|
|
|
@ -1,10 +1,14 @@ |
|
|
|
|
package org.opencv.test.dnn; |
|
|
|
|
|
|
|
|
|
import java.io.File; |
|
|
|
|
import java.io.FileInputStream; |
|
|
|
|
import java.io.IOException; |
|
|
|
|
import java.util.ArrayList; |
|
|
|
|
import java.util.List; |
|
|
|
|
import org.opencv.core.Core; |
|
|
|
|
import org.opencv.core.Mat; |
|
|
|
|
import org.opencv.core.MatOfFloat; |
|
|
|
|
import org.opencv.core.MatOfByte; |
|
|
|
|
import org.opencv.core.Scalar; |
|
|
|
|
import org.opencv.core.Size; |
|
|
|
|
import org.opencv.dnn.DictValue; |
|
|
|
@ -26,6 +30,15 @@ public class DnnTensorFlowTest extends OpenCVTestCase { |
|
|
|
|
|
|
|
|
|
Net net; |
|
|
|
|
|
|
|
|
|
private static void normAssert(Mat ref, Mat test) { |
|
|
|
|
final double l1 = 1e-5; |
|
|
|
|
final double lInf = 1e-4; |
|
|
|
|
double normL1 = Core.norm(ref, test, Core.NORM_L1) / ref.total(); |
|
|
|
|
double normLInf = Core.norm(ref, test, Core.NORM_INF) / ref.total(); |
|
|
|
|
assertTrue(normL1 < l1); |
|
|
|
|
assertTrue(normLInf < lInf); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
@Override |
|
|
|
|
protected void setUp() throws Exception { |
|
|
|
|
super.setUp(); |
|
|
|
@ -46,7 +59,7 @@ public class DnnTensorFlowTest extends OpenCVTestCase { |
|
|
|
|
|
|
|
|
|
File testDataPath = new File(envTestDataPath); |
|
|
|
|
|
|
|
|
|
File f = new File(testDataPath, "dnn/space_shuttle.jpg"); |
|
|
|
|
File f = new File(testDataPath, "dnn/grace_hopper_227.png"); |
|
|
|
|
sourceImageFile = f.toString(); |
|
|
|
|
if(!f.exists()) throw new Exception("Test image is missing: " + sourceImageFile); |
|
|
|
|
|
|
|
|
@ -77,31 +90,55 @@ public class DnnTensorFlowTest extends OpenCVTestCase { |
|
|
|
|
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
public void testTestNetForward() { |
|
|
|
|
Mat rawImage = Imgcodecs.imread(sourceImageFile); |
|
|
|
|
|
|
|
|
|
assertNotNull("Loading image from file failed!", rawImage); |
|
|
|
|
public void checkInceptionNet(Net net) |
|
|
|
|
{ |
|
|
|
|
Mat image = Imgcodecs.imread(sourceImageFile); |
|
|
|
|
assertNotNull("Loading image from file failed!", image); |
|
|
|
|
|
|
|
|
|
Mat image = new Mat(); |
|
|
|
|
Imgproc.resize(rawImage, image, new Size(224,224)); |
|
|
|
|
|
|
|
|
|
Mat inputBlob = Dnn.blobFromImage(image); |
|
|
|
|
Mat inputBlob = Dnn.blobFromImage(image, 1.0, new Size(224, 224), new Scalar(0), true, true); |
|
|
|
|
assertNotNull("Converting image to blob failed!", inputBlob); |
|
|
|
|
|
|
|
|
|
Mat inputBlobP = new Mat(); |
|
|
|
|
Core.subtract(inputBlob, new Scalar(117.0), inputBlobP); |
|
|
|
|
|
|
|
|
|
net.setInput(inputBlobP, "input" ); |
|
|
|
|
|
|
|
|
|
Mat result = net.forward(); |
|
|
|
|
net.setInput(inputBlob, "input"); |
|
|
|
|
|
|
|
|
|
Mat result = new Mat(); |
|
|
|
|
try { |
|
|
|
|
net.setPreferableBackend(Dnn.DNN_BACKEND_OPENCV); |
|
|
|
|
result = net.forward("softmax2"); |
|
|
|
|
} |
|
|
|
|
catch (Exception e) { |
|
|
|
|
fail("DNN forward failed: " + e.getMessage()); |
|
|
|
|
} |
|
|
|
|
assertNotNull("Net returned no result!", result); |
|
|
|
|
|
|
|
|
|
Core.MinMaxLocResult minmax = Core.minMaxLoc(result.reshape(1, 1)); |
|
|
|
|
result = result.reshape(1, 1); |
|
|
|
|
Core.MinMaxLocResult minmax = Core.minMaxLoc(result); |
|
|
|
|
assertEquals("Wrong prediction", (int)minmax.maxLoc.x, 866); |
|
|
|
|
|
|
|
|
|
Mat top5RefScores = new MatOfFloat(new float[] { |
|
|
|
|
0.63032645f, 0.2561979f, 0.032181446f, 0.015721032f, 0.014785315f |
|
|
|
|
}).reshape(1, 1); |
|
|
|
|
|
|
|
|
|
assertTrue("No image recognized!", minmax.maxVal > 0.9); |
|
|
|
|
Core.sort(result, result, Core.SORT_DESCENDING); |
|
|
|
|
|
|
|
|
|
normAssert(result.colRange(0, 5), top5RefScores); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
public void testTestNetForward() { |
|
|
|
|
checkInceptionNet(net); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
public void testReadFromBuffer() { |
|
|
|
|
File modelFile = new File(modelFileName); |
|
|
|
|
byte[] modelBuffer = new byte[ (int)modelFile.length() ]; |
|
|
|
|
|
|
|
|
|
try { |
|
|
|
|
FileInputStream fis = new FileInputStream(modelFile); |
|
|
|
|
fis.read(modelBuffer); |
|
|
|
|
fis.close(); |
|
|
|
|
} catch (IOException e) { |
|
|
|
|
fail("Failed to read a model: " + e.getMessage()); |
|
|
|
|
} |
|
|
|
|
net = Dnn.readNetFromTensorflow(new MatOfByte(modelBuffer)); |
|
|
|
|
checkInceptionNet(net); |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|