( |
|
||||||
expos_comp_block_size, expos_comp_block_size, |
|
||||||
expos_comp_nr_feeds |
|
||||||
) |
|
||||||
# compensator.setNrGainsFilteringIterations(expos_comp_nr_filtering) |
|
||||||
else: |
|
||||||
compensator = cv.detail.ExposureCompensator_createDefault(expos_comp_type) |
|
||||||
return compensator |
|
||||||
|
|
||||||
|
|
||||||
def main(): |
|
||||||
|
|
||||||
args = { |
|
||||||
"img_names":["boat5.jpg", "boat2.jpg", |
|
||||||
"boat3.jpg", "boat4.jpg", |
|
||||||
"boat1.jpg", "boat6.jpg"], |
|
||||||
"try_cuda": False, |
|
||||||
"work_megapix": 0.6, |
|
||||||
"features": "orb", |
|
||||||
"matcher": "homography", |
|
||||||
"estimator": "homography", |
|
||||||
"match_conf": None, |
|
||||||
"conf_thresh": 1.0, |
|
||||||
"ba": "ray", |
|
||||||
"ba_refine_mask": "xxxxx", |
|
||||||
"wave_correct": "horiz", |
|
||||||
"save_graph": None, |
|
||||||
"warp": "spherical", |
|
||||||
"seam_megapix": 0.1, |
|
||||||
"seam": "dp_color", |
|
||||||
"compose_megapix": 3, |
|
||||||
"expos_comp": "gain_blocks", |
|
||||||
"expos_comp_nr_feeds": 1, |
|
||||||
"expos_comp_nr_filtering": 2, |
|
||||||
"expos_comp_block_size": 32, |
|
||||||
"blend": "multiband", |
|
||||||
"blend_strength": 5, |
|
||||||
"output": "time_test.jpg", |
|
||||||
"timelapse": None, |
|
||||||
"rangewidth": -1 |
|
||||||
} |
|
||||||
|
|
||||||
args = SimpleNamespace(**args) |
|
||||||
img_names = args.img_names |
|
||||||
work_megapix = args.work_megapix |
|
||||||
seam_megapix = args.seam_megapix |
|
||||||
compose_megapix = args.compose_megapix |
|
||||||
conf_thresh = args.conf_thresh |
|
||||||
ba_refine_mask = args.ba_refine_mask |
|
||||||
wave_correct = WAVE_CORRECT_CHOICES[args.wave_correct] |
|
||||||
if args.save_graph is None: |
|
||||||
save_graph = False |
|
||||||
else: |
|
||||||
save_graph = True |
|
||||||
warp_type = args.warp |
|
||||||
blend_type = args.blend |
|
||||||
blend_strength = args.blend_strength |
|
||||||
result_name = args.output |
|
||||||
if args.timelapse is not None: |
|
||||||
timelapse = True |
|
||||||
if args.timelapse == "as_is": |
|
||||||
timelapse_type = cv.detail.Timelapser_AS_IS |
|
||||||
elif args.timelapse == "crop": |
|
||||||
timelapse_type = cv.detail.Timelapser_CROP |
|
||||||
else: |
|
||||||
print("Bad timelapse method") |
|
||||||
exit() |
|
||||||
else: |
|
||||||
timelapse = False |
|
||||||
finder = FEATURES_FIND_CHOICES[args.features]() |
|
||||||
seam_work_aspect = 1 |
|
||||||
full_img_sizes = [] |
|
||||||
features = [] |
|
||||||
images = [] |
|
||||||
is_work_scale_set = False |
|
||||||
is_seam_scale_set = False |
|
||||||
is_compose_scale_set = False |
|
||||||
for name in img_names: |
|
||||||
full_img = cv.imread(cv.samples.findFile(name)) |
|
||||||
if full_img is None: |
|
||||||
print("Cannot read image ", name) |
|
||||||
exit() |
|
||||||
full_img_sizes.append((full_img.shape[1], full_img.shape[0])) |
|
||||||
if work_megapix < 0: |
|
||||||
img = full_img |
|
||||||
work_scale = 1 |
|
||||||
is_work_scale_set = True |
|
||||||
else: |
|
||||||
if is_work_scale_set is False: |
|
||||||
work_scale = min(1.0, np.sqrt(work_megapix * 1e6 / (full_img.shape[0] * full_img.shape[1]))) |
|
||||||
is_work_scale_set = True |
|
||||||
img = cv.resize(src=full_img, dsize=None, fx=work_scale, fy=work_scale, interpolation=cv.INTER_LINEAR_EXACT) |
|
||||||
if is_seam_scale_set is False: |
|
||||||
seam_scale = min(1.0, np.sqrt(seam_megapix * 1e6 / (full_img.shape[0] * full_img.shape[1]))) |
|
||||||
seam_work_aspect = seam_scale / work_scale |
|
||||||
is_seam_scale_set = True |
|
||||||
img_feat = cv.detail.computeImageFeatures2(finder, img) |
|
||||||
features.append(img_feat) |
|
||||||
img = cv.resize(src=full_img, dsize=None, fx=seam_scale, fy=seam_scale, interpolation=cv.INTER_LINEAR_EXACT) |
|
||||||
images.append(img) |
|
||||||
|
|
||||||
matcher = get_matcher(args) |
|
||||||
p = matcher.apply2(features) |
|
||||||
matcher.collectGarbage() |
|
||||||
|
|
||||||
if save_graph: |
|
||||||
with open(args.save_graph, 'w') as fh: |
|
||||||
fh.write(cv.detail.matchesGraphAsString(img_names, p, conf_thresh)) |
|
||||||
|
|
||||||
indices = cv.detail.leaveBiggestComponent(features, p, conf_thresh) |
|
||||||
img_subset = [] |
|
||||||
img_names_subset = [] |
|
||||||
full_img_sizes_subset = [] |
|
||||||
for i in range(len(indices)): |
|
||||||
img_names_subset.append(img_names[indices[i, 0]]) |
|
||||||
img_subset.append(images[indices[i, 0]]) |
|
||||||
full_img_sizes_subset.append(full_img_sizes[indices[i, 0]]) |
|
||||||
images = img_subset |
|
||||||
img_names = img_names_subset |
|
||||||
full_img_sizes = full_img_sizes_subset |
|
||||||
num_images = len(img_names) |
|
||||||
if num_images < 2: |
|
||||||
print("Need more images") |
|
||||||
exit() |
|
||||||
|
|
||||||
estimator = ESTIMATOR_CHOICES[args.estimator]() |
|
||||||
b, cameras = estimator.apply(features, p, None) |
|
||||||
if not b: |
|
||||||
print("Homography estimation failed.") |
|
||||||
exit() |
|
||||||
for cam in cameras: |
|
||||||
cam.R = cam.R.astype(np.float32) |
|
||||||
|
|
||||||
adjuster = BA_COST_CHOICES[args.ba]() |
|
||||||
adjuster.setConfThresh(1) |
|
||||||
refine_mask = np.zeros((3, 3), np.uint8) |
|
||||||
if ba_refine_mask[0] == 'x': |
|
||||||
refine_mask[0, 0] = 1 |
|
||||||
if ba_refine_mask[1] == 'x': |
|
||||||
refine_mask[0, 1] = 1 |
|
||||||
if ba_refine_mask[2] == 'x': |
|
||||||
refine_mask[0, 2] = 1 |
|
||||||
if ba_refine_mask[3] == 'x': |
|
||||||
refine_mask[1, 1] = 1 |
|
||||||
