Merge pull request #9636 from dkurt:duplicate_lp_norm_layer

pull/9838/head
Vadim Pisarevsky 7 years ago
commit 8b168175ec
  1. 36
      modules/dnn/include/opencv2/dnn/all_layers.hpp
  2. 1
      modules/dnn/src/init.cpp
  3. 78
      modules/dnn/src/layers/lp_normalize_layer.cpp
  4. 159
      modules/dnn/src/layers/normalize_bbox_layer.cpp
  5. 2
      modules/dnn/src/torch/torch_importer.cpp

@ -263,14 +263,6 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
static Ptr<SoftmaxLayer> create(const LayerParams& params);
};
class CV_EXPORTS LPNormalizeLayer : public Layer
{
public:
float pnorm, epsilon;
static Ptr<LPNormalizeLayer> create(const LayerParams& params);
};
class CV_EXPORTS InnerProductLayer : public Layer
{
public:
@ -545,9 +537,37 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
static Ptr<DetectionOutputLayer> create(const LayerParams& params);
};
/**
* @brief \f$ L_p \f$ - normalization layer.
* @param p Normalization factor. The most common `p = 1` for \f$ L_1 \f$ -
* normalization or `p = 2` for \f$ L_2 \f$ - normalization or a custom one.
* @param eps Parameter \f$ \epsilon \f$ to prevent a division by zero.
* @param across_spatial If true, normalize an input across all non-batch dimensions.
* Otherwise normalize an every channel separately.
*
* Across spatial:
* @f[
* norm = \sqrt[p]{\epsilon + \sum_{x, y, c} |src(x, y, c)|^p } \\
* dst(x, y, c) = \frac{ src(x, y, c) }{norm}
* @f]
*
* Channel wise normalization:
* @f[
* norm(c) = \sqrt[p]{\epsilon + \sum_{x, y} |src(x, y, c)|^p } \\
* dst(x, y, c) = \frac{ src(x, y, c) }{norm(c)}
* @f]
*
* Where `x, y` - spatial cooridnates, `c` - channel.
*
* An every sample in the batch is normalized separately. Optionally,
* output is scaled by the trained parameters.
*/
class NormalizeBBoxLayer : public Layer
{
public:
float pnorm, epsilon;
bool acrossSpatial;
static Ptr<NormalizeBBoxLayer> create(const LayerParams& params);
};

@ -92,7 +92,6 @@ void initializeLayerFactory()
CV_DNN_REGISTER_LAYER_CLASS(InnerProduct, InnerProductLayer);
CV_DNN_REGISTER_LAYER_CLASS(Softmax, SoftmaxLayer);
CV_DNN_REGISTER_LAYER_CLASS(MVN, MVNLayer);
CV_DNN_REGISTER_LAYER_CLASS(LPNormalize, LPNormalizeLayer);
CV_DNN_REGISTER_LAYER_CLASS(ReLU, ReLULayer);
CV_DNN_REGISTER_LAYER_CLASS(ReLU6, ReLU6Layer);

@ -1,78 +0,0 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
//
// Copyright (C) 2017, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "../precomp.hpp"
#include "layers_common.hpp"
#include <iostream>
namespace cv { namespace dnn {
class LPNormalizeLayerImpl : public LPNormalizeLayer
{
public:
LPNormalizeLayerImpl(const LayerParams& params)
{
setParamsFrom(params);
pnorm = params.get<float>("p", 2);
epsilon = params.get<float>("eps", 1e-10f);
CV_Assert(pnorm > 0);
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
const int requiredOutputs,
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const
{
Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals);
if (pnorm != 1 && pnorm != 2)
{
internals.resize(1, inputs[0]);
}
return true;
}
virtual bool supportBackend(int backendId)
{
return backendId == DNN_BACKEND_DEFAULT;
}
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
{
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
CV_Assert(inputs[0]->total() == outputs[0].total());
float norm;
if (pnorm == 1)
norm = cv::norm(*inputs[0], NORM_L1);
else if (pnorm == 2)
norm = cv::norm(*inputs[0], NORM_L2);
else
{
cv::pow(abs(*inputs[0]), pnorm, internals[0]);
norm = pow((float)sum(internals[0])[0], 1.0f / pnorm);
}
multiply(*inputs[0], 1.0f / (norm + epsilon), outputs[0]);
}
int64 getFLOPS(const std::vector<MatShape> &inputs,
const std::vector<MatShape> &) const
{
int64 flops = 0;
for (int i = 0; i < inputs.size(); i++)
flops += 3 * total(inputs[i]);
return flops;
}
};
Ptr<LPNormalizeLayer> LPNormalizeLayer::create(const LayerParams& params)
{
return Ptr<LPNormalizeLayer>(new LPNormalizeLayerImpl(params));
}
} // namespace dnn
} // namespace cv

