Merge pull request #17604 from LupusSanctus:am/pytorch_tf_cls_tutorial

[GSoC] Added TF and PyTorch classification conversion cases

* Added TF and PyTorch classification conversion cases

* Modified structure, some processing scripts. Added evaluation pipeline

* Minor structure change

* Removed extra functions, minor structure change

* Modified structure, code corrections

* Updated classification code block, added classification tutorials

* Added minor modifications of paths

* Classification block corrections in accordance with comments
pull/19409/head
Anastasia M 4 years ago committed by GitHub
parent e85b41f9be
commit 8c221981bf
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. BIN
      doc/tutorials/dnn/dnn_pytorch_tf_classification/images/opencv_resnet50_test_res_c.jpg
  2. BIN
      doc/tutorials/dnn/dnn_pytorch_tf_classification/images/pytorch_resnet50_opencv_test_res.jpg
  3. BIN
      doc/tutorials/dnn/dnn_pytorch_tf_classification/images/squirrel_cls.jpg
  4. BIN
      doc/tutorials/dnn/dnn_pytorch_tf_classification/images/tf_mobilenet_opencv_test_res.jpg
  5. 220
      doc/tutorials/dnn/dnn_pytorch_tf_classification/pytorch_cls_model_conversion_c_tutorial.md
  6. 362
      doc/tutorials/dnn/dnn_pytorch_tf_classification/pytorch_cls_model_conversion_tutorial.md
  7. 360
      doc/tutorials/dnn/dnn_pytorch_tf_classification/tf_cls_model_conversion_tutorial.md
  8. 1
      doc/tutorials/dnn/dnn_text_spotting/dnn_text_spotting.markdown
  9. 9
      doc/tutorials/dnn/table_of_content_dnn.markdown
  10. BIN
      samples/data/squirrel_cls.jpg
  11. 54
      samples/dnn/classification.cpp
  12. 189
      samples/dnn/classification.py
  13. 23
      samples/dnn/dnn_model_runner/dnn_conversion/common/abstract_model.py
  14. 96
      samples/dnn/dnn_model_runner/dnn_conversion/common/evaluation/classification/cls_accuracy_evaluator.py
  15. 87
      samples/dnn/dnn_model_runner/dnn_conversion/common/evaluation/classification/cls_data_fetcher.py
  16. 19
      samples/dnn/dnn_model_runner/dnn_conversion/common/img_utils.py
  17. 60
      samples/dnn/dnn_model_runner/dnn_conversion/common/test/cls_model_test_pipeline.py
  18. 37
      samples/dnn/dnn_model_runner/dnn_conversion/common/test/configs/default_preprocess_config.py
  19. 40
      samples/dnn/dnn_model_runner/dnn_conversion/common/test/configs/test_config.py
  20. 126
      samples/dnn/dnn_model_runner/dnn_conversion/common/test/model_test_pipeline.py
  21. 153
      samples/dnn/dnn_model_runner/dnn_conversion/common/utils.py
  22. 71
      samples/dnn/dnn_model_runner/dnn_conversion/pytorch/classification/py_to_py_cls.py
  23. 139
      samples/dnn/dnn_model_runner/dnn_conversion/pytorch/classification/py_to_py_resnet50.py
  24. 50
      samples/dnn/dnn_model_runner/dnn_conversion/pytorch/classification/py_to_py_resnet50_onnx.py
  25. 98
      samples/dnn/dnn_model_runner/dnn_conversion/pytorch/pytorch_model.py
  26. 9
      samples/dnn/dnn_model_runner/dnn_conversion/requirements.txt
  27. 104
      samples/dnn/dnn_model_runner/dnn_conversion/tf/classification/py_to_py_cls.py
  28. 142
      samples/dnn/dnn_model_runner/dnn_conversion/tf/classification/py_to_py_mobilenet.py
  29. 112
      samples/dnn/dnn_model_runner/dnn_conversion/tf/tf_model.py

Binary file not shown.

After

Width:  |  Height:  |  Size: 59 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 29 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 61 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 61 KiB

@ -0,0 +1,220 @@
# Conversion of PyTorch Classification Models and Launch with OpenCV C++ {#pytorch_cls_c_tutorial_dnn_conversion}
@prev_tutorial{pytorch_cls_tutorial_dnn_conversion}
| | |
| -: | :- |
| Original author | Anastasia Murzova |
| Compatibility | OpenCV >= 4.5 |
## Goals
In this tutorial you will learn how to:
* convert PyTorch classification models into ONNX format
* run converted PyTorch model with OpenCV C/C++ API
* provide model inference
We will explore the above-listed points by the example of ResNet-50 architecture.
## Introduction
Let's briefly view the key concepts involved in the pipeline of PyTorch models transition with OpenCV API. The initial step in conversion of PyTorch models into cv::dnn::Net
is model transferring into [ONNX](https://onnx.ai/about.html) format. ONNX aims at the interchangeability of the neural networks between various frameworks. There is a built-in function in PyTorch for ONNX conversion: [``torch.onnx.export``](https://pytorch.org/docs/stable/onnx.html#torch.onnx.export).
Further the obtained ``.onnx`` model is passed into cv::dnn::readNetFromONNX or cv::dnn::readNet.
## Requirements
To be able to experiment with the below code you will need to install a set of libraries. We will use a virtual environment with python3.7+ for this:
```console
virtualenv -p /usr/bin/python3.7 <env_dir_path>
source <env_dir_path>/bin/activate
```
For OpenCV-Python building from source, follow the corresponding instructions from the @ref tutorial_py_table_of_contents_setup.
Before you start the installation of the libraries, you can customize the [requirements.txt](https://github.com/opencv/opencv/tree/master/samples/dnn/dnn_model_runner/dnn_conversion/requirements.txt), excluding or including (for example, ``opencv-python``) some dependencies.
The below line initiates requirements installation into the previously activated virtual environment:
```console
pip install -r requirements.txt
```
## Practice
In this part we are going to cover the following points:
1. create a classification model conversion pipeline
2. provide the inference, process prediction results
### Model Conversion Pipeline
The code in this subchapter is located in the ``samples/dnn/dnn_model_runner`` module and can be executed with the line:
```console
python -m dnn_model_runner.dnn_conversion.pytorch.classification.py_to_py_resnet50_onnx
```
The following code contains the description of the below-listed steps:
1. instantiate PyTorch model
2. convert PyTorch model into ``.onnx``
```python
# initialize PyTorch ResNet-50 model
original_model = models.resnet50(pretrained=True)
# get the path to the converted into ONNX PyTorch model
full_model_path = get_pytorch_onnx_model(original_model)
print("PyTorch ResNet-50 model was successfully converted: ", full_model_path)
```
``get_pytorch_onnx_model(original_model)`` function is based on ``torch.onnx.export(...)`` call:
```python
# define the directory for further converted model save
onnx_model_path = "models"
# define the name of further converted model
onnx_model_name = "resnet50.onnx"
# create directory for further converted model
os.makedirs(onnx_model_path, exist_ok=True)
# get full path to the converted model
full_model_path = os.path.join(onnx_model_path, onnx_model_name)
# generate model input
generated_input = Variable(
torch.randn(1, 3, 224, 224)
)
# model export into ONNX format
torch.onnx.export(
original_model,
generated_input,
full_model_path,
verbose=True,
input_names=["input"],
output_names=["output"],
opset_version=11
)
```
After the successful execution of the above code we will get the following output:
```console
PyTorch ResNet-50 model was successfully converted: models/resnet50.onnx
```
The proposed in ``dnn/samples`` module ``dnn_model_runner`` allows us to reproduce the above conversion steps for the following PyTorch classification models:
* alexnet
* vgg11
* vgg13
* vgg16
* vgg19
* resnet18
* resnet34
* resnet50
* resnet101
* resnet152
* squeezenet1_0
* squeezenet1_1
* resnext50_32x4d
* resnext101_32x8d
* wide_resnet50_2
* wide_resnet101_2
To obtain the converted model, the following line should be executed:
```
python -m dnn_model_runner.dnn_conversion.pytorch.classification.py_to_py_cls --model_name <pytorch_cls_model_name> --evaluate False
```
For the ResNet-50 case the below line should be run:
```
python -m dnn_model_runner.dnn_conversion.pytorch.classification.py_to_py_cls --model_name resnet50 --evaluate False
```
The default root directory for the converted model storage is defined in module ``CommonConfig``:
```python
@dataclass
class CommonConfig:
output_data_root_dir: str = "dnn_model_runner/dnn_conversion"
```
Thus, the converted ResNet-50 will be saved in ``dnn_model_runner/dnn_conversion/models``.
### Inference Pipeline
Now we can use ```models/resnet50.onnx``` for the inference pipeline using OpenCV C/C++ API. The implemented pipeline can be found in [samples/dnn/classification.cpp](https://github.com/opencv/opencv/blob/master/samples/dnn/classification.cpp).
After the build of samples (``BUILD_EXAMPLES`` flag value should be ``ON``), the appropriate ``example_dnn_classification`` executable file will be provided.
To provide model inference we will use the below [squirrel photo](https://www.pexels.com/photo/brown-squirrel-eating-1564292) (under [CC0](https://www.pexels.com/terms-of-service/) license) corresponding to ImageNet class ID 335:
```console
fox squirrel, eastern fox squirrel, Sciurus niger
```
![Classification model input image](images/squirrel_cls.jpg)
For the label decoding of the obtained prediction, we also need ``imagenet_classes.txt`` file, which contains the full list of the ImageNet classes.
In this tutorial we will run the inference process for the converted PyTorch ResNet-50 model from the build (``samples/build``) directory:
```
./dnn/example_dnn_classification --model=../dnn/models/resnet50.onnx --input=../data/squirrel_cls.jpg --width=224 --height=224 --rgb=true --scale="0.003921569" --mean="123.675 116.28 103.53" --std="0.229 0.224 0.225" --crop=true --initial_width=256 --initial_height=256 --classes=../data/dnn/classification_classes_ILSVRC2012.txt
```
Let's explore ``classification.cpp`` key points step by step:
1. read the model with cv::dnn::readNet, initialize the network:
```cpp
Net net = readNet(model, config, framework);
```
The ``model`` parameter value is taken from ``--model`` key. In our case, it is ``resnet50.onnx``.
* preprocess input image:
```cpp
if (rszWidth != 0 && rszHeight != 0)
{
resize(frame, frame, Size(rszWidth, rszHeight));
}
// Create a 4D blob from a frame
blobFromImage(frame, blob, scale, Size(inpWidth, inpHeight), mean, swapRB, crop);
// Check std values.
if (std.val[0] != 0.0 && std.val[1] != 0.0 && std.val[2] != 0.0)
{
// Divide blob by std.
divide(blob, std, blob);
}
```
In this step we use cv::dnn::blobFromImage function to prepare model input.
We set ``Size(rszWidth, rszHeight)`` with ``--initial_width=256 --initial_height=256`` for the initial image resize as it's described in [PyTorch ResNet inference pipeline](https://pytorch.org/hub/pytorch_vision_resnet/).
It should be noted that firstly in cv::dnn::blobFromImage mean value is subtracted and only then pixel values are multiplied by scale.
Thus, we use ``--mean="123.675 116.28 103.53"``, which is equivalent to ``[0.485, 0.456, 0.406]`` multiplied by ``255.0`` to reproduce the original image preprocessing order for PyTorch classification models:
```python
img /= 255.0
img -= [0.485, 0.456, 0.406]
img /= [0.229, 0.224, 0.225]
```
* make forward pass:
```cpp
net.setInput(blob);
Mat prob = net.forward();
```
* process the prediction:
```cpp
Point classIdPoint;
double confidence;
minMaxLoc(prob.reshape(1, 1), 0, &confidence, 0, &classIdPoint);
int classId = classIdPoint.x;
```
Here we choose the most likely object class. The ``classId`` result for our case is 335 - fox squirrel, eastern fox squirrel, Sciurus niger:
![ResNet50 OpenCV C++ inference output](images/opencv_resnet50_test_res_c.jpg)