if ba_refine_mask[4] == 'x': |
|
||||||
refine_mask[1, 2] = 1 |
|
||||||
adjuster.setRefinementMask(refine_mask) |
|
||||||
b, cameras = adjuster.apply(features, p, cameras) |
|
||||||
if not b: |
|
||||||
print("Camera parameters adjusting failed.") |
|
||||||
exit() |
|
||||||
focals = [] |
|
||||||
for cam in cameras: |
|
||||||
focals.append(cam.focal) |
|
||||||
focals.sort() |
|
||||||
if len(focals) % 2 == 1: |
|
||||||
warped_image_scale = focals[len(focals) // 2] |
|
||||||
else: |
|
||||||
warped_image_scale = (focals[len(focals) // 2] + focals[len(focals) // 2 - 1]) / 2 |
|
||||||
if wave_correct is not None: |
|
||||||
rmats = [] |
|
||||||
for cam in cameras: |
|
||||||
rmats.append(np.copy(cam.R)) |
|
||||||
rmats = cv.detail.waveCorrect(rmats, wave_correct) |
|
||||||
for idx, cam in enumerate(cameras): |
|
||||||
cam.R = rmats[idx] |
|
||||||
corners = [] |
|
||||||
masks_warped = [] |
|
||||||
images_warped = [] |
|
||||||
sizes = [] |
|
||||||
masks = [] |
|
||||||
for i in range(0, num_images): |
|
||||||
um = cv.UMat(255 * np.ones((images[i].shape[0], images[i].shape[1]), np.uint8)) |
|
||||||
masks.append(um) |
|
||||||
|
|
||||||
warper = cv.PyRotationWarper(warp_type, warped_image_scale * seam_work_aspect) # warper could be nullptr? |
|
||||||
for idx in range(0, num_images): |
|
||||||
K = cameras[idx].K().astype(np.float32) |
|
||||||
swa = seam_work_aspect |
|
||||||
K[0, 0] *= swa |
|
||||||
K[0, 2] *= swa |
|
||||||
K[1, 1] *= swa |
|
||||||
K[1, 2] *= swa |
|
||||||
corner, image_wp = warper.warp(images[idx], K, cameras[idx].R, cv.INTER_LINEAR, cv.BORDER_REFLECT) |
|
||||||
corners.append(corner) |
|
||||||
sizes.append((image_wp.shape[1], image_wp.shape[0])) |
|
||||||
images_warped.append(image_wp) |
|
||||||
p, mask_wp = warper.warp(masks[idx], K, cameras[idx].R, cv.INTER_NEAREST, cv.BORDER_CONSTANT) |
|
||||||
masks_warped.append(mask_wp.get()) |
|
||||||
|
|
||||||
images_warped_f = [] |
|
||||||
for img in images_warped: |
|
||||||
imgf = img.astype(np.float32) |
|
||||||
images_warped_f.append(imgf) |
|
||||||
|
|
||||||
compensator = get_compensator(args) |
|
||||||
compensator.feed(corners=corners, images=images_warped, masks=masks_warped) |
|
||||||
|
|
||||||
seam_finder = SEAM_FIND_CHOICES[args.seam] |
|
||||||
masks_warped = seam_finder.find(images_warped_f, corners, masks_warped) |
|
||||||
compose_scale = 1 |
|
||||||
corners = [] |
|
||||||
sizes = [] |
|
||||||
blender = None |
|
||||||
timelapser = None |
|
||||||
# https://github.com/opencv/opencv/blob/4.x/samples/cpp/stitching_detailed.cpp#L725 ? |
|
||||||
for idx, name in enumerate(img_names): |
|
||||||
full_img = cv.imread(name) |
|
||||||
if not is_compose_scale_set: |
|
||||||
if compose_megapix > 0: |
|
||||||
compose_scale = min(1.0, np.sqrt(compose_megapix * 1e6 / (full_img.shape[0] * full_img.shape[1]))) |
|
||||||
is_compose_scale_set = True |
|
||||||
compose_work_aspect = compose_scale / work_scale |
|
||||||
warped_image_scale *= compose_work_aspect |
|
||||||
warper = cv.PyRotationWarper(warp_type, warped_image_scale) |
|
||||||
for i in range(0, len(img_names)): |
|
||||||
cameras[i].focal *= compose_work_aspect |
|
||||||
cameras[i].ppx *= compose_work_aspect |
|
||||||
cameras[i].ppy *= compose_work_aspect |
|
||||||
sz = (int(round(full_img_sizes[i][0] * compose_scale)), |
|
||||||
int(round(full_img_sizes[i][1] * compose_scale))) |
|
||||||
K = cameras[i].K().astype(np.float32) |
|
||||||
roi = warper.warpRoi(sz, K, cameras[i].R) |
|
||||||
corners.append(roi[0:2]) |
|
||||||
sizes.append(roi[2:4]) |
|
||||||
if abs(compose_scale - 1) > 1e-1: |
|
||||||
img = cv.resize(src=full_img, dsize=None, fx=compose_scale, fy=compose_scale, |
|
||||||
interpolation=cv.INTER_LINEAR_EXACT) |
|
||||||
else: |
|
||||||
img = full_img |
|
||||||
_img_size = (img.shape[1], img.shape[0]) |
|
||||||
K = cameras[idx].K().astype(np.float32) |
|
||||||
corner, image_warped = warper.warp(img, K, cameras[idx].R, cv.INTER_LINEAR, cv.BORDER_REFLECT) |
|
||||||
mask = 255 * np.ones((img.shape[0], img.shape[1]), np.uint8) |
|
||||||
p, mask_warped = warper.warp(mask, K, cameras[idx].R, cv.INTER_NEAREST, cv.BORDER_CONSTANT) |
|
||||||
compensator.apply(idx, corners[idx], image_warped, mask_warped) |
|
||||||
image_warped_s = image_warped.astype(np.int16) |
|
||||||
dilated_mask = cv.dilate(masks_warped[idx], None) |
|
||||||
seam_mask = cv.resize(dilated_mask, (mask_warped.shape[1], mask_warped.shape[0]), 0, 0, cv.INTER_LINEAR_EXACT) |
|
||||||
mask_warped = cv.bitwise_and(seam_mask, mask_warped) |
|
||||||
if blender is None and not timelapse: |
|
||||||
blender = cv.detail.Blender_createDefault(cv.detail.Blender_NO) |
|
||||||
dst_sz = cv.detail.resultRoi(corners=corners, sizes=sizes) |
|
||||||
blend_width = np.sqrt(dst_sz[2] * dst_sz[3]) * blend_strength / 100 |
|
||||||
if blend_width < 1: |
|
||||||
blender = cv.detail.Blender_createDefault(cv.detail.Blender_NO) |
|
||||||
elif blend_type == "multiband": |
|
||||||
blender = cv.detail_MultiBandBlender() |
|
||||||
blender.setNumBands((np.log(blend_width) / np.log(2.) - 1.).astype(np.int64)) |
|
||||||
elif blend_type == "feather": |
|
||||||
blender = cv.detail_FeatherBlender() |
|
||||||
blender.setSharpness(1. / blend_width) |
|
||||||
blender.prepare(dst_sz) |
|
||||||
elif timelapser is None and timelapse: |
|
||||||
timelapser = cv.detail.Timelapser_createDefault(timelapse_type) |
|
||||||
timelapser.initialize(corners, sizes) |
|
||||||
if timelapse: |
|
||||||
ma_tones = np.ones((image_warped_s.shape[0], image_warped_s.shape[1]), np.uint8) |
|
||||||
timelapser.process(image_warped_s, ma_tones, corners[idx]) |
|
||||||
pos_s = img_names[idx].rfind("/") |
|
||||||
if pos_s == -1: |
|
||||||
fixed_file_name = "fixed_" + img_names[idx] |
|
||||||
else: |
|
||||||
fixed_file_name = img_names[idx][:pos_s + 1] + "fixed_" + img_names[idx][pos_s + 1:] |
|
||||||
cv.imwrite(fixed_file_name, timelapser.getDst()) |
|
||||||
else: |
|
||||||
blender.feed(cv.UMat(image_warped_s), mask_warped, corners[idx]) |
|
||||||
if not timelapse: |
|
||||||
result = None |
|
||||||
result_mask = None |
|
||||||
result, result_mask = blender.blend(result, result_mask) |
|
||||||
# cv.imwrite(result_name, result) |
|
||||||
return result |
|
||||||
# zoom_x = 600.0 / result.shape[1] |
|
||||||
# dst = cv.normalize(src=result, dst=None, alpha=255., norm_type=cv.NORM_MINMAX, dtype=cv.CV_8U) |
|
||||||
# dst = cv.resize(dst, dsize=None, fx=zoom_x, fy=zoom_x) |
|
||||||
# cv.imshow(result_name, dst) |
|
||||||
# cv.waitKey() |
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__': |
|
||||||
import tracemalloc |
|
||||||
import time |
|
||||||
tracemalloc.start() |
|
||||||
start = time.time() |
|
||||||
result = main() |
|
||||||
current, peak = tracemalloc.get_traced_memory() |
|
||||||
print(f"Current memory usage is {current / 10**6}MB; Peak was {peak / 10**6}MB") |
|
||||||
tracemalloc.stop() |
|
||||||
end = time.time() |
|
||||||
print(end - start) |
|
@ -1,67 +0,0 @@ |
|||||||
import unittest |
|
||||||
import os |
|
||||||
import sys |
|
||||||
|
|
||||||
import numpy as np |
|
||||||
import cv2 as cv |
|
||||||
|
|
||||||
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), |
|
||||||
'..', '..'))) |
|
||||||
|
|
||||||
from opencv_stitching.stitcher import Stitcher |
|
||||||
|
|
||||||
|
|
||||||
class TestImageComposition(unittest.TestCase): |
|
||||||
|
|
||||||
# visual test: look especially in the sky |
|
||||||
def test_exposure_compensation(self): |
|
||||||
img = cv.imread("s1.jpg") |
|
||||||
img = increase_brightness(img, value=25) |
|
||||||
cv.imwrite("s1_bright.jpg", img) |
|
||||||
|
|
||||||
stitcher = Stitcher(compensator="no", blender_type="no") |
|
||||||
result = stitcher.stitch(["s1_bright.jpg", "s2.jpg"]) |
|
||||||
|
|
||||||
cv.imwrite("without_exposure_comp.jpg", result) |
|
||||||
|
|
||||||
stitcher = Stitcher(blender_type="no") |
|
||||||
result = stitcher.stitch(["s1_bright.jpg", "s2.jpg"]) |
|
||||||
|
|
||||||
cv.imwrite("with_exposure_comp.jpg", result) |
|
||||||
|
|
||||||
def test_timelapse(self): |
|
||||||
stitcher = Stitcher(timelapse='as_is') |
|
||||||
_ = stitcher.stitch(["s1.jpg", "s2.jpg"]) |
|
||||||
frame1 = cv.imread("fixed_s1.jpg") |
|
||||||
|
|
||||||
max_image_shape_derivation = 3 |
|
||||||
np.testing.assert_allclose(frame1.shape[:2], |
|
||||||
(700, 1811), |
|
||||||
atol=max_image_shape_derivation) |
|
||||||
|
|
||||||
left = cv.cvtColor(frame1[:, :1300, ], cv.COLOR_BGR2GRAY) |
|
||||||
right = cv.cvtColor(frame1[:, 1300:, ], cv.COLOR_BGR2GRAY) |
|
||||||
|
|
||||||
self.assertGreater(cv.countNonZero(left), 800000) |
|
||||||
self.assertEqual(cv.countNonZero(right), 0) |
|
||||||
|
|
||||||
|
|
||||||
def increase_brightness(img, value=30): |
|
||||||
hsv = cv.cvtColor(img, cv.COLOR_BGR2HSV) |
|
||||||
h, s, v = cv.split(hsv) |
|
||||||
|
|
||||||
lim = 255 - value |
|
||||||
v[v > lim] = 255 |
|
||||||
v[v <= lim] += value |
|
||||||
|
|
||||||
final_hsv = cv.merge((h, s, v)) |
|
||||||
img = cv.cvtColor(final_hsv, cv.COLOR_HSV2BGR) |
|
||||||
return img |
|
||||||
|
|
||||||
|
|
||||||
def starttest(): |
|
||||||
unittest.main() |
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__": |
|
||||||
starttest() |
|
@ -1,47 +0,0 @@ |
|||||||
import unittest |
|
||||||
import os |
|
||||||
import sys |
|
||||||
|
|
||||||
import numpy as np |
|
||||||
|
|
||||||
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), |
|
||||||
'..', '..'))) |
|
||||||
|
|
||||||
from opencv_stitching.feature_matcher import FeatureMatcher |
|
||||||
# %% |
|
||||||
|
|
||||||
|
|
||||||
class TestMatcher(unittest.TestCase): |
|
||||||
|
|
||||||
def test_array_in_sqare_matrix(self): |
|
||||||
array = np.zeros(9) |
|
||||||
|
|
||||||
matrix = FeatureMatcher.array_in_sqare_matrix(array) |
|
||||||
|
|
||||||
np.testing.assert_array_equal(matrix, np.array([[0., 0., 0.], |
|
||||||
[0., 0., 0.], |
|
||||||
[0., 0., 0.]])) |
|
||||||
|
|
||||||
def test_get_all_img_combinations(self): |
|
||||||
nimgs = 3 |
|
||||||
|
|
||||||
combinations = list(FeatureMatcher.get_all_img_combinations(nimgs)) |
|
||||||
|
|
||||||
self.assertEqual(combinations, [(0, 1), (0, 2), (1, 2)]) |
|
||||||
|
|
||||||
def test_get_match_conf(self): |
|
||||||
explicit_match_conf = FeatureMatcher.get_match_conf(1, 'orb') |
|
||||||
implicit_match_conf_orb = FeatureMatcher.get_match_conf(None, 'orb') |
|
||||||
implicit_match_conf_other = FeatureMatcher.get_match_conf(None, 'surf') |
|
||||||
|
|
||||||
self.assertEqual(explicit_match_conf, 1) |
|
||||||
self.assertEqual(implicit_match_conf_orb, 0.3) |
|
||||||
self.assertEqual(implicit_match_conf_other, 0.65) |
|
||||||
|
|
||||||
|
|
||||||
def starttest(): |
|
||||||
unittest.main() |
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__": |
|
||||||
starttest() |
|
@ -1,58 +0,0 @@ |
|||||||
import unittest |
|
||||||
import os |
|
||||||
import sys |
|
||||||
|
|
||||||
import cv2 as cv |
|
||||||
|
|
||||||
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), |
|
||||||