@ -0,0 +1,362 @@
# Conversion of PyTorch Classification Models and Launch with OpenCV Python {#pytorch_cls_tutorial_dnn_conversion}
@prev_tutorial{tutorial_dnn_OCR}
@next_tutorial{pytorch_cls_c_tutorial_dnn_conversion}
| | |
| -: | :- |
| Original author | Anastasia Murzova |
| Compatibility | OpenCV >= 4.5 |
## Goals
In this tutorial you will learn how to:
* convert PyTorch classification models into ONNX format
* run converted PyTorch model with OpenCV Python API
* obtain an evaluation of the PyTorch and OpenCV DNN models.
We will explore the above-listed points by the example of the ResNet-50 architecture.
## Introduction
Let's briefly view the key concepts involved in the pipeline of PyTorch models transition with OpenCV API. The initial step in conversion of PyTorch models into cv.dnn.Net
is model transferring into [ONNX](https://onnx.ai/about.html) format. ONNX aims at the interchangeability of the neural networks between various frameworks. There is a built-in function in PyTorch for ONNX conversion: [``torch.onnx.export``](https://pytorch.org/docs/stable/onnx.html#torch.onnx.export).
Further the obtained ``.onnx`` model is passed into cv.dnn.readNetFromONNX.
## Requirements
To be able to experiment with the below code you will need to install a set of libraries. We will use a virtual environment with python3.7+ for this:
```console
virtualenv -p /usr/bin/python3.7 <env_dir_path>
source <env_dir_path>/bin/activate
```
For OpenCV-Python building from source, follow the corresponding instructions from the @ref tutorial_py_table_of_contents_setup.
Before you start the installation of the libraries, you can customize the [requirements.txt](https://github.com/opencv/opencv/tree/master/samples/dnn/dnn_model_runner/dnn_conversion/requirements.txt), excluding or including (for example, ``opencv-python``) some dependencies.
The below line initiates requirements installation into the previously activated virtual environment:
```console
pip install -r requirements.txt
```
## Practice
In this part we are going to cover the following points:
1. create a classification model conversion pipeline and provide the inference
2. evaluate and test classification models
If you'd like merely to run evaluation or test model pipelines, the "Model Conversion Pipeline" part can be skipped.
### Model Conversion Pipeline
The code in this subchapter is located in the ``dnn_model_runner`` module and can be executed with the line:
```console
python -m dnn_model_runner.dnn_conversion.pytorch.classification.py_to_py_resnet50
```
The following code contains the description of the below-listed steps:
1. instantiate PyTorch model
2. convert PyTorch model into ``.onnx``
3. read the transferred network with OpenCV API
4. prepare input data
5. provide inference
```python
# initialize PyTorch ResNet-50 model
original_model = models.resnet50(pretrained=True)
# get the path to the converted into ONNX PyTorch model
full_model_path = get_pytorch_onnx_model(original_model)
# read converted .onnx model with OpenCV API
opencv_net = cv2.dnn.readNetFromONNX(full_model_path)
print("OpenCV model was successfully read. Layer IDs: \n", opencv_net.getLayerNames())
# get preprocessed image
input_img = get_preprocessed_img("../data/squirrel_cls.jpg")
# get ImageNet labels
imagenet_labels = get_imagenet_labels("../data/dnn/classification_classes_ILSVRC2012.txt")
# obtain OpenCV DNN predictions
get_opencv_dnn_prediction(opencv_net, input_img, imagenet_labels)
# obtain original PyTorch ResNet50 predictions
get_pytorch_dnn_prediction(original_model, input_img, imagenet_labels)
```
To provide model inference we will use the below [squirrel photo](https://www.pexels.com/photo/brown-squirrel-eating-1564292) (under [CC0](https://www.pexels.com/terms-of-service/) license) corresponding to ImageNet class ID 335:
```console
fox squirrel, eastern fox squirrel, Sciurus niger
```
![Classification model input image](images/squirrel_cls.jpg)
For the label decoding of the obtained prediction, we also need ``imagenet_classes.txt`` file, which contains the full list of the ImageNet classes.
Let's go deeper into each step by the example of pretrained PyTorch ResNet-50:
* instantiate PyTorch ResNet-50 model:
```python
# initialize PyTorch ResNet-50 model
original_model = models.resnet50(pretrained=True)
```
* convert PyTorch model into ONNX:
```python
# define the directory for further converted model save
onnx_model_path = "models"
# define the name of further converted model
onnx_model_name = "resnet50.onnx"
# create directory for further converted model
os.makedirs(onnx_model_path, exist_ok=True)
# get full path to the converted model
full_model_path = os.path.join(onnx_model_path, onnx_model_name)
# generate model input
generated_input = Variable(
torch.randn(1, 3, 224, 224)
)
# model export into ONNX format
torch.onnx.export(
original_model,
generated_input,
full_model_path,
verbose=True,
input_names=["input"],
output_names=["output"],
opset_version=11
)
```
After the successful execution of the above code, we will get ``models/resnet50.onnx``.
* read the transferred network with cv.dnn.readNetFromONNX passing the obtained in the previous step ONNX model into it:
```python
# read converted .onnx model with OpenCV API
opencv_net = cv2.dnn.readNetFromONNX(full_model_path)
```
* prepare input data:
```python
# read the image
input_img = cv2.imread(img_path, cv2.IMREAD_COLOR)
input_img = input_img.astype(np.float32)
input_img = cv2.resize(input_img, (256, 256))
# define preprocess parameters
mean = np.array([0.485, 0.456, 0.406]) * 255.0
scale = 1 / 255.0
std = [0.229, 0.224, 0.225]
# prepare input blob to fit the model input:
# 1. subtract mean
# 2. scale to set pixel values from 0 to 1
input_blob = cv2.dnn.blobFromImage(
image=input_img,
scalefactor=scale,
size=(224, 224), # img target size
mean=mean,
swapRB=True, # BGR -> RGB
crop=True # center crop
)
# 3. divide by std
input_blob[0] /= np.asarray(std, dtype=np.float32).reshape(3, 1, 1)
```
In this step we read the image and prepare model input with cv.dnn.blobFromImage function, which returns 4-dimensional blob.
It should be noted that firstly in cv.dnn.blobFromImage mean value is subtracted and only then pixel values are multiplied by scale. Thus, ``mean`` is multiplied by ``255.0`` to reproduce the original image preprocessing order:
```python
img /= 255.0
img -= [0.485, 0.456, 0.406]
img /= [0.229, 0.224, 0.225]
```
* OpenCV cv.dnn.Net inference:
```python
# set OpenCV DNN input
opencv_net.setInput(preproc_img)
# OpenCV DNN inference
out = opencv_net.forward()
print("OpenCV DNN prediction: \n")
print("* shape: ", out.shape)
# get the predicted class ID
imagenet_class_id = np.argmax(out)
# get confidence
confidence = out[0][imagenet_class_id]
print("* class ID: {}, label: {}".format(imagenet_class_id, imagenet_labels[imagenet_class_id]))
print("* confidence: {:.4f}".format(confidence))
```
After the above code execution we will get the following output:
```console
OpenCV DNN prediction:
* shape: (1, 1000)
* class ID: 335, label: fox squirrel, eastern fox squirrel, Sciurus niger
* confidence: 14.8308
```
* PyTorch ResNet-50 model inference:
```python
original_net.eval()
preproc_img = torch.FloatTensor(preproc_img)
# inference
out = original_net(preproc_img)
print("\nPyTorch model prediction: \n")
print("* shape: ", out.shape)
# get the predicted class ID
imagenet_class_id = torch.argmax(out, axis=1).item()
print("* class ID: {}, label: {}".format(imagenet_class_id, imagenet_labels[imagenet_class_id]))
# get confidence
confidence = out[0][imagenet_class_id]
print("* confidence: {:.4f}".format(confidence.item()))
```
After the above code launching we will get the following output:
```console
PyTorch model prediction:
* shape: torch.Size([1, 1000])
* class ID: 335, label: fox squirrel, eastern fox squirrel, Sciurus niger
* confidence: 14.8308
```
The inference results of the original ResNet-50 model and cv.dnn.Net are equal. For the extended evaluation of the models we can use ``py_to_py_cls`` of the ``dnn_model_runner`` module. This module part will be described in the next subchapter.
### Evaluation of the Models
The proposed in ``samples/dnn`` ``dnn_model_runner`` module allows to run the full evaluation pipeline on the ImageNet dataset and test execution for the following PyTorch classification models:
* alexnet
* vgg11
* vgg13
* vgg16
* vgg19
* resnet18
* resnet34
* resnet50
* resnet101
* resnet152
* squeezenet1_0
* squeezenet1_1
* resnext50_32x4d
* resnext101_32x8d
* wide_resnet50_2
* wide_resnet101_2
This list can be also extended with further appropriate evaluation pipeline configuration.
#### Evaluation Mode
The below line represents running of the module in the evaluation mode:
```console
python -m dnn_model_runner.dnn_conversion.pytorch.classification.py_to_py_cls --model_name <pytorch_cls_model_name>
```
Chosen from the list classification model will be read into OpenCV cv.dnn.Net object. Evaluation results of PyTorch and OpenCV models (accuracy, inference time, L1) will be written into the log file. Inference time values will be also depicted in a chart to generalize the obtained model information.
Necessary evaluation configurations are defined in the [test_config.py](https://github.com/opencv/opencv/tree/master/samples/dnn/dnn_model_runner/dnn_conversion/common/test/configs/test_config.py) and can be modified in accordance with actual paths of data location:
```python
@dataclass
class TestClsConfig:
batch_size: int = 50
frame_size: int = 224
img_root_dir: str = "./ILSVRC2012_img_val"
# location of image-class matching
img_cls_file: str = "./val.txt"
bgr_to_rgb: bool = True
```
To initiate the evaluation of the PyTorch ResNet-50, run the following line:
```console
python -m dnn_model_runner.dnn_conversion.pytorch.classification.py_to_py_cls --model_name resnet50
```
After script launch, the log file with evaluation data will be generated in ``dnn_model_runner/dnn_conversion/logs``:
```console
The model PyTorch resnet50 was successfully obtained and converted to OpenCV DNN resnet50
===== Running evaluation of the model with the following params:
* val data location: ./ILSVRC2012_img_val
* log file location: dnn_model_runner/dnn_conversion/logs/PyTorch_resnet50_log.txt
```
#### Test Mode
The below line represents running of the module in the test mode, namely it provides the steps for the model inference:
```console
python -m dnn_model_runner.dnn_conversion.pytorch.classification.py_to_py_cls --model_name <pytorch_cls_model_name> --test True --default_img_preprocess <True/False> --evaluate False
```
Here ``default_img_preprocess`` key defines whether you'd like to parametrize the model test process with some particular values or use the default values, for example, ``scale``, ``mean`` or ``std``.
Test configuration is represented in [test_config.py](https://github.com/opencv/opencv/tree/master/samples/dnn/dnn_model_runner/dnn_conversion/common/test/configs/test_config.py) ``TestClsModuleConfig`` class:
```python
@dataclass
class TestClsModuleConfig:
cls_test_data_dir: str = "../data"
test_module_name: str = "classification"
test_module_path: str = "classification.py"
input_img: str = os.path.join(cls_test_data_dir, "squirrel_cls.jpg")
model: str = ""
frame_height: str = str(TestClsConfig.frame_size)
frame_width: str = str(TestClsConfig.frame_size)
scale: str = "1.0"
mean: List[str] = field(default_factory=lambda: ["0.0", "0.0", "0.0"])
std: List[str] = field(default_factory=list)
crop: str = "False"
rgb: str = "True"
rsz_height: str = ""
rsz_width: str = ""
classes: str = os.path.join(cls_test_data_dir, "dnn", "classification_classes_ILSVRC2012.txt")
```
The default image preprocessing options are defined in [default_preprocess_config.py](https://github.com/opencv/opencv/tree/master/samples/dnn/dnn_model_runner/dnn_conversion/common/test/configs/default_preprocess_config.py). For instance:
```python
BASE_IMG_SCALE_FACTOR = 1 / 255.0
PYTORCH_RSZ_HEIGHT = 256
PYTORCH_RSZ_WIDTH = 256
pytorch_resize_input_blob = {
"mean": ["123.675", "116.28", "103.53"],
"scale": str(BASE_IMG_SCALE_FACTOR),
"std": ["0.229", "0.224", "0.225"],
"crop": "True",
"rgb": "True",
"rsz_height": str(PYTORCH_RSZ_HEIGHT),
"rsz_width": str(PYTORCH_RSZ_WIDTH)
}
```
The basis of the model testing is represented in [samples/dnn/classification.py](https://github.com/opencv/opencv/blob/master/samples/dnn/classification.py). ``classification.py`` can be executed autonomously with provided converted model in ``--input`` and populated parameters for cv.dnn.blobFromImage.
To reproduce from scratch the described in "Model Conversion Pipeline" OpenCV steps with ``dnn_model_runner`` execute the below line:
```console
python -m dnn_model_runner.dnn_conversion.pytorch.classification.py_to_py_cls --model_name resnet50 --test True --default_img_preprocess True --evaluate False
```
The network prediction is depicted in the top left corner of the output window:
![ResNet50 OpenCV inference output](images/pytorch_resnet50_opencv_test_res.jpg)