'..', '..'))) |
|
||||||
|
|
||||||
from opencv_stitching.megapix_scaler import MegapixScaler, MegapixDownscaler |
|
||||||
# %% |
|
||||||
|
|
||||||
|
|
||||||
class TestScaler(unittest.TestCase): |
|
||||||
|
|
||||||
def setUp(self): |
|
||||||
self.img = cv.imread("s1.jpg") |
|
||||||
self.size = (self.img.shape[1], self.img.shape[0]) |
|
||||||
|
|
||||||
def test_get_scale_by_resolution(self): |
|
||||||
scaler = MegapixScaler(0.6) |
|
||||||
|
|
||||||
scale = scaler.get_scale_by_resolution(1_200_000) |
|
||||||
|
|
||||||
self.assertEqual(scale, 0.7071067811865476) |
|
||||||
|
|
||||||
def test_get_scale_by_image(self): |
|
||||||
scaler = MegapixScaler(0.6) |
|
||||||
|
|
||||||
scaler.set_scale_by_img_size(self.size) |
|
||||||
|
|
||||||
self.assertEqual(scaler.scale, 0.8294067854101966) |
|
||||||
|
|
||||||
def test_get_scaled_img_size(self): |
|
||||||
scaler = MegapixScaler(0.6) |
|
||||||
scaler.set_scale_by_img_size(self.size) |
|
||||||
|
|
||||||
size = scaler.get_scaled_img_size(self.size) |
|
||||||
self.assertEqual(size, (1033, 581)) |
|
||||||
# 581*1033 = 600173 px = ~0.6 MP |
|
||||||
|
|
||||||
def test_force_of_downscaling(self): |
|
||||||
normal_scaler = MegapixScaler(2) |
|
||||||
downscaler = MegapixDownscaler(2) |
|
||||||
|
|
||||||
normal_scaler.set_scale_by_img_size(self.size) |
|
||||||
downscaler.set_scale_by_img_size(self.size) |
|
||||||
|
|
||||||
self.assertEqual(normal_scaler.scale, 1.5142826857233715) |
|
||||||
self.assertEqual(downscaler.scale, 1.0) |
|
||||||
|
|
||||||
|
|
||||||
def starttest(): |
|
||||||
unittest.main() |
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__": |
|
||||||
starttest() |
|
@ -1,65 +0,0 @@ |
|||||||
import unittest |
|
||||||
import os |
|
||||||
import sys |
|
||||||
import time |
|
||||||
import tracemalloc |
|
||||||
|
|
||||||
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), |
|
||||||
'..', '..'))) |
|
||||||
|
|
||||||
from opencv_stitching.stitcher import Stitcher |
|
||||||
from stitching_detailed import main |
|
||||||
# %% |
|
||||||
|
|
||||||
|
|
||||||
class TestStitcher(unittest.TestCase): |
|
||||||
|
|
||||||
@unittest.skip("skip performance test (not needed in every run)") |
|
||||||
def test_performance(self): |
|
||||||
|
|
||||||
print("Run new Stitcher class:") |
|
||||||
|
|
||||||
start = time.time() |
|
||||||
tracemalloc.start() |
|
||||||
|
|
||||||
stitcher = Stitcher(final_megapix=3) |
|
||||||
stitcher.stitch(["boat5.jpg", "boat2.jpg", |
|
||||||
"boat3.jpg", "boat4.jpg", |
|
||||||
"boat1.jpg", "boat6.jpg"]) |
|
||||||
|
|
||||||
_, peak_memory = tracemalloc.get_traced_memory() |
|
||||||
tracemalloc.stop() |
|
||||||
end = time.time() |
|
||||||
time_needed = end - start |
|
||||||
|
|
||||||
print(f"Peak was {peak_memory / 10**6} MB") |
|
||||||
print(f"Time was {time_needed} s") |
|
||||||
|
|
||||||
print("Run original stitching_detailed.py:") |
|
||||||
|
|
||||||
start = time.time() |
|
||||||
tracemalloc.start() |
|
||||||
|
|
||||||
main() |
|
||||||
|
|
||||||
_, peak_memory_detailed = tracemalloc.get_traced_memory() |
|
||||||
tracemalloc.stop() |
|
||||||
end = time.time() |
|
||||||
time_needed_detailed = end - start |
|
||||||
|
|
||||||
print(f"Peak was {peak_memory_detailed / 10**6} MB") |
|
||||||
print(f"Time was {time_needed_detailed} s") |
|
||||||
|
|
||||||
self.assertLessEqual(peak_memory / 10**6, |
|
||||||
peak_memory_detailed / 10**6) |
|
||||||
uncertainty_based_on_run = 0.25 |
|
||||||
self.assertLessEqual(time_needed - uncertainty_based_on_run, |
|
||||||
time_needed_detailed) |
|
||||||
|
|
||||||
|
|
||||||
def starttest(): |
|
||||||
unittest.main() |
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__": |
|
||||||
starttest() |
|
@ -1,100 +0,0 @@ |
|||||||
import unittest |
|
||||||
import os |
|
||||||
import sys |
|
||||||
|
|
||||||
import numpy as np |
|
||||||
import cv2 as cv |
|
||||||
|
|
||||||
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), |
|
||||||
'..', '..'))) |
|
||||||
|
|
||||||
from opencv_stitching.feature_detector import FeatureDetector |
|
||||||
from opencv_stitching.feature_matcher import FeatureMatcher |
|
||||||
from opencv_stitching.subsetter import Subsetter |
|
||||||
|
|
||||||
|
|
||||||
class TestImageRegistration(unittest.TestCase): |
|
||||||
|
|
||||||
def test_feature_detector(self): |
|
||||||
img1 = cv.imread("s1.jpg") |
|
||||||
|
|
||||||
default_number_of_keypoints = 500 |
|
||||||
detector = FeatureDetector("orb") |
|
||||||
features = detector.detect_features(img1) |
|
||||||
self.assertEqual(len(features.getKeypoints()), |
|
||||||
default_number_of_keypoints) |
|
||||||
|
|
||||||
other_keypoints = 1000 |
|
||||||
detector = FeatureDetector("orb", nfeatures=other_keypoints) |
|
||||||
features = detector.detect_features(img1) |
|
||||||
self.assertEqual(len(features.getKeypoints()), other_keypoints) |
|
||||||
|
|
||||||
def test_feature_matcher(self): |
|
||||||
img1, img2 = cv.imread("s1.jpg"), cv.imread("s2.jpg") |
|
||||||
|
|
||||||
detector = FeatureDetector("orb") |
|
||||||
features = [detector.detect_features(img1), |
|
||||||
detector.detect_features(img2)] |
|
||||||
|
|
||||||
matcher = FeatureMatcher() |
|
||||||
pairwise_matches = matcher.match_features(features) |
|
||||||
self.assertEqual(len(pairwise_matches), len(features)**2) |
|
||||||
self.assertGreater(pairwise_matches[1].confidence, 2) |
|
||||||
|
|
||||||
matches_matrix = FeatureMatcher.get_matches_matrix(pairwise_matches) |
|
||||||
self.assertEqual(matches_matrix.shape, (2, 2)) |
|
||||||
conf_matrix = FeatureMatcher.get_confidence_matrix(pairwise_matches) |
|
||||||
self.assertTrue(np.array_equal( |
|
||||||
conf_matrix > 2, |
|
||||||
np.array([[False, True], [True, False]]) |
|
||||||
)) |
|
||||||
|
|
||||||
def test_subsetting(self): |
|
||||||
img1, img2 = cv.imread("s1.jpg"), cv.imread("s2.jpg") |
|
||||||
img3, img4 = cv.imread("boat1.jpg"), cv.imread("boat2.jpg") |
|
||||||
img5 = cv.imread("boat3.jpg") |
|
||||||
img_names = ["s1.jpg", "s2.jpg", "boat1.jpg", "boat2.jpg", "boat3.jpg"] |
|
||||||
|
|
||||||
detector = FeatureDetector("orb") |
|
||||||
features = [detector.detect_features(img1), |
|
||||||
detector.detect_features(img2), |
|
||||||
detector.detect_features(img3), |
|
||||||
detector.detect_features(img4), |
|
||||||
detector.detect_features(img5)] |
|
||||||
matcher = FeatureMatcher() |
|
||||||
pairwise_matches = matcher.match_features(features) |
|
||||||
subsetter = Subsetter(confidence_threshold=1, |
|
||||||
matches_graph_dot_file="dot_graph.txt") # view in https://dreampuf.github.io # noqa |
|
||||||
|
|
||||||
indices = subsetter.get_indices_to_keep(features, pairwise_matches) |
|
||||||
indices_to_delete = subsetter.get_indices_to_delete(len(img_names), |
|
||||||
indices) |
|
||||||
|
|
||||||
np.testing.assert_array_equal(indices, np.array([2, 3, 4])) |
|
||||||
np.testing.assert_array_equal(indices_to_delete, np.array([0, 1])) |
|
||||||
|
|
||||||
subsetted_image_names = subsetter.subset_list(img_names, indices) |
|
||||||
self.assertEqual(subsetted_image_names, |
|
||||||
['boat1.jpg', 'boat2.jpg', 'boat3.jpg']) |
|
||||||
|
|
||||||
matches_subset = subsetter.subset_matches(pairwise_matches, indices) |
|
||||||
# FeatureMatcher.get_confidence_matrix(pairwise_matches) |
|
||||||
# FeatureMatcher.get_confidence_matrix(subsetted_matches) |
|
||||||
self.assertEqual(pairwise_matches[13].confidence, |
|
||||||
matches_subset[1].confidence) |
|
||||||
|
|
||||||
graph = subsetter.get_matches_graph(img_names, pairwise_matches) |
|
||||||
self.assertTrue(graph.startswith("graph matches_graph{")) |
|
||||||
|
|
||||||
subsetter.save_matches_graph_dot_file(img_names, pairwise_matches) |
|
||||||
with open('dot_graph.txt', 'r') as file: |
|
||||||
graph = file.read() |
|
||||||
self.assertTrue(graph.startswith("graph matches_graph{")) |
|
||||||
|
|
||||||
|
|
||||||
def starttest(): |
|
||||||
unittest.main() |
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__": |
|
||||||
starttest() |
|
@ -1,108 +0,0 @@ |
|||||||
import unittest |
|
||||||
import os |
|
||||||
import sys |
|
||||||
|
|
||||||
import numpy as np |
|
||||||
import cv2 as cv |
|
||||||
|
|
||||||
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), |
|
||||||
'..', '..'))) |
|
||||||
|
|
||||||
from opencv_stitching.stitcher import Stitcher |
|
||||||
# %% |
|
||||||
|
|
||||||
|
|
||||||
class TestStitcher(unittest.TestCase): |
|
||||||
|
|
||||||
def test_stitcher_aquaduct(self): |
|
||||||
stitcher = Stitcher(nfeatures=250) |
|
||||||
result = stitcher.stitch(["s1.jpg", "s2.jpg"]) |
|
||||||
cv.imwrite("result.jpg", result) |
|
||||||
|
|
||||||
max_image_shape_derivation = 3 |
|
||||||
np.testing.assert_allclose(result.shape[:2], |
|
||||||
(700, 1811), |
|
||||||
atol=max_image_shape_derivation) |
|
||||||
|
|
||||||
@unittest.skip("skip boat test (high resuolution ran >30s)") |
|
||||||
def test_stitcher_boat1(self): |
|
||||||
settings = {"warper_type": "fisheye", |
|
||||||
"wave_correct_kind": "no", |
|
||||||
"finder": "dp_colorgrad", |
|
||||||
"compensator": "no", |
|
||||||
"confidence_threshold": 0.3} |
|
||||||
|
|
||||||
stitcher = Stitcher(**settings) |
|
||||||
result = stitcher.stitch(["boat5.jpg", "boat2.jpg", |
|
||||||
"boat3.jpg", "boat4.jpg", |
|
||||||
"boat1.jpg", "boat6.jpg"]) |
|
||||||
|
|
||||||
cv.imwrite("boat_fisheye.jpg", result) |
|
||||||
|
|
||||||
max_image_shape_derivation = 600 |
|
||||||
np.testing.assert_allclose(result.shape[:2], |
|
||||||
(14488, 7556), |
|
||||||
atol=max_image_shape_derivation) |
|
||||||
|
|
||||||
@unittest.skip("skip boat test (high resuolution ran >30s)") |
|
||||||
def test_stitcher_boat2(self): |
|
||||||
settings = {"warper_type": "compressedPlaneA2B1", |
|
||||||
"finder": "dp_colorgrad", |
|
||||||
"compensator": "channel_blocks", |
|
||||||
"confidence_threshold": 0.3} |
|
||||||
|
|
||||||
stitcher = Stitcher(**settings) |
|
||||||
result = stitcher.stitch(["boat5.jpg", "boat2.jpg", |
|
||||||
"boat3.jpg", "boat4.jpg", |
|
||||||
"boat1.jpg", "boat6.jpg"]) |
|
||||||
|
|
||||||
cv.imwrite("boat_plane.jpg", result) |
|
||||||
|
|
||||||
max_image_shape_derivation = 600 |
|
||||||
np.testing.assert_allclose(result.shape[:2], |
|
||||||
(7400, 12340), |
|
||||||
atol=max_image_shape_derivation) |
|
||||||
|
|
||||||
def test_stitcher_boat_aquaduct_subset(self): |
|
||||||
settings = {"final_megapix": 1, "crop": True} |
|
||||||
|
|
||||||
stitcher = Stitcher(**settings) |
|
||||||
result = stitcher.stitch(["boat5.jpg", |
|
||||||
"s1.jpg", "s2.jpg", |
|
||||||
"boat2.jpg", |
|
||||||
"boat3.jpg", "boat4.jpg", |
|
||||||
"boat1.jpg", "boat6.jpg"]) |
|
||||||
cv.imwrite("subset_low_res.jpg", result) |
|
||||||
|
|
||||||
max_image_shape_derivation = 100 |
|
||||||
np.testing.assert_allclose(result.shape[:2], |
|
||||||
(705, 3374), |
|
||||||
atol=max_image_shape_derivation) |
|
||||||
|
|
||||||
def test_stitcher_budapest(self): |
|
||||||
settings = {"matcher_type": "affine", |
|
||||||
"estimator": "affine", |
|