@ -0,0 +1,360 @@
# Conversion of TensorFlow Classification Models and Launch with OpenCV Python {#tf_cls_tutorial_dnn_conversion}
| | |
| -: | :- |
| Original author | Anastasia Murzova |
| Compatibility | OpenCV >= 4.5 |
## Goals
In this tutorial you will learn how to:
* obtain frozen graphs of TensorFlow (TF) classification models
* run converted TensorFlow model with OpenCV Python API
* obtain an evaluation of the TensorFlow and OpenCV DNN models
We will explore the above-listed points by the example of MobileNet architecture.
## Introduction
Let's briefly view the key concepts involved in the pipeline of TensorFlow models transition with OpenCV API. The initial step in conversion of TensorFlow models into cv.dnn.Net
is obtaining the frozen TF model graph. Frozen graph defines the combination of the model graph structure with kept values of the required variables, for example, weights. Usually the frozen graph is saved in [protobuf](https://en.wikipedia.org/wiki/Protocol_Buffers) (```.pb```) files.
After the model ``.pb`` file was generated it can be read with cv.dnn.readNetFromTensorflow function.
## Requirements
To be able to experiment with the below code you will need to install a set of libraries. We will use a virtual environment with python3.7+ for this:
```console
virtualenv -p /usr/bin/python3.7 <env_dir_path>
source <env_dir_path>/bin/activate
```
For OpenCV-Python building from source, follow the corresponding instructions from the @ref tutorial_py_table_of_contents_setup.
Before you start the installation of the libraries, you can customize the [requirements.txt](https://github.com/opencv/opencv/tree/master/samples/dnn/dnn_model_runner/dnn_conversion/requirements.txt), excluding or including (for example, ``opencv-python``) some dependencies.
The below line initiates requirements installation into the previously activated virtual environment:
```console
pip install -r requirements.txt
```
## Practice
In this part we are going to cover the following points:
1. create a TF classification model conversion pipeline and provide the inference
2. evaluate and test TF classification models
If you'd like merely to run evaluation or test model pipelines, the "Model Conversion Pipeline" tutorial part can be skipped.
### Model Conversion Pipeline
The code in this subchapter is located in the ``dnn_model_runner`` module and can be executed with the line:
```console
python -m dnn_model_runner.dnn_conversion.tf.classification.py_to_py_mobilenet
```
The following code contains the description of the below-listed steps:
1. instantiate TF model
2. create TF frozen graph
3. read TF frozen graph with OpenCV API
4. prepare input data
5. provide inference
```python
# initialize TF MobileNet model
original_tf_model = MobileNet(
include_top=True,
weights="imagenet"
)
# get TF frozen graph path
full_pb_path = get_tf_model_proto(original_tf_model)
# read frozen graph with OpenCV API
opencv_net = cv2.dnn.readNetFromTensorflow(full_pb_path)
print("OpenCV model was successfully read. Model layers: \n", opencv_net.getLayerNames())
# get preprocessed image
input_img = get_preprocessed_img("../data/squirrel_cls.jpg")
# get ImageNet labels
imagenet_labels = get_imagenet_labels("../data/dnn/classification_classes_ILSVRC2012.txt")
# obtain OpenCV DNN predictions
get_opencv_dnn_prediction(opencv_net, input_img, imagenet_labels)
# obtain TF model predictions
get_tf_dnn_prediction(original_tf_model, input_img, imagenet_labels)
```
To provide model inference we will use the below [squirrel photo](https://www.pexels.com/photo/brown-squirrel-eating-1564292) (under [CC0](https://www.pexels.com/terms-of-service/) license) corresponding to ImageNet class ID 335:
```console
fox squirrel, eastern fox squirrel, Sciurus niger
```
![Classification model input image](images/squirrel_cls.jpg)
For the label decoding of the obtained prediction, we also need ``imagenet_classes.txt`` file, which contains the full list of the ImageNet classes.
Let's go deeper into each step by the example of pretrained TF MobileNet:
* instantiate TF model:
```python
# initialize TF MobileNet model
original_tf_model = MobileNet(
include_top=True,
weights="imagenet"
)
```
* create TF frozen graph
```python
# define the directory for .pb model
pb_model_path = "models"
# define the name of .pb model
pb_model_name = "mobilenet.pb"
# create directory for further converted model
os.makedirs(pb_model_path, exist_ok=True)
# get model TF graph
tf_model_graph = tf.function(lambda x: tf_model(x))
# get concrete function
tf_model_graph = tf_model_graph.get_concrete_function(
tf.TensorSpec(tf_model.inputs[0].shape, tf_model.inputs[0].dtype))
# obtain frozen concrete function
frozen_tf_func = convert_variables_to_constants_v2(tf_model_graph)
# get frozen graph
frozen_tf_func.graph.as_graph_def()
# save full tf model
tf.io.write_graph(graph_or_graph_def=frozen_tf_func.graph,
logdir=pb_model_path,
name=pb_model_name,
as_text=False)
```
After the successful execution of the above code, we will get a frozen graph in ``models/mobilenet.pb``.
* read TF frozen graph with with cv.dnn.readNetFromTensorflow passing the obtained in the previous step ``mobilenet.pb`` into it:
```python
# get TF frozen graph path
full_pb_path = get_tf_model_proto(original_tf_model)
```
* prepare input data with cv2.dnn.blobFromImage function:
```python
# read the image
input_img = cv2.imread(img_path, cv2.IMREAD_COLOR)
input_img = input_img.astype(np.float32)
# define preprocess parameters
mean = np.array([1.0, 1.0, 1.0]) * 127.5
scale = 1 / 127.5
# prepare input blob to fit the model input:
# 1. subtract mean
# 2. scale to set pixel values from 0 to 1
input_blob = cv2.dnn.blobFromImage(
image=input_img,
scalefactor=scale,
size=(224, 224), # img target size
mean=mean,
swapRB=True, # BGR -> RGB
crop=True # center crop
)
print("Input blob shape: {}\n".format(input_blob.shape))
```
Please, pay attention at the preprocessing order in the cv2.dnn.blobFromImage function. Firstly, the mean value is subtracted and only then pixel values are multiplied by the defined scale.
Therefore, to reproduce the image preprocessing pipeline from the TF [``mobilenet.preprocess_input``](https://github.com/tensorflow/tensorflow/blob/02032fb477e9417197132648ec81e75beee9063a/tensorflow/python/keras/applications/mobilenet.py#L443-L445) function, we multiply ``mean`` by ``127.5``.
As a result, 4-dimensional ``input_blob`` was obtained:
``Input blob shape: (1, 3, 224, 224)``
* provide OpenCV cv.dnn.Net inference:
```python
# set OpenCV DNN input
opencv_net.setInput(preproc_img)
# OpenCV DNN inference
out = opencv_net.forward()
print("OpenCV DNN prediction: \n")
print("* shape: ", out.shape)
# get the predicted class ID
imagenet_class_id = np.argmax(out)
# get confidence
confidence = out[0][imagenet_class_id]
print("* class ID: {}, label: {}".format(imagenet_class_id, imagenet_labels[imagenet_class_id]))
print("* confidence: {:.4f}\n".format(confidence))
```
After the above code execution we will get the following output:
```console
OpenCV DNN prediction:
* shape: (1, 1000)
* class ID: 335, label: fox squirrel, eastern fox squirrel, Sciurus niger
* confidence: 0.9525
```
* provide TF MobileNet inference:
```python
# inference
preproc_img = preproc_img.transpose(0, 2, 3, 1)
print("TF input blob shape: {}\n".format(preproc_img.shape))
out = original_net(preproc_img)
print("\nTensorFlow model prediction: \n")
print("* shape: ", out.shape)
# get the predicted class ID
imagenet_class_id = np.argmax(out)
print("* class ID: {}, label: {}".format(imagenet_class_id, imagenet_labels[imagenet_class_id]))
# get confidence
confidence = out[0][imagenet_class_id]
print("* confidence: {:.4f}".format(confidence))
```
To fit TF model input, ``input_blob`` was transposed:
```console
TF input blob shape: (1, 224, 224, 3)
```
TF inference results are the following:
```console
TensorFlow model prediction:
* shape: (1, 1000)
* class ID: 335, label: fox squirrel, eastern fox squirrel, Sciurus niger
* confidence: 0.9525
```
As it can be seen from the experiments OpenCV and TF inference results are equal.
### Evaluation of the Models
The proposed in ``dnn/samples`` ``dnn_model_runner`` module allows to run the full evaluation pipeline on the ImageNet dataset and test execution for the following TensorFlow classification models:
* vgg16
* vgg19
* resnet50
* resnet101
* resnet152
* densenet121
* densenet169
* densenet201
* inceptionresnetv2
* inceptionv3
* mobilenet
* mobilenetv2
* nasnetlarge
* nasnetmobile
* xception
This list can be also extended with further appropriate evaluation pipeline configuration.
#### Evaluation Mode
To below line represents running of the module in the evaluation mode:
```console
python -m dnn_model_runner.dnn_conversion.tf.classification.py_to_py_cls --model_name <tf_cls_model_name>
```
Chosen from the list classification model will be read into OpenCV ``cv.dnn_Net`` object. Evaluation results of TF and OpenCV models (accuracy, inference time, L1) will be written into the log file. Inference time values will be also depicted in a chart to generalize the obtained model information.
Necessary evaluation configurations are defined in the [test_config.py](https://github.com/opencv/opencv/tree/master/samples/dnn/dnn_model_runner/dnn_conversion/common/test/configs/test_config.py) and can be modified in accordance with actual paths of data location::
```python
@dataclass
class TestClsConfig:
batch_size: int = 50
frame_size: int = 224
img_root_dir: str = "./ILSVRC2012_img_val"
# location of image-class matching
img_cls_file: str = "./val.txt"
bgr_to_rgb: bool = True
```
The values from ``TestClsConfig`` can be customized in accordance with chosen model.
To initiate the evaluation of the TensorFlow MobileNet, run the following line:
```console
python -m dnn_model_runner.dnn_conversion.tf.classification.py_to_py_cls --model_name mobilenet
```
After script launch, the log file with evaluation data will be generated in ``dnn_model_runner/dnn_conversion/logs``:
```console
===== Running evaluation of the model with the following params:
* val data location: ./ILSVRC2012_img_val
* log file location: dnn_model_runner/dnn_conversion/logs/TF_mobilenet_log.txt
```
#### Test Mode
The below line represents running of the module in the test mode, namely it provides the steps for the model inference:
```console
python -m dnn_model_runner.dnn_conversion.tf.classification.py_to_py_cls --model_name <tf_cls_model_name> --test True --default_img_preprocess <True/False> --evaluate False
```
Here ``default_img_preprocess`` key defines whether you'd like to parametrize the model test process with some particular values or use the default values, for example, ``scale``, ``mean`` or ``std``.
Test configuration is represented in [test_config.py](https://github.com/opencv/opencv/tree/master/samples/dnn/dnn_model_runner/dnn_conversion/common/test/configs/test_config.py) ``TestClsModuleConfig`` class:
```python
@dataclass
class TestClsModuleConfig:
cls_test_data_dir: str = "../data"
test_module_name: str = "classification"
test_module_path: str = "classification.py"
input_img: str = os.path.join(cls_test_data_dir, "squirrel_cls.jpg")
model: str = ""
frame_height: str = str(TestClsConfig.frame_size)
frame_width: str = str(TestClsConfig.frame_size)
scale: str = "1.0"
mean: List[str] = field(default_factory=lambda: ["0.0", "0.0", "0.0"])
std: List[str] = field(default_factory=list)
crop: str = "False"
rgb: str = "True"
rsz_height: str = ""
rsz_width: str = ""
classes: str = os.path.join(cls_test_data_dir, "dnn", "classification_classes_ILSVRC2012.txt")
```
The default image preprocessing options are defined in ``default_preprocess_config.py``. For instance, for MobileNet:
```python
tf_input_blob = {
"mean": ["127.5", "127.5", "127.5"],
"scale": str(1 / 127.5),
"std": [],
"crop": "True",
"rgb": "True"
}
```
The basis of the model testing is represented in [samples/dnn/classification.py](https://github.com/opencv/opencv/blob/master/samples/dnn/classification.py). ``classification.py`` can be executed autonomously with provided converted model in ``--input`` and populated parameters for cv.dnn.blobFromImage.
To reproduce from scratch the described in "Model Conversion Pipeline" OpenCV steps with ``dnn_model_runner`` execute the below line:
```console
python -m dnn_model_runner.dnn_conversion.tf.classification.py_to_py_cls --model_name mobilenet --test True --default_img_preprocess True --evaluate False
```
The network prediction is depicted in the top left corner of the output window:
![TF MobileNet OpenCV inference output](images/tf_mobilenet_opencv_test_res.jpg)