||||||
"adjuster": "affine", |
|
||||||
"warper_type": "affine", |
|
||||||
"wave_correct_kind": "no", |
|
||||||
"confidence_threshold": 0.3} |
|
||||||
|
|
||||||
stitcher = Stitcher(**settings) |
|
||||||
result = stitcher.stitch(["budapest1.jpg", "budapest2.jpg", |
|
||||||
"budapest3.jpg", "budapest4.jpg", |
|
||||||
"budapest5.jpg", "budapest6.jpg"]) |
|
||||||
|
|
||||||
cv.imwrite("budapest.jpg", result) |
|
||||||
|
|
||||||
max_image_shape_derivation = 50 |
|
||||||
np.testing.assert_allclose(result.shape[:2], |
|
||||||
(1155, 2310), |
|
||||||
atol=max_image_shape_derivation) |
|
||||||
|
|
||||||
|
|
||||||
def starttest(): |
|
||||||
unittest.main() |
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__": |
|
||||||
starttest() |
|
@ -1,50 +0,0 @@ |
|||||||
import os |
|
||||||
import cv2 as cv |
|
||||||
import numpy as np |
|
||||||
|
|
||||||
|
|
||||||
class Timelapser: |
|
||||||
|
|
||||||
TIMELAPSE_CHOICES = ('no', 'as_is', 'crop',) |
|
||||||
DEFAULT_TIMELAPSE = 'no' |
|
||||||
|
|
||||||
def __init__(self, timelapse=DEFAULT_TIMELAPSE): |
|
||||||
self.do_timelapse = True |
|
||||||
self.timelapse_type = None |
|
||||||
self.timelapser = None |
|
||||||
|
|
||||||
if timelapse == "as_is": |
|
||||||
self.timelapse_type = cv.detail.Timelapser_AS_IS |
|
||||||
elif timelapse == "crop": |
|
||||||
self.timelapse_type = cv.detail.Timelapser_CROP |
|
||||||
else: |
|
||||||
self.do_timelapse = False |
|
||||||
|
|
||||||
if self.do_timelapse: |
|
||||||
self.timelapser = cv.detail.Timelapser_createDefault( |
|
||||||
self.timelapse_type |
|
||||||
) |
|
||||||
|
|
||||||
def initialize(self, *args): |
|
||||||
"""https://docs.opencv.org/4.x/dd/dac/classcv_1_1detail_1_1Timelapser.html#aaf0f7c4128009f02473332a0c41f6345""" # noqa |
|
||||||
self.timelapser.initialize(*args) |
|
||||||
|
|
||||||
def process_and_save_frame(self, img_name, img, corner): |
|
||||||
self.process_frame(img, corner) |
|
||||||
cv.imwrite(self.get_fixed_filename(img_name), self.get_frame()) |
|
||||||
|
|
||||||
def process_frame(self, img, corner): |
|
||||||
mask = np.ones((img.shape[0], img.shape[1]), np.uint8) |
|
||||||
img = img.astype(np.int16) |
|
||||||
self.timelapser.process(img, mask, corner) |
|
||||||
|
|
||||||
def get_frame(self): |
|
||||||
frame = self.timelapser.getDst() |
|
||||||
frame = np.float32(cv.UMat.get(frame)) |
|
||||||
frame = cv.convertScaleAbs(frame) |
|
||||||
return frame |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def get_fixed_filename(img_name): |
|
||||||
dirname, filename = os.path.split(img_name) |
|
||||||
return os.path.join(dirname, "fixed_" + filename) |
|
@ -1,79 +0,0 @@ |
|||||||
from statistics import median |
|
||||||
|
|
||||||
import cv2 as cv |
|
||||||
import numpy as np |
|
||||||
|
|
||||||
|
|
||||||
class Warper: |
|
||||||
|
|
||||||
WARP_TYPE_CHOICES = ('spherical', 'plane', 'affine', 'cylindrical', |
|
||||||
'fisheye', 'stereographic', 'compressedPlaneA2B1', |
|
||||||
'compressedPlaneA1.5B1', |
|
||||||
'compressedPlanePortraitA2B1', |
|
||||||
'compressedPlanePortraitA1.5B1', |
|
||||||
'paniniA2B1', 'paniniA1.5B1', 'paniniPortraitA2B1', |
|
||||||
'paniniPortraitA1.5B1', 'mercator', |
|
||||||
'transverseMercator') |
|
||||||
|
|
||||||
DEFAULT_WARP_TYPE = 'spherical' |
|
||||||
|
|
||||||
def __init__(self, warper_type=DEFAULT_WARP_TYPE): |
|
||||||
self.warper_type = warper_type |
|
||||||
self.scale = None |
|
||||||
|
|
||||||
def set_scale(self, cameras): |
|
||||||
focals = [cam.focal for cam in cameras] |
|
||||||
self.scale = median(focals) |
|
||||||
|
|
||||||
def warp_images(self, imgs, cameras, aspect=1): |
|
||||||
for img, camera in zip(imgs, cameras): |
|
||||||
yield self.warp_image(img, camera, aspect) |
|
||||||
|
|
||||||
def warp_image(self, img, camera, aspect=1): |
|
||||||
warper = cv.PyRotationWarper(self.warper_type, self.scale*aspect) |
|
||||||
_, warped_image = warper.warp(img, |
|
||||||
Warper.get_K(camera, aspect), |
|
||||||
camera.R, |
|
||||||
cv.INTER_LINEAR, |
|
||||||
cv.BORDER_REFLECT) |
|
||||||
return warped_image |
|
||||||
|
|
||||||
def create_and_warp_masks(self, sizes, cameras, aspect=1): |
|
||||||
for size, camera in zip(sizes, cameras): |
|
||||||
yield self.create_and_warp_mask(size, camera, aspect) |
|
||||||
|
|
||||||
def create_and_warp_mask(self, size, camera, aspect=1): |
|
||||||
warper = cv.PyRotationWarper(self.warper_type, self.scale*aspect) |
|
||||||
mask = 255 * np.ones((size[1], size[0]), np.uint8) |
|
||||||
_, warped_mask = warper.warp(mask, |
|
||||||
Warper.get_K(camera, aspect), |
|
||||||
camera.R, |
|
||||||
cv.INTER_NEAREST, |
|
||||||
cv.BORDER_CONSTANT) |
|
||||||
return warped_mask |
|
||||||
|
|
||||||
def warp_rois(self, sizes, cameras, aspect=1): |
|
||||||
roi_corners = [] |
|
||||||
roi_sizes = [] |
|
||||||
for size, camera in zip(sizes, cameras): |
|
||||||
roi = self.warp_roi(size, camera, aspect) |
|
||||||
roi_corners.append(roi[0:2]) |
|
||||||
roi_sizes.append(roi[2:4]) |
|
||||||
return roi_corners, roi_sizes |
|
||||||
|
|
||||||
def warp_roi(self, size, camera, aspect=1): |
|
||||||
warper = cv.PyRotationWarper(self.warper_type, self.scale*aspect) |
|
||||||
K = Warper.get_K(camera, aspect) |
|
||||||
return warper.warpRoi(size, K, camera.R) |
|
||||||
|
|
||||||
@staticmethod |
|
||||||
def get_K(camera, aspect=1): |
|
||||||
K = camera.K().astype(np.float32) |
|
||||||
""" Modification of intrinsic parameters needed if cameras were |
|
||||||
obtained on different scale than the scale of the Images which should |
|
||||||
be warped """ |
|
||||||
K[0, 0] *= aspect |
|
||||||
K[0, 2] *= aspect |
|
||||||
K[1, 1] *= aspect |
|
||||||
K[1, 2] *= aspect |
|
||||||
return K |
|
@ -1,238 +0,0 @@ |
|||||||
""" |
|
||||||
Stitching sample (advanced) |
|
||||||
=========================== |
|
||||||
|
|
||||||
Show how to use Stitcher API from python. |
|
||||||
""" |
|
||||||
|
|
||||||
# Python 2/3 compatibility |
|
||||||
from __future__ import print_function |
|
||||||
|
|
||||||
import argparse |
|
||||||
|
|
||||||
import cv2 as cv |
|
||||||
import numpy as np |
|
||||||
|
|
||||||
from opencv_stitching.stitcher import Stitcher |
|
||||||
|
|
||||||
from opencv_stitching.image_handler import ImageHandler |
|
||||||
from opencv_stitching.feature_detector import FeatureDetector |
|
||||||
from opencv_stitching.feature_matcher import FeatureMatcher |
|
||||||
from opencv_stitching.subsetter import Subsetter |
|
||||||
from opencv_stitching.camera_estimator import CameraEstimator |
|
||||||
from opencv_stitching.camera_adjuster import CameraAdjuster |
|
||||||
from opencv_stitching.camera_wave_corrector import WaveCorrector |
|
||||||
from opencv_stitching.warper import Warper |
|
||||||
from opencv_stitching.cropper import Cropper |
|
||||||
from opencv_stitching.exposure_error_compensator import ExposureErrorCompensator # noqa |
|
||||||
from opencv_stitching.seam_finder import SeamFinder |
|
||||||
from opencv_stitching.blender import Blender |
|
||||||
from opencv_stitching.timelapser import Timelapser |
|
||||||
|
|
||||||
parser = argparse.ArgumentParser( |
|
||||||
prog="opencv_stitching_tool.py", |
|
||||||
description="Rotation model images stitcher" |
|
||||||
) |
|
||||||
parser.add_argument( |
|
||||||
'img_names', nargs='+', |
|
||||||
help="Files to stitch", type=str |
|
||||||
) |
|
||||||
parser.add_argument( |
|
||||||
'--medium_megapix', action='store', |
|
||||||
default=ImageHandler.DEFAULT_MEDIUM_MEGAPIX, |
|
||||||
help="Resolution for image registration step. " |
|
||||||
"The default is %s Mpx" % ImageHandler.DEFAULT_MEDIUM_MEGAPIX, |
|
||||||
type=float, dest='medium_megapix' |
|
||||||
) |
|
||||||
parser.add_argument( |
|
||||||
'--detector', action='store', |
|
||||||
default=FeatureDetector.DEFAULT_DETECTOR, |
|
||||||
help="Type of features used for images matching. " |
|
||||||
"The default is '%s'." % FeatureDetector.DEFAULT_DETECTOR, |
|
||||||
choices=FeatureDetector.DETECTOR_CHOICES.keys(), |
|
||||||
type=str, dest='detector' |
|
||||||
) |
|
||||||
parser.add_argument( |
|
||||||
'--nfeatures', action='store', |
|
||||||
default=500, |
|
||||||
help="Type of features used for images matching. " |
|
||||||
"The default is 500.", |
|
||||||
type=int, dest='nfeatures' |
|
||||||
) |
|
||||||
parser.add_argument( |
|
||||||
'--matcher_type', action='store', default=FeatureMatcher.DEFAULT_MATCHER, |
|
||||||
help="Matcher used for pairwise image matching. " |
|
||||||
"The default is '%s'." % FeatureMatcher.DEFAULT_MATCHER, |
|
||||||
choices=FeatureMatcher.MATCHER_CHOICES, |
|
||||||
type=str, dest='matcher_type' |
|
||||||
) |
|
||||||
parser.add_argument( |
|
||||||
'--range_width', action='store', |
|
||||||
default=FeatureMatcher.DEFAULT_RANGE_WIDTH, |
|
||||||
help="uses range_width to limit number of images to match with.", |
|
||||||
type=int, dest='range_width' |
|
||||||
) |
|
||||||
parser.add_argument( |
|
||||||
'--try_use_gpu', action='store', default=False, |
|
||||||
help="Try to use CUDA. The default value is no. " |
|
||||||
"All default values are for CPU mode.", |
|
||||||
type=bool, dest='try_use_gpu' |
|
||||||
) |
|
||||||
parser.add_argument( |
|
||||||
'--match_conf', action='store', |
|
||||||
help="Confidence for feature matching step. " |
|
||||||
"The default is 0.3 for ORB and 0.65 for other feature types.", |
|
||||||
type=float, dest='match_conf' |
|
||||||
) |
|
||||||
parser.add_argument( |
|
||||||
'--confidence_threshold', action='store', |
|
||||||
default=Subsetter.DEFAULT_CONFIDENCE_THRESHOLD, |
|
||||||
help="Threshold for two images are from the same panorama confidence. " |
|
||||||
"The default is '%s'." % Subsetter.DEFAULT_CONFIDENCE_THRESHOLD, |
|
||||||
type=float, dest='confidence_threshold' |
|
||||||
) |
|
||||||
parser.add_argument( |
|
||||||
'--matches_graph_dot_file', action='store', |
|
||||||
default=Subsetter.DEFAULT_MATCHES_GRAPH_DOT_FILE, |
|
||||||
help="Save matches graph represented in DOT language to <file_name> file.", |
|
||||||
type=str, dest='matches_graph_dot_file' |
|
||||||
) |
|
||||||
parser.add_argument( |
|
||||||
'--estimator', action='store', |
|
||||||
default=CameraEstimator.DEFAULT_CAMERA_ESTIMATOR, |
|
||||||
help="Type of estimator used for transformation estimation. " |
|
||||||
"The default is '%s'." % CameraEstimator.DEFAULT_CAMERA_ESTIMATOR, |
|
||||||
choices=CameraEstimator.CAMERA_ESTIMATOR_CHOICES.keys(), |
|
||||||
type=str, dest='estimator' |
|
||||||
) |
|
||||||
parser.add_argument( |
|
||||||
'--adjuster', action='store', |
|
||||||
default=CameraAdjuster.DEFAULT_CAMERA_ADJUSTER, |
|
||||||
help="Bundle adjustment cost function. " |
|
||||||
"The default is '%s'." % CameraAdjuster.DEFAULT_CAMERA_ADJUSTER, |
|
||||||
choices=CameraAdjuster.CAMERA_ADJUSTER_CHOICES.keys(), |
|
||||||
type=str, dest='adjuster' |
|
||||||
) |
|
||||||
parser.add_argument( |
|
||||||
'--refinement_mask', action='store', |
|
||||||
default=CameraAdjuster.DEFAULT_REFINEMENT_MASK, |
|
||||||