@ -3,6 +3,7 @@
@tableofcontents
@prev_tutorial{tutorial_dnn_OCR}
@next_tutorial{pytorch_cls_tutorial_dnn_conversion}
| | |
| -: | :- |

@ -10,3 +10,12 @@ Deep Neural Networks (dnn module) {#tutorial_table_of_content_dnn}
- @subpage tutorial_dnn_custom_layers
- @subpage tutorial_dnn_OCR
- @subpage tutorial_dnn_text_spotting
#### PyTorch models with OpenCV
In this section you will find the guides, which describe how to run classification, segmentation and detection PyTorch DNN models with OpenCV.
- @subpage pytorch_cls_tutorial_dnn_conversion
- @subpage pytorch_cls_c_tutorial_dnn_conversion
#### TensorFlow models with OpenCV
In this section you will find the guides, which describe how to run classification, segmentation and detection TensorFlow DNN models with OpenCV.
- @subpage tf_cls_tutorial_dnn_conversion

Binary file not shown.

After

Width:  |  Height:  |  Size: 61 KiB

@ -8,22 +8,26 @@
#include "common.hpp"
std::string keys =
"{ help h | | Print help message. }"
"{ @alias | | An alias name of model to extract preprocessing parameters from models.yml file. }"
"{ zoo | models.yml | An optional path to file with preprocessing parameters }"
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}"
"{ framework f | | Optional name of an origin framework of the model. Detect it automatically if it does not set. }"
"{ classes | | Optional path to a text file with names of classes. }"
"{ backend | 0 | Choose one of computation backends: "
"0: automatically (by default), "
"1: Halide language (http://halide-lang.org/), "
"2: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
"3: OpenCV implementation }"
"{ target | 0 | Choose one of target computation devices: "
"0: CPU target (by default), "
"1: OpenCL, "
"2: OpenCL fp16 (half-float precision), "
"3: VPU }";
"{ help h | | Print help message. }"
"{ @alias | | An alias name of model to extract preprocessing parameters from models.yml file. }"
"{ zoo | models.yml | An optional path to file with preprocessing parameters }"
"{ input i | | Path to input image or video file. Skip this argument to capture frames from a camera.}"
"{ initial_width | 0 | Preprocess input image by initial resizing to a specific width.}"
"{ initial_height | 0 | Preprocess input image by initial resizing to a specific height.}"
"{ std | 0.0 0.0 0.0 | Preprocess input image by dividing on a standard deviation.}"
"{ crop | false | Preprocess input image by center cropping.}"
"{ framework f | | Optional name of an origin framework of the model. Detect it automatically if it does not set. }"
"{ classes | | Optional path to a text file with names of classes. }"
"{ backend | 0 | Choose one of computation backends: "
"0: automatically (by default), "
"1: Halide language (http://halide-lang.org/), "
"2: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
"3: OpenCV implementation }"
"{ target | 0 | Choose one of target computation devices: "
"0: CPU target (by default), "
"1: OpenCL, "
"2: OpenCL fp16 (half-float precision), "
"3: VPU }";
using namespace cv;
using namespace dnn;
@ -47,9 +51,13 @@ int main(int argc, char** argv)
return 0;
}
int rszWidth = parser.get<int>("initial_width");
int rszHeight = parser.get<int>("initial_height");
float scale = parser.get<float>("scale");
Scalar mean = parser.get<Scalar>("mean");
Scalar std = parser.get<Scalar>("std");
bool swapRB = parser.get<bool>("rgb");
bool crop = parser.get<bool>("crop");
int inpWidth = parser.get<int>("width");
int inpHeight = parser.get<int>("height");
String model = findFile(parser.get<String>("model"));
@ -108,8 +116,20 @@ int main(int argc, char** argv)
break;
}
if (rszWidth != 0 && rszHeight != 0)
{
resize(frame, frame, Size(rszWidth, rszHeight));
}
//! [Create a 4D blob from a frame]
blobFromImage(frame, blob, scale, Size(inpWidth, inpHeight), mean, swapRB, false);
blobFromImage(frame, blob, scale, Size(inpWidth, inpHeight), mean, swapRB, crop);
// Check std values.
if (std.val[0] != 0.0 && std.val[1] != 0.0 && std.val[2] != 0.0)
{
// Divide blob by std.
divide(blob, std, blob);
}
//! [Create a 4D blob from a frame]
//! [Set input blob]