help="Set refinement mask for bundle adjustment. It looks like 'x_xxx', " |
|
||||||
"where 'x' means refine respective parameter and '_' means don't " |
|
||||||
"refine, and has the following format:<fx><skew><ppx><aspect><ppy>. " |
|
||||||
"The default mask is '%s'. " |
|
||||||
"If bundle adjustment doesn't support estimation of selected " |
|
||||||
"parameter then the respective flag is ignored." |
|
||||||
"" % CameraAdjuster.DEFAULT_REFINEMENT_MASK, |
|
||||||
type=str, dest='refinement_mask' |
|
||||||
) |
|
||||||
parser.add_argument( |
|
||||||
'--wave_correct_kind', action='store', |
|
||||||
default=WaveCorrector.DEFAULT_WAVE_CORRECTION, |
|
||||||
help="Perform wave effect correction. " |
|
||||||
"The default is '%s'" % WaveCorrector.DEFAULT_WAVE_CORRECTION, |
|
||||||
choices=WaveCorrector.WAVE_CORRECT_CHOICES.keys(), |
|
||||||
type=str, dest='wave_correct_kind' |
|
||||||
) |
|
||||||
parser.add_argument( |
|
||||||
'--warper_type', action='store', default=Warper.DEFAULT_WARP_TYPE, |
|
||||||
help="Warp surface type. The default is '%s'." % Warper.DEFAULT_WARP_TYPE, |
|
||||||
choices=Warper.WARP_TYPE_CHOICES, |
|
||||||
type=str, dest='warper_type' |
|
||||||
) |
|
||||||
parser.add_argument( |
|
||||||
'--low_megapix', action='store', default=ImageHandler.DEFAULT_LOW_MEGAPIX, |
|
||||||
help="Resolution for seam estimation and exposure estimation step. " |
|
||||||
"The default is %s Mpx." % ImageHandler.DEFAULT_LOW_MEGAPIX, |
|
||||||
type=float, dest='low_megapix' |
|
||||||
) |
|
||||||
parser.add_argument( |
|
||||||
'--crop', action='store', default=Cropper.DEFAULT_CROP, |
|
||||||
help="Crop black borders around images caused by warping using the " |
|
||||||
"largest interior rectangle. " |
|
||||||
"Default is '%s'." % Cropper.DEFAULT_CROP, |
|
||||||
type=bool, dest='crop' |
|
||||||
) |
|
||||||
parser.add_argument( |
|
||||||
'--compensator', action='store', |
|
||||||
default=ExposureErrorCompensator.DEFAULT_COMPENSATOR, |
|
||||||
help="Exposure compensation method. " |
|
||||||
"The default is '%s'." % ExposureErrorCompensator.DEFAULT_COMPENSATOR, |
|
||||||
choices=ExposureErrorCompensator.COMPENSATOR_CHOICES.keys(), |
|
||||||
type=str, dest='compensator' |
|
||||||
) |
|
||||||
parser.add_argument( |
|
||||||
'--nr_feeds', action='store', |
|
||||||
default=ExposureErrorCompensator.DEFAULT_NR_FEEDS, |
|
||||||
help="Number of exposure compensation feed.", |
|
||||||
type=np.int32, dest='nr_feeds' |
|
||||||
) |
|
||||||
parser.add_argument( |
|
||||||
'--block_size', action='store', |
|
||||||
default=ExposureErrorCompensator.DEFAULT_BLOCK_SIZE, |
|
||||||
help="BLock size in pixels used by the exposure compensator. " |
|
||||||
"The default is '%s'." % ExposureErrorCompensator.DEFAULT_BLOCK_SIZE, |
|
||||||
type=np.int32, dest='block_size' |
|
||||||
) |
|
||||||
parser.add_argument( |
|
||||||
'--finder', action='store', default=SeamFinder.DEFAULT_SEAM_FINDER, |
|
||||||
help="Seam estimation method. " |
|
||||||
"The default is '%s'." % SeamFinder.DEFAULT_SEAM_FINDER, |
|
||||||
choices=SeamFinder.SEAM_FINDER_CHOICES.keys(), |
|
||||||
type=str, dest='finder' |
|
||||||
) |
|
||||||
parser.add_argument( |
|
||||||
'--final_megapix', action='store', |
|
||||||
default=ImageHandler.DEFAULT_FINAL_MEGAPIX, |
|
||||||
help="Resolution for compositing step. Use -1 for original resolution. " |
|
||||||
"The default is %s" % ImageHandler.DEFAULT_FINAL_MEGAPIX, |
|
||||||
type=float, dest='final_megapix' |
|
||||||
) |
|
||||||
parser.add_argument( |
|
||||||
'--blender_type', action='store', default=Blender.DEFAULT_BLENDER, |
|
||||||
help="Blending method. The default is '%s'." % Blender.DEFAULT_BLENDER, |
|
||||||
choices=Blender.BLENDER_CHOICES, |
|
||||||
type=str, dest='blender_type' |
|
||||||
) |
|
||||||
parser.add_argument( |
|
||||||
'--blend_strength', action='store', default=Blender.DEFAULT_BLEND_STRENGTH, |
|
||||||
help="Blending strength from [0,100] range. " |
|
||||||
"The default is '%s'." % Blender.DEFAULT_BLEND_STRENGTH, |
|
||||||
type=np.int32, dest='blend_strength' |
|
||||||
) |
|
||||||
parser.add_argument( |
|
||||||
'--timelapse', action='store', default=Timelapser.DEFAULT_TIMELAPSE, |
|
||||||
help="Output warped images separately as frames of a time lapse movie, " |
|
||||||
"with 'fixed_' prepended to input file names. " |
|
||||||
"The default is '%s'." % Timelapser.DEFAULT_TIMELAPSE, |
|
||||||
choices=Timelapser.TIMELAPSE_CHOICES, |
|
||||||
type=str, dest='timelapse' |
|
||||||
) |
|
||||||
parser.add_argument( |
|
||||||
'--output', action='store', default='result.jpg', |
|
||||||
help="The default is 'result.jpg'", |
|
||||||
type=str, dest='output' |
|
||||||
) |
|
||||||
|
|
||||||
__doc__ += '\n' + parser.format_help() |
|
||||||
|
|
||||||
if __name__ == '__main__': |
|
||||||
print(__doc__) |
|
||||||
args = parser.parse_args() |
|
||||||
args_dict = vars(args) |
|
||||||
|
|
||||||
# Extract In- and Output |
|
||||||
img_names = args_dict.pop("img_names") |
|
||||||
img_names = [cv.samples.findFile(img_name) for img_name in img_names] |
|
||||||
output = args_dict.pop("output") |
|
||||||
|
|
||||||
stitcher = Stitcher(**args_dict) |
|
||||||
panorama = stitcher.stitch(img_names) |
|
||||||
|
|
||||||
cv.imwrite(output, panorama) |
|
||||||
|
|
||||||
zoom_x = 600.0 / panorama.shape[1] |
|
||||||
preview = cv.resize(panorama, dsize=None, fx=zoom_x, fy=zoom_x) |
|
||||||
|
|
||||||
cv.imshow(output, preview) |
|
||||||
cv.waitKey() |
|
||||||
cv.destroyAllWindows() |
|
Loading…
Reference in new issue