@ -1,85 +1,112 @@
import cv2 as cv
import argparse
import numpy as np
import cv2 as cv
import numpy as np
from common import *
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE, cv.dnn.DNN_BACKEND_OPENCV)
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD, cv.dnn.DNN_TARGET_HDDL)
parser = argparse.ArgumentParser(add_help=False)
parser.add_argument('--zoo', default=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models.yml'),
help='An optional path to file with preprocessing parameters.')
parser.add_argument('--input', help='Path to input image or video file. Skip this argument to capture frames from a camera.')
parser.add_argument('--framework', choices=['caffe', 'tensorflow', 'torch', 'darknet'],
help='Optional name of an origin framework of the model. '
'Detect it automatically if it does not set.')
parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
help="Choose one of computation backends: "
"%d: automatically (by default), "
"%d: Halide language (http://halide-lang.org/), "
"%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
"%d: OpenCV implementation" % backends)
parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
help='Choose one of target computation devices: '
'%d: CPU target (by default), '
'%d: OpenCL, '
'%d: OpenCL fp16 (half-float precision), '
'%d: NCS2 VPU, '
'%d: HDDL VPU' % targets)
args, _ = parser.parse_known_args()
add_preproc_args(args.zoo, parser, 'classification')
parser = argparse.ArgumentParser(parents=[parser],
description='Use this script to run classification deep learning networks using OpenCV.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
args = parser.parse_args()
args.model = findFile(args.model)
args.config = findFile(args.config)
args.classes = findFile(args.classes)
# Load names of classes
classes = None
if args.classes:
with open(args.classes, 'rt') as f:
classes = f.read().rstrip('\n').split('\n')
# Load a network
net = cv.dnn.readNet(args.model, args.config, args.framework)
net.setPreferableBackend(args.backend)
net.setPreferableTarget(args.target)
winName = 'Deep learning image classification in OpenCV'
cv.namedWindow(winName, cv.WINDOW_NORMAL)
cap = cv.VideoCapture(args.input if args.input else 0)
while cv.waitKey(1) < 0:
hasFrame, frame = cap.read()
if not hasFrame:
cv.waitKey()
break
# Create a 4D blob from a frame.
inpWidth = args.width if args.width else frame.shape[1]
inpHeight = args.height if args.height else frame.shape[0]
blob = cv.dnn.blobFromImage(frame, args.scale, (inpWidth, inpHeight), args.mean, args.rgb, crop=False)
# Run a model
net.setInput(blob)
out = net.forward()
# Get a class with a highest score.
out = out.flatten()
classId = np.argmax(out)
confidence = out[classId]
# Put efficiency information.
t, _ = net.getPerfProfile()
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency())
cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
# Print predicted class.
label = '%s: %.4f' % (classes[classId] if classes else 'Class #%d' % classId, confidence)
cv.putText(frame, label, (0, 40), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
cv.imshow(winName, frame)
def get_args_parser(func_args):
backends = (cv.dnn.DNN_BACKEND_DEFAULT, cv.dnn.DNN_BACKEND_HALIDE, cv.dnn.DNN_BACKEND_INFERENCE_ENGINE,
cv.dnn.DNN_BACKEND_OPENCV)
targets = (cv.dnn.DNN_TARGET_CPU, cv.dnn.DNN_TARGET_OPENCL, cv.dnn.DNN_TARGET_OPENCL_FP16, cv.dnn.DNN_TARGET_MYRIAD,
cv.dnn.DNN_TARGET_HDDL)
parser = argparse.ArgumentParser(add_help=False)
parser.add_argument('--zoo', default=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'models.yml'),
help='An optional path to file with preprocessing parameters.')
parser.add_argument('--input',
help='Path to input image or video file. Skip this argument to capture frames from a camera.')
parser.add_argument('--framework', choices=['caffe', 'tensorflow', 'torch', 'darknet'],
help='Optional name of an origin framework of the model. '
'Detect it automatically if it does not set.')
parser.add_argument('--std', nargs='*', type=float,
help='Preprocess input image by dividing on a standard deviation.')
parser.add_argument('--crop', type=bool, default=False,
help='Preprocess input image by dividing on a standard deviation.')
parser.add_argument('--initial_width', type=int,
help='Preprocess input image by initial resizing to a specific width.')
parser.add_argument('--initial_height', type=int,
help='Preprocess input image by initial resizing to a specific height.')
parser.add_argument('--backend', choices=backends, default=cv.dnn.DNN_BACKEND_DEFAULT, type=int,
help="Choose one of computation backends: "
"%d: automatically (by default), "
"%d: Halide language (http://halide-lang.org/), "
"%d: Intel's Deep Learning Inference Engine (https://software.intel.com/openvino-toolkit), "
"%d: OpenCV implementation" % backends)
parser.add_argument('--target', choices=targets, default=cv.dnn.DNN_TARGET_CPU, type=int,
help='Choose one of target computation devices: '
'%d: CPU target (by default), '
'%d: OpenCL, '
'%d: OpenCL fp16 (half-float precision), '
'%d: NCS2 VPU, '
'%d: HDDL VPU' % targets)
args, _ = parser.parse_known_args()
add_preproc_args(args.zoo, parser, 'classification')
parser = argparse.ArgumentParser(parents=[parser],
description='Use this script to run classification deep learning networks using OpenCV.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
return parser.parse_args(func_args)
def main(func_args=None):
args = get_args_parser(func_args)
args.model = findFile(args.model)
args.config = findFile(args.config)
args.classes = findFile(args.classes)
# Load names of classes
classes = None
if args.classes:
with open(args.classes, 'rt') as f:
classes = f.read().rstrip('\n').split('\n')
# Load a network
net = cv.dnn.readNet(args.model, args.config, args.framework)
net.setPreferableBackend(args.backend)
net.setPreferableTarget(args.target)
winName = 'Deep learning image classification in OpenCV'
cv.namedWindow(winName, cv.WINDOW_NORMAL)
cap = cv.VideoCapture(args.input if args.input else 0)
while cv.waitKey(1) < 0:
hasFrame, frame = cap.read()
if not hasFrame:
cv.waitKey()
break
# Create a 4D blob from a frame.
inpWidth = args.width if args.width else frame.shape[1]
inpHeight = args.height if args.height else frame.shape[0]
if args.initial_width and args.initial_height:
frame = cv.resize(frame, (args.initial_width, args.initial_height))
blob = cv.dnn.blobFromImage(frame, args.scale, (inpWidth, inpHeight), args.mean, args.rgb, crop=args.crop)
if args.std:
blob[0] /= np.asarray(args.std, dtype=np.float32).reshape(3, 1, 1)
# Run a model
net.setInput(blob)
out = net.forward()
# Get a class with a highest score.
out = out.flatten()
classId = np.argmax(out)
confidence = out[classId]
# Put efficiency information.
t, _ = net.getPerfProfile()
label = 'Inference time: %.2f ms' % (t * 1000.0 / cv.getTickFrequency())
cv.putText(frame, label, (0, 15), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
# Print predicted class.
label = '%s: %.4f' % (classes[classId] if classes else 'Class #%d' % classId, confidence)
cv.putText(frame, label, (0, 40), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0))
cv.imshow(winName, frame)
if __name__ == "__main__":
main()

@ -0,0 +1,23 @@
from abc import ABC, ABCMeta, abstractmethod
class AbstractModel(ABC):
@abstractmethod
def get_prepared_models(self):
pass
class Framework(object):
in_blob_name = ''
out_blob_name = ''
__metaclass__ = ABCMeta
@abstractmethod
def get_name(self):
pass
@abstractmethod
def get_output(self, input_blob):
pass

@ -0,0 +1,96 @@
import sys
import time
import numpy as np
from ...utils import get_final_summary_info
class ClsAccEvaluation:
log = sys.stdout
img_classes = {}
batch_size = 0
def __init__(self, log_path, img_classes_file, batch_size):
self.log = open(log_path, 'w')
self.img_classes = self.read_classes(img_classes_file)
self.batch_size = batch_size
# collect the accuracies for both models
self.general_quality_metric = []
self.general_inference_time = []
@staticmethod
def read_classes(img_classes_file):
result = {}
with open(img_classes_file) as file:
for l in file.readlines():
result[l.split()[0]] = int(l.split()[1])
return result
def get_correct_answers(self, img_list, net_output_blob):
correct_answers = 0
for i in range(len(img_list)):
indexes = np.argsort(net_output_blob[i])[-5:]
correct_index = self.img_classes[img_list[i]]
if correct_index in indexes:
correct_answers += 1
return correct_answers
def process(self, frameworks, data_fetcher):
sorted_imgs_names = sorted(self.img_classes.keys())
correct_answers = [0] * len(frameworks)
samples_handled = 0
blobs_l1_diff = [0] * len(frameworks)
blobs_l1_diff_count = [0] * len(frameworks)
blobs_l_inf_diff = [sys.float_info.min] * len(frameworks)
inference_time = [0.0] * len(frameworks)
for x in range(0, len(sorted_imgs_names), self.batch_size):
sublist = sorted_imgs_names[x:x + self.batch_size]
batch = data_fetcher.get_batch(sublist)
samples_handled += len(sublist)
fw_accuracy = []
fw_time = []
frameworks_out = []
for i in range(len(frameworks)):
start = time.time()
out = frameworks[i].get_output(batch)
end = time.time()
correct_answers[i] += self.get_correct_answers(sublist, out)
fw_accuracy.append(100 * correct_answers[i] / float(samples_handled))
frameworks_out.append(out)
inference_time[i] += end - start
fw_time.append(inference_time[i] / samples_handled * 1000)
print(samples_handled, 'Accuracy for', frameworks[i].get_name() + ':', fw_accuracy[i], file=self.log)
print("Inference time, ms ", frameworks[i].get_name(), fw_time[i], file=self.log)
self.general_quality_metric.append(fw_accuracy)
self.general_inference_time.append(fw_time)
for i in range(1, len(frameworks)):
log_str = frameworks[0].get_name() + " vs " + frameworks[i].get_name() + ':'
diff = np.abs(frameworks_out[0] - frameworks_out[i])
l1_diff = np.sum(diff) / diff.size
print(samples_handled, "L1 difference", log_str, l1_diff, file=self.log)
blobs_l1_diff[i] += l1_diff
blobs_l1_diff_count[i] += 1
if np.max(diff) > blobs_l_inf_diff[i]:
blobs_l_inf_diff[i] = np.max(diff)
print(samples_handled, "L_INF difference", log_str, blobs_l_inf_diff[i], file=self.log)
self.log.flush()
for i in range(1, len(blobs_l1_diff)):
log_str = frameworks[0].get_name() + " vs " + frameworks[i].get_name() + ':'
print('Final l1 diff', log_str, blobs_l1_diff[i] / blobs_l1_diff_count[i], file=self.log)
print(
get_final_summary_info(
self.general_quality_metric,
self.general_inference_time,
"accuracy"
),
file=self.log
)

@ -0,0 +1,87 @@
import os
from abc import ABCMeta, abstractmethod
import cv2
import numpy as np
from ...img_utils import read_rgb_img, get_pytorch_preprocess
from ...test.configs.default_preprocess_config import PYTORCH_RSZ_HEIGHT, PYTORCH_RSZ_WIDTH
class DataFetch(object):
imgs_dir = ''
frame_size = 0
bgr_to_rgb = False
__metaclass__ = ABCMeta
@abstractmethod
def preprocess(self, img):
pass
@staticmethod
def reshape_img(img):
img = img[:, :, 0:3].transpose(2, 0, 1)
return np.expand_dims(img, 0)
def center_crop(self, img):
cols = img.shape[1]
rows = img.shape[0]
y1 = round((rows - self.frame_size) / 2)
y2 = round(y1 + self.frame_size)
x1 = round((cols - self.frame_size) / 2)
x2 = round(x1 + self.frame_size)
return img[y1:y2, x1:x2]
def initial_preprocess(self, img):
min_dim = min(img.shape[-3], img.shape[-2])
resize_ratio = self.frame_size / float(min_dim)
img = cv2.resize(img, (0, 0), fx=resize_ratio, fy=resize_ratio)
img = self.center_crop(img)
return img
def get_preprocessed_img(self, img_path):
image_data = read_rgb_img(img_path, self.bgr_to_rgb)
image_data = self.preprocess(image_data)
return self.reshape_img(image_data)
def get_batch(self, img_names):
assert type(img_names) is list
batch = np.zeros((len(img_names), 3, self.frame_size, self.frame_size)).astype(np.float32)
for i in range(len(img_names)):
img_name = img_names[i]
img_file = os.path.join(self.imgs_dir, img_name)
assert os.path.exists(img_file)
batch[i] = self.get_preprocessed_img(img_file)
return batch
class PyTorchPreprocessedFetch(DataFetch):
def __init__(self, pytorch_cls_config, preprocess_input=None):
self.imgs_dir = pytorch_cls_config.img_root_dir
self.frame_size = pytorch_cls_config.frame_size
self.bgr_to_rgb = pytorch_cls_config.bgr_to_rgb
self.preprocess_input = preprocess_input
def preprocess(self, img):
img = cv2.resize(img, (PYTORCH_RSZ_WIDTH, PYTORCH_RSZ_HEIGHT))
img = self.center_crop(img)
if self.preprocess_input:
return self.presprocess_input(img)
return get_pytorch_preprocess(img)
class TFPreprocessedFetch(DataFetch):
def __init__(self, tf_cls_config, preprocess_input):
self.imgs_dir = tf_cls_config.img_root_dir
self.frame_size = tf_cls_config.frame_size
self.bgr_to_rgb = tf_cls_config.bgr_to_rgb
self.preprocess_input = preprocess_input
def preprocess(self, img):
img = self.initial_preprocess(img)
return self.preprocess_input(img)

@ -0,0 +1,19 @@
import cv2
import numpy as np
from .test.configs.default_preprocess_config import BASE_IMG_SCALE_FACTOR
def read_rgb_img(img_file, is_bgr_to_rgb=True):
img = cv2.imread(img_file, cv2.IMREAD_COLOR)
if is_bgr_to_rgb:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
return img
def get_pytorch_preprocess(img):
img = img.astype(np.float32)
img *= BASE_IMG_SCALE_FACTOR
img -= [0.485, 0.456, 0.406]
img /= [0.229, 0.224, 0.225]
return img

@ -0,0 +1,60 @@
from .configs.test_config import TestClsConfig, TestClsModuleConfig
from .model_test_pipeline import ModelTestPipeline
from ..evaluation.classification.cls_accuracy_evaluator import ClsAccEvaluation
from ..utils import get_test_module
class ClsModelTestPipeline(ModelTestPipeline):
def __init__(
self,
network_model,
model_processor,
dnn_model_processor,
data_fetcher,
img_processor=None,
cls_args_parser=None,
default_input_blob_preproc=None
):
super(ClsModelTestPipeline, self).__init__(
network_model,
model_processor,
dnn_model_processor
)
if cls_args_parser:
self._parser = cls_args_parser
self.test_config = TestClsConfig()
parser_args = self._parser.parse_args()
if parser_args.test:
self._test_module_config = TestClsModuleConfig()
self._test_module = get_test_module(
self._test_module_config.test_module_name,
self._test_module_config.test_module_path
)
if parser_args.default_img_preprocess:
self._default_input_blob_preproc = default_input_blob_preproc
if parser_args.evaluate:
self._data_fetcher = data_fetcher(self.test_config, img_processor)
def _configure_test_module_params(self):
self._test_module_param_list.extend((
'--crop', self._test_module_config.crop,
'--std', *self._test_module_config.std
))
if self._test_module_config.rsz_height and self._test_module_config.rsz_width:
self._test_module_param_list.extend((
'--initial_height', self._test_module_config.rsz_height,
'--initial_width', self._test_module_config.rsz_width,
))
def _configure_acc_eval(self, log_path):
self._accuracy_evaluator = ClsAccEvaluation(
log_path,
self.test_config.img_cls_file,
self.test_config.batch_size
)

@ -0,0 +1,37 @@
BASE_IMG_SCALE_FACTOR = 1 / 255.0
PYTORCH_RSZ_HEIGHT = 256
PYTORCH_RSZ_WIDTH = 256
pytorch_resize_input_blob = {
"mean": ["123.675", "116.28", "103.53"],
"scale": str(BASE_IMG_SCALE_FACTOR),
"std": ["0.229", "0.224", "0.225"],
"crop": "True",
"rgb": True,
"rsz_height": str(PYTORCH_RSZ_HEIGHT),
"rsz_width": str(PYTORCH_RSZ_WIDTH)
}
pytorch_input_blob = {
"mean": ["123.675", "116.28", "103.53"],
"scale": str(BASE_IMG_SCALE_FACTOR),
"std": ["0.229", "0.224", "0.225"],
"crop": "True",
"rgb": True
}
tf_input_blob = {
"scale": str(1 / 127.5),
"mean": ["127.5", "127.5", "127.5"],
"std": [],
"crop": "True",
"rgb": True
}
tf_model_blob_caffe_mode = {
"mean": ["103.939", "116.779", "123.68"],
"scale": "1.0",
"std": [],
"crop": "True",
"rgb": False
}

@ -0,0 +1,40 @@
import os
from dataclasses import dataclass, field
from typing import List
@dataclass
class CommonConfig:
output_data_root_dir: str = "dnn_model_runner/dnn_conversion"
logs_dir: str = os.path.join(output_data_root_dir, "logs")
log_file_path: str = os.path.join(logs_dir, "{}_log.txt")
@dataclass
class TestClsConfig:
batch_size: int = 1
frame_size: int = 224
img_root_dir: str = "./ILSVRC2012_img_val"
# location of image-class matching
img_cls_file: str = "./val.txt"
bgr_to_rgb: bool = True
@dataclass
class TestClsModuleConfig:
cls_test_data_dir: str = "../data"
test_module_name: str = "classification"
test_module_path: str = "classification.py"
input_img: str = os.path.join(cls_test_data_dir, "squirrel_cls.jpg")
model: str = ""
frame_height: str = str(TestClsConfig.frame_size)
frame_width: str = str(TestClsConfig.frame_size)
scale: str = "1.0"
mean: List[str] = field(default_factory=lambda: ["0.0", "0.0", "0.0"])
std: List[str] = field(default_factory=list)
crop: str = "False"
rgb: str = "True"
rsz_height: str = ""
rsz_width: str = ""
classes: str = os.path.join(cls_test_data_dir, "dnn", "classification_classes_ILSVRC2012.txt")

@ -0,0 +1,126 @@
import os
import numpy as np
from .configs.test_config import CommonConfig
from ..utils import create_parser, plot_acc
class ModelTestPipeline:
def __init__(
self,
network_model,
model_processor,
dnn_model_processor
):
self._net_model = network_model
self._model_processor = model_processor
self._dnn_model_processor = dnn_model_processor
self._parser = create_parser()
self._test_module = None
self._test_module_config = None
self._test_module_param_list = None
self.test_config = None
self._data_fetcher = None
self._default_input_blob_preproc = None
self._accuracy_evaluator = None
def init_test_pipeline(self):
cmd_args = self._parser.parse_args()
model_dict = self._net_model.get_prepared_models()
model_names = list(model_dict.keys())
print(
"The model {} was successfully obtained and converted to OpenCV {}".format(model_names[0], model_names[1])
)
if cmd_args.test:
if not self._test_module_config.model:
self._test_module_config.model = self._net_model.model_path["full_path"]
if cmd_args.default_img_preprocess:
self._test_module_config.scale = self._default_input_blob_preproc["scale"]
self._test_module_config.mean = self._default_input_blob_preproc["mean"]
self._test_module_config.std = self._default_input_blob_preproc["std"]
self._test_module_config.crop = self._default_input_blob_preproc["crop"]
if "rsz_height" in self._default_input_blob_preproc and "rsz_width" in self._default_input_blob_preproc:
self._test_module_config.rsz_height = self._default_input_blob_preproc["rsz_height"]
self._test_module_config.rsz_width = self._default_input_blob_preproc["rsz_width"]
self._test_module_param_list = [
'--model', self._test_module_config.model,
'--input', self._test_module_config.input_img,
'--width', self._test_module_config.frame_width,
'--height', self._test_module_config.frame_height,
'--scale', self._test_module_config.scale,
'--mean', *self._test_module_config.mean,
'--std', *self._test_module_config.std,
'--classes', self._test_module_config.classes,
]
if self._default_input_blob_preproc["rgb"]:
self._test_module_param_list.append('--rgb')
self._configure_test_module_params()
self._test_module.main(
self._test_module_param_list
)
if cmd_args.evaluate:
original_model_name = model_names[0]
dnn_model_name = model_names[1]
self.run_test_pipeline(
[
self._model_processor(model_dict[original_model_name], original_model_name),
self._dnn_model_processor(model_dict[dnn_model_name], dnn_model_name)
],
original_model_name.replace(" ", "_")
)
def run_test_pipeline(
self,
models_list,
formatted_exp_name,
is_plot_acc=True
):
log_path, logs_dir = self._configure_eval_log(formatted_exp_name)
print(
"===== Running evaluation of the model with the following params:\n"
"\t* val data location: {}\n"
"\t* log file location: {}\n".format(
self.test_config.img_root_dir,
log_path
)
)
os.makedirs(logs_dir, exist_ok=True)
self._configure_acc_eval(log_path)
self._accuracy_evaluator.process(models_list, self._data_fetcher)
if is_plot_acc:
plot_acc(
np.array(self._accuracy_evaluator.general_inference_time),
formatted_exp_name
)
print("===== End of the evaluation pipeline =====")
def _configure_acc_eval(self, log_path):
pass
def _configure_test_module_params(self):
pass
@staticmethod
def _configure_eval_log(formatted_exp_name):
common_test_config = CommonConfig()
return common_test_config.log_file_path.format(formatted_exp_name), common_test_config.logs_dir

@ -0,0 +1,153 @@
import argparse
import importlib.util
import os
import random
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
import torch
from .test.configs.test_config import CommonConfig
SEED_VAL = 42
DNN_LIB = "DNN"
# common path for model savings
MODEL_PATH_ROOT = os.path.join(CommonConfig().output_data_root_dir, "{}/models")
def get_full_model_path(lib_name, model_full_name):
model_path = MODEL_PATH_ROOT.format(lib_name)
return {
"path": model_path,
"full_path": os.path.join(model_path, model_full_name)
}
def plot_acc(data_list, experiment_name):
plt.figure(figsize=[8, 6])
plt.plot(data_list[:, 0], "r", linewidth=2.5, label="Original Model")
plt.plot(data_list[:, 1], "b", linewidth=2.5, label="Converted DNN Model")
plt.xlabel("Iterations ", fontsize=15)
plt.ylabel("Time (ms)", fontsize=15)
plt.title(experiment_name, fontsize=15)
plt.legend()
full_path_to_fig = os.path.join(CommonConfig().output_data_root_dir, experiment_name + ".png")
plt.savefig(full_path_to_fig, bbox_inches="tight")
def get_final_summary_info(general_quality_metric, general_inference_time, metric_name):
general_quality_metric = np.array(general_quality_metric)
general_inference_time = np.array(general_inference_time)
summary_line = "===== End of processing. General results:\n"
"\t* mean {} for the original model: {}\t"
"\t* mean time (min) for the original model inferences: {}\n"
"\t* mean {} for the DNN model: {}\t"
"\t* mean time (min) for the DNN model inferences: {}\n".format(
metric_name, np.mean(general_quality_metric[:, 0]),
np.mean(general_inference_time[:, 0]) / 60000,
metric_name, np.mean(general_quality_metric[:, 1]),
np.mean(general_inference_time[:, 1]) / 60000,
)
return summary_line
def set_common_reproducibility():
random.seed(SEED_VAL)
np.random.seed(SEED_VAL)
def set_pytorch_env():
set_common_reproducibility()
torch.manual_seed(SEED_VAL)
torch.set_printoptions(precision=10)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(SEED_VAL)
torch.backends.cudnn_benchmark_enabled = False
torch.backends.cudnn.deterministic = True
def set_tf_env(is_use_gpu=True):
set_common_reproducibility()
tf.random.set_seed(SEED_VAL)
os.environ["TF_DETERMINISTIC_OPS"] = "1"
if tf.config.list_physical_devices("GPU") and is_use_gpu:
gpu_devices = tf.config.list_physical_devices("GPU")
tf.config.experimental.set_visible_devices(gpu_devices[0], "GPU")
tf.config.experimental.set_memory_growth(gpu_devices[0], True)
os.environ["TF_USE_CUDNN"] = "1"
else:
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
def str_bool(input_val):
if input_val.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif input_val.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value was expected')
def get_formatted_model_list(model_list):
note_line = 'Please, choose the model from the below list:\n'
spaces_to_set = ' ' * (len(note_line) - 2)
return note_line + ''.join([spaces_to_set, '{} \n'] * len(model_list)).format(*model_list)
def model_str(model_list):
def type_model_list(input_val):
if input_val.lower() in model_list:
return input_val.lower()
else:
raise argparse.ArgumentTypeError(
'The model is currently unavailable for test.\n' +
get_formatted_model_list(model_list)
)
return type_model_list
def get_test_module(test_module_name, test_module_path):
module_spec = importlib.util.spec_from_file_location(test_module_name, test_module_path)
test_module = importlib.util.module_from_spec(module_spec)
module_spec.loader.exec_module(test_module)
module_spec.loader.exec_module(test_module)
return test_module
def create_parser():
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument(
"--test",
type=str_bool,
help="Define whether you'd like to run the model with OpenCV for testing.",
default=False
),
parser.add_argument(
"--default_img_preprocess",
type=str_bool,
help="Define whether you'd like to preprocess the input image with defined"
" PyTorch or TF functions for model test with OpenCV.",
default=False
),
parser.add_argument(
"--evaluate",
type=str_bool,
help="Define whether you'd like to run evaluation of the models (ex.: TF vs OpenCV networks).",
default=True
)
return parser
def create_extended_parser(model_list):
parser = create_parser()
parser.add_argument(
"--model_name",
type=model_str(model_list=model_list),
help="\nDefine the model name to test.\n" +
get_formatted_model_list(model_list),
required=True
)
return parser

@ -0,0 +1,71 @@
from torchvision import models
from ..pytorch_model import (
PyTorchModelPreparer,
PyTorchModelProcessor,
PyTorchDnnModelProcessor
)
from ...common.evaluation.classification.cls_data_fetcher import PyTorchPreprocessedFetch
from ...common.test.cls_model_test_pipeline import ClsModelTestPipeline
from ...common.test.configs.default_preprocess_config import pytorch_resize_input_blob
from ...common.test.configs.test_config import TestClsConfig
from ...common.utils import set_pytorch_env, create_extended_parser
model_dict = {
"alexnet": models.alexnet,
"vgg11": models.vgg11,
"vgg13": models.vgg13,
"vgg16": models.vgg16,
"vgg19": models.vgg19,
"resnet18": models.resnet18,
"resnet34": models.resnet34,
"resnet50": models.resnet50,
"resnet101": models.resnet101,
"resnet152": models.resnet152,
"squeezenet1_0": models.squeezenet1_0,
"squeezenet1_1": models.squeezenet1_1,
"resnext50_32x4d": models.resnext50_32x4d,
"resnext101_32x8d": models.resnext101_32x8d,
"wide_resnet50_2": models.wide_resnet50_2,
"wide_resnet101_2": models.wide_resnet101_2
}
class PyTorchClsModel(PyTorchModelPreparer):
def __init__(self, height, width, model_name, original_model):
super(PyTorchClsModel, self).__init__(height, width, model_name, original_model)
def main():
set_pytorch_env()
parser = create_extended_parser(list(model_dict.keys()))
cmd_args = parser.parse_args()
model_name = cmd_args.model_name
cls_model = PyTorchClsModel(
height=TestClsConfig().frame_size,
width=TestClsConfig().frame_size,
model_name=model_name,
original_model=model_dict[model_name](pretrained=True)
)
pytorch_cls_pipeline = ClsModelTestPipeline(
network_model=cls_model,
model_processor=PyTorchModelProcessor,
dnn_model_processor=PyTorchDnnModelProcessor,
data_fetcher=PyTorchPreprocessedFetch,
cls_args_parser=parser,
default_input_blob_preproc=pytorch_resize_input_blob
)
pytorch_cls_pipeline.init_test_pipeline()
if __name__ == "__main__":
main()

@ -0,0 +1,139 @@
import os
import cv2
import numpy as np
import torch
import torch.onnx
from torch.autograd import Variable
from torchvision import models
def get_pytorch_onnx_model(original_model):
# define the directory for further converted model save
onnx_model_path = "models"
# define the name of further converted model
onnx_model_name = "resnet50.onnx"
# create directory for further converted model
os.makedirs(onnx_model_path, exist_ok=True)
# get full path to the converted model
full_model_path = os.path.join(onnx_model_path, onnx_model_name)
# generate model input
generated_input = Variable(
torch.randn(1, 3, 224, 224)
)
# model export into ONNX format
torch.onnx.export(
original_model,
generated_input,
full_model_path,
verbose=True,
input_names=["input"],
output_names=["output"],
opset_version=11
)
return full_model_path
def get_preprocessed_img(img_path):
# read the image
input_img = cv2.imread(img_path, cv2.IMREAD_COLOR)
input_img = input_img.astype(np.float32)
input_img = cv2.resize(input_img, (256, 256))
# define preprocess parameters
mean = np.array([0.485, 0.456, 0.406]) * 255.0
scale = 1 / 255.0
std = [0.229, 0.224, 0.225]
# prepare input blob to fit the model input:
# 1. subtract mean
# 2. scale to set pixel values from 0 to 1
input_blob = cv2.dnn.blobFromImage(
image=input_img,
scalefactor=scale,
size=(224, 224), # img target size
mean=mean,
swapRB=True, # BGR -> RGB
crop=True # center crop
)
# 3. divide by std
input_blob[0] /= np.asarray(std, dtype=np.float32).reshape(3, 1, 1)
return input_blob
def get_imagenet_labels(labels_path):
with open(labels_path) as f:
imagenet_labels = [line.strip() for line in f.readlines()]
return imagenet_labels
def get_opencv_dnn_prediction(opencv_net, preproc_img, imagenet_labels):
# set OpenCV DNN input
opencv_net.setInput(preproc_img)
# OpenCV DNN inference
out = opencv_net.forward()
print("OpenCV DNN prediction: \n")
print("* shape: ", out.shape)
# get the predicted class ID
imagenet_class_id = np.argmax(out)
# get confidence
confidence = out[0][imagenet_class_id]
print("* class ID: {}, label: {}".format(imagenet_class_id, imagenet_labels[imagenet_class_id]))
print("* confidence: {:.4f}".format(confidence))
def get_pytorch_dnn_prediction(original_net, preproc_img, imagenet_labels):
original_net.eval()
preproc_img = torch.FloatTensor(preproc_img)
# inference
with torch.no_grad():
out = original_net(preproc_img)
print("\nPyTorch model prediction: \n")
print("* shape: ", out.shape)
# get the predicted class ID
imagenet_class_id = torch.argmax(out, axis=1).item()
print("* class ID: {}, label: {}".format(imagenet_class_id, imagenet_labels[imagenet_class_id]))
# get confidence
confidence = out[0][imagenet_class_id]
print("* confidence: {:.4f}".format(confidence.item()))
def main():
# initialize PyTorch ResNet-50 model
original_model = models.resnet50(pretrained=True)
# get the path to the converted into ONNX PyTorch model
full_model_path = get_pytorch_onnx_model(original_model)
# read converted .onnx model with OpenCV API
opencv_net = cv2.dnn.readNetFromONNX(full_model_path)
print("OpenCV model was successfully read. Layer IDs: \n", opencv_net.getLayerNames())
# get preprocessed image
input_img = get_preprocessed_img("../data/squirrel_cls.jpg")
# get ImageNet labels
imagenet_labels = get_imagenet_labels("../data/dnn/classification_classes_ILSVRC2012.txt")
# obtain OpenCV DNN predictions
get_opencv_dnn_prediction(opencv_net, input_img, imagenet_labels)
# obtain original PyTorch ResNet50 predictions
get_pytorch_dnn_prediction(original_model, input_img, imagenet_labels)
if __name__ == "__main__":
main()

@ -0,0 +1,50 @@
import os
import torch
import torch.onnx
from torch.autograd import Variable
from torchvision import models
def get_pytorch_onnx_model(original_model):
# define the directory for further converted model save
onnx_model_path = "models"
# define the name of further converted model
onnx_model_name = "resnet50.onnx"
# create directory for further converted model
os.makedirs(onnx_model_path, exist_ok=True)
# get full path to the converted model
full_model_path = os.path.join(onnx_model_path, onnx_model_name)
# generate model input
generated_input = Variable(
torch.randn(1, 3, 224, 224)
)
# model export into ONNX format
torch.onnx.export(
original_model,
generated_input,
full_model_path,
verbose=True,
input_names=["input"],
output_names=["output"],
opset_version=11
)
return full_model_path
def main():
# initialize PyTorch ResNet-50 model
original_model = models.resnet50(pretrained=True)
# get the path to the converted into ONNX PyTorch model
full_model_path = get_pytorch_onnx_model(original_model)
print("PyTorch ResNet-50 model was successfully converted: ", full_model_path)
if __name__ == "__main__":
main()

@ -0,0 +1,98 @@
import os
import cv2
import torch.onnx
from torch.autograd import Variable
from ..common.abstract_model import AbstractModel, Framework
from ..common.utils import DNN_LIB, get_full_model_path
CURRENT_LIB = "PyTorch"
MODEL_FORMAT = ".onnx"
class PyTorchModelPreparer(AbstractModel):
def __init__(
self,
height,
width,
model_name="default",
original_model=object,
batch_size=1,
default_input_name="input",
default_output_name="output"
):
self._height = height
self._width = width
self._model_name = model_name
self._original_model = original_model
self._batch_size = batch_size
self._default_input_name = default_input_name
self._default_output_name = default_output_name
self.model_path = self._set_model_path()
self._dnn_model = self._set_dnn_model()
def _set_dnn_model(self):
generated_input = Variable(torch.randn(
self._batch_size, 3, self._height, self._width)
)
os.makedirs(self.model_path["path"], exist_ok=True)
torch.onnx.export(
self._original_model,
generated_input,
self.model_path["full_path"],
verbose=True,
input_names=[self._default_input_name],
output_names=[self._default_output_name],
opset_version=11
)
return cv2.dnn.readNetFromONNX(self.model_path["full_path"])
def _set_model_path(self):
model_to_save = self._model_name + MODEL_FORMAT
return get_full_model_path(CURRENT_LIB.lower(), model_to_save)
def get_prepared_models(self):
return {
CURRENT_LIB + " " + self._model_name: self._original_model,
DNN_LIB + " " + self._model_name: self._dnn_model
}
class PyTorchModelProcessor(Framework):
def __init__(self, prepared_model, model_name):
self._prepared_model = prepared_model
self._name = model_name
def get_output(self, input_blob):
tensor = torch.FloatTensor(input_blob)
self._prepared_model.eval()
with torch.no_grad():
model_out = self._prepared_model(tensor)
# segmentation case
if len(model_out) == 2:
model_out = model_out['out']
out = model_out.detach().numpy()
return out
def get_name(self):
return self._name
class PyTorchDnnModelProcessor(Framework):
def __init__(self, prepared_dnn_model, model_name):
self._prepared_dnn_model = prepared_dnn_model
self._name = model_name
def get_output(self, input_blob):
self._prepared_dnn_model.setInput(input_blob, '')
return self._prepared_dnn_model.forward()
def get_name(self):
return self._name

@ -0,0 +1,9 @@
# Python 3.7.5
onnx>=1.7.0
numpy>=1.19.1
torch>=1.5.1
torchvision>=0.6.1
tensorflow>=2.1.0
tensorflow-gpu>=2.1.0

@ -0,0 +1,104 @@
from tensorflow.keras.applications import (
VGG16, vgg16,
VGG19, vgg19,
ResNet50, resnet,
ResNet101,
ResNet152,
DenseNet121, densenet,
DenseNet169,
DenseNet201,
InceptionResNetV2, inception_resnet_v2,
InceptionV3, inception_v3,
MobileNet, mobilenet,
MobileNetV2, mobilenet_v2,
NASNetLarge, nasnet,
NASNetMobile,
Xception, xception
)
from ..tf_model import TFModelPreparer
from ..tf_model import (
TFModelProcessor,
TFDnnModelProcessor
)
from ...common.evaluation.classification.cls_data_fetcher import TFPreprocessedFetch
from ...common.test.cls_model_test_pipeline import ClsModelTestPipeline
from ...common.test.configs.default_preprocess_config import (
tf_input_blob,
pytorch_input_blob,
tf_model_blob_caffe_mode
)
from ...common.utils import set_tf_env, create_extended_parser
model_dict = {
"vgg16": [VGG16, vgg16, tf_model_blob_caffe_mode],
"vgg19": [VGG19, vgg19, tf_model_blob_caffe_mode],
"resnet50": [ResNet50, resnet, tf_model_blob_caffe_mode],
"resnet101": [ResNet101, resnet, tf_model_blob_caffe_mode],
"resnet152": [ResNet152, resnet, tf_model_blob_caffe_mode],
"densenet121": [DenseNet121, densenet, pytorch_input_blob],
"densenet169": [DenseNet169, densenet, pytorch_input_blob],
"densenet201": [DenseNet201, densenet, pytorch_input_blob],
"inceptionresnetv2": [InceptionResNetV2, inception_resnet_v2, tf_input_blob],
"inceptionv3": [InceptionV3, inception_v3, tf_input_blob],
"mobilenet": [MobileNet, mobilenet, tf_input_blob],
"mobilenetv2": [MobileNetV2, mobilenet_v2, tf_input_blob],
"nasnetlarge": [NASNetLarge, nasnet, tf_input_blob],
"nasnetmobile": [NASNetMobile, nasnet, tf_input_blob],
"xception": [Xception, xception, tf_input_blob]
}
CNN_CLASS_ID = 0
CNN_UTILS_ID = 1
DEFAULT_BLOB_PARAMS_ID = 2
class TFClsModel(TFModelPreparer):
def __init__(self, model_name, original_model):
super(TFClsModel, self).__init__(model_name, original_model)
def main():
set_tf_env()
parser = create_extended_parser(list(model_dict.keys()))
cmd_args = parser.parse_args()
model_name = cmd_args.model_name
model_name_val = model_dict[model_name]
cls_model = TFClsModel(
model_name=model_name,
original_model=model_name_val[CNN_CLASS_ID](
include_top=True,
weights="imagenet"
)
)
tf_cls_pipeline = ClsModelTestPipeline(
network_model=cls_model,
model_processor=TFModelProcessor,
dnn_model_processor=TFDnnModelProcessor,
data_fetcher=TFPreprocessedFetch,
img_processor=model_name_val[CNN_UTILS_ID].preprocess_input,
cls_args_parser=parser,
default_input_blob_preproc=model_name_val[DEFAULT_BLOB_PARAMS_ID]
)
tf_cls_pipeline.init_test_pipeline()
if __name__ == "__main__":
main()

@ -0,0 +1,142 @@
import os
import cv2
import numpy as np
import tensorflow as tf
from tensorflow.keras.applications import MobileNet
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
from ...common.utils import set_tf_env
def get_tf_model_proto(tf_model):
# define the directory for .pb model
pb_model_path = "models"
# define the name of .pb model
pb_model_name = "mobilenet.pb"
# create directory for further converted model
os.makedirs(pb_model_path, exist_ok=True)
# get model TF graph
tf_model_graph = tf.function(lambda x: tf_model(x))
# get concrete function
tf_model_graph = tf_model_graph.get_concrete_function(
tf.TensorSpec(tf_model.inputs[0].shape, tf_model.inputs[0].dtype))
# obtain frozen concrete function
frozen_tf_func = convert_variables_to_constants_v2(tf_model_graph)
# get frozen graph
frozen_tf_func.graph.as_graph_def()
# save full tf model
tf.io.write_graph(graph_or_graph_def=frozen_tf_func.graph,
logdir=pb_model_path,
name=pb_model_name,
as_text=False)
return os.path.join(pb_model_path, pb_model_name)
def get_preprocessed_img(img_path):
# read the image
input_img = cv2.imread(img_path, cv2.IMREAD_COLOR)
input_img = input_img.astype(np.float32)
# define preprocess parameters
mean = np.array([1.0, 1.0, 1.0]) * 127.5
scale = 1 / 127.5
# prepare input blob to fit the model input:
# 1. subtract mean
# 2. scale to set pixel values from 0 to 1
input_blob = cv2.dnn.blobFromImage(
image=input_img,
scalefactor=scale,
size=(224, 224), # img target size
mean=mean,
swapRB=True, # BGR -> RGB
crop=True # center crop
)
print("Input blob shape: {}\n".format(input_blob.shape))
return input_blob
def get_imagenet_labels(labels_path):
with open(labels_path) as f:
imagenet_labels = [line.strip() for line in f.readlines()]
return imagenet_labels
def get_opencv_dnn_prediction(opencv_net, preproc_img, imagenet_labels):
# set OpenCV DNN input
opencv_net.setInput(preproc_img)
# OpenCV DNN inference
out = opencv_net.forward()
print("OpenCV DNN prediction: \n")
print("* shape: ", out.shape)
# get the predicted class ID
imagenet_class_id = np.argmax(out)
# get confidence
confidence = out[0][imagenet_class_id]
print("* class ID: {}, label: {}".format(imagenet_class_id, imagenet_labels[imagenet_class_id]))
print("* confidence: {:.4f}\n".format(confidence))
def get_tf_dnn_prediction(original_net, preproc_img, imagenet_labels):
# inference
preproc_img = preproc_img.transpose(0, 2, 3, 1)
print("TF input blob shape: {}\n".format(preproc_img.shape))
out = original_net(preproc_img)
print("\nTensorFlow model prediction: \n")
print("* shape: ", out.shape)
# get the predicted class ID
imagenet_class_id = np.argmax(out)
print("* class ID: {}, label: {}".format(imagenet_class_id, imagenet_labels[imagenet_class_id]))
# get confidence
confidence = out[0][imagenet_class_id]
print("* confidence: {:.4f}".format(confidence))
def main():
# configure TF launching
set_tf_env()
# initialize TF MobileNet model
original_tf_model = MobileNet(
include_top=True,
weights="imagenet"
)
# get TF frozen graph path
full_pb_path = get_tf_model_proto(original_tf_model)
# read frozen graph with OpenCV API
opencv_net = cv2.dnn.readNetFromTensorflow(full_pb_path)
print("OpenCV model was successfully read. Model layers: \n", opencv_net.getLayerNames())
# get preprocessed image
input_img = get_preprocessed_img("../data/squirrel_cls.jpg")
# get ImageNet labels
imagenet_labels = get_imagenet_labels("../data/dnn/classification_classes_ILSVRC2012.txt")
# obtain OpenCV DNN predictions
get_opencv_dnn_prediction(opencv_net, input_img, imagenet_labels)
# obtain TF model predictions
get_tf_dnn_prediction(original_tf_model, input_img, imagenet_labels)
if __name__ == "__main__":
main()

@ -0,0 +1,112 @@
import cv2
import tensorflow as tf
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
from ..common.abstract_model import AbstractModel, Framework
from ..common.utils import DNN_LIB, get_full_model_path
CURRENT_LIB = "TF"
MODEL_FORMAT = ".pb"
class TFModelPreparer(AbstractModel):
""" Class for the preparation of the TF models: original and converted OpenCV Net.
Args:
model_name: TF model name
original_model: TF configured model object or session
is_ready_graph: indicates whether ready .pb file already exists
tf_model_graph_path: path to the existing frozen TF graph
"""
def __init__(
self,
model_name="default",
original_model=None,
is_ready_graph=False,
tf_model_graph_path=""
):
self._model_name = model_name
self._original_model = original_model
self._model_to_save = ""
self._is_ready_to_transfer_graph = is_ready_graph
self.model_path = self._set_model_path(tf_model_graph_path)
self._dnn_model = self._set_dnn_model()
def _set_dnn_model(self):
if not self._is_ready_to_transfer_graph:
# get model TF graph
tf_model_graph = tf.function(lambda x: self._original_model(x))
tf_model_graph = tf_model_graph.get_concrete_function(
tf.TensorSpec(self._original_model.inputs[0].shape, self._original_model.inputs[0].dtype))
# obtain frozen concrete function
frozen_tf_func = convert_variables_to_constants_v2(tf_model_graph)
frozen_tf_func.graph.as_graph_def()
# save full TF model
tf.io.write_graph(graph_or_graph_def=frozen_tf_func.graph,
logdir=self.model_path["path"],
name=self._model_to_save,
as_text=False)
return cv2.dnn.readNetFromTensorflow(self.model_path["full_path"])
def _set_model_path(self, tf_pb_file_path):
""" Method for setting model paths.
Args:
tf_pb_file_path: path to the existing TF .pb
Returns:
dictionary, where full_path key means saved model path and its full name.
"""
model_paths_dict = {
"path": "",
"full_path": tf_pb_file_path
}
if not self._is_ready_to_transfer_graph:
self._model_to_save = self._model_name + MODEL_FORMAT
model_paths_dict = get_full_model_path(CURRENT_LIB.lower(), self._model_to_save)
return model_paths_dict
def get_prepared_models(self):
original_lib_name = CURRENT_LIB + " " + self._model_name
configured_model_dict = {
original_lib_name: self._original_model,
DNN_LIB + " " + self._model_name: self._dnn_model
}
return configured_model_dict
class TFModelProcessor(Framework):
def __init__(self, prepared_model, model_name):
self._prepared_model = prepared_model
self._name = model_name
def get_output(self, input_blob):
assert len(input_blob.shape) == 4
batch_tf = input_blob.transpose(0, 2, 3, 1)
out = self._prepared_model(batch_tf)
return out
def get_name(self):
return CURRENT_LIB
class TFDnnModelProcessor(Framework):
def __init__(self, prepared_dnn_model, model_name):
self._prepared_dnn_model = prepared_dnn_model
self._name = model_name
def get_output(self, input_blob):
self._prepared_dnn_model.setInput(input_blob)
ret_val = self._prepared_dnn_model.forward()
return ret_val
def get_name(self):
return DNN_LIB
Loading…
Cancel
Save