@ -43,83 +43,18 @@
#include "../precomp.hpp"
#include "layers_common.hpp"
#include <float.h>
#include <algorithm>
namespace cv
{
namespace dnn
{
namespace
{
const std::string layerName = "NormalizeBBox";
}
namespace cv { namespace dnn {
class NormalizeBBoxLayerImpl : public NormalizeBBoxLayer
{
float _eps;
bool _across_spatial;
bool _channel_shared;
public:
bool getParameterDict(const LayerParams &params,
const std::string &parameterName,
DictValue& result)
{
if (!params.has(parameterName))
{
return false;
}
result = params.get(parameterName);
return true;
}
template<typename T>
T getParameter(const LayerParams &params,
const std::string &parameterName,
const size_t &idx=0,
const bool required=true,
const T& defaultValue=T())
{
DictValue dictValue;
bool success = getParameterDict(params, parameterName, dictValue);
if(!success)
{
if(required)
{
std::string message = layerName;
message += " layer parameter does not contain ";
message += parameterName;
message += " parameter.";
CV_Error(Error::StsBadArg, message);
}
else
{
return defaultValue;
}
}
return dictValue.get<T>(idx);
}
NormalizeBBoxLayerImpl(const LayerParams &params)
NormalizeBBoxLayerImpl(const LayerParams& params)
{
_eps = getParameter<float>(params, "eps", 0, false, 1e-10f);
_across_spatial = getParameter<bool>(params, "across_spatial");
_channel_shared = getParameter<bool>(params, "channel_shared");
setParamsFrom(params);
}
void checkInputs(const std::vector<Mat*> &inputs)
{
CV_Assert(inputs.size() > 0);
CV_Assert(inputs[0]->dims == 4 && inputs[0]->type() == CV_32F);
for (size_t i = 1; i < inputs.size(); i++)
{
CV_Assert(inputs[i]->dims == 4 && inputs[i]->type() == CV_32F);
CV_Assert(inputs[i]->size == inputs[0]->size);
}
CV_Assert(inputs[0]->dims > 2);
pnorm = params.get<float>("p", 2);
epsilon = params.get<float>("eps", 1e-10f);
acrossSpatial = params.get<bool>("across_spatial", true);
CV_Assert(pnorm > 0);
}
bool getMemoryShapes(const std::vector<MatShape> &inputs,
@ -127,17 +62,11 @@ public:
std::vector<MatShape> &outputs,
std::vector<MatShape> &internals) const
{
bool inplace = Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals);
size_t channels = inputs[0][1];
size_t rows = inputs[0][2];
size_t cols = inputs[0][3];
size_t channelSize = rows * cols;
internals.assign(1, shape(channels, channelSize));
internals.push_back(shape(channels, 1));
internals.push_back(shape(1, channelSize));
return inplace;
CV_Assert(inputs.size() == 1);
Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals);
internals.resize(1, inputs[0]);
internals[0][0] = 1; // Batch size.
return true;
}
void forward(std::vector<Mat*> &inputs, std::vector<Mat> &outputs, std::vector<Mat> &internals)
@ -145,60 +74,46 @@ public:
CV_TRACE_FUNCTION();
CV_TRACE_ARG_VALUE(name, "name", name.c_str());
checkInputs(inputs);
Mat& buffer = internals[0], sumChannelMultiplier = internals[1],
sumSpatialMultiplier = internals[2];
sumChannelMultiplier.setTo(1.0);
sumSpatialMultiplier.setTo(1.0);
CV_Assert(inputs.size() == 1 && outputs.size() == 1);
CV_Assert(inputs[0]->total() == outputs[0].total());
const Mat& inp0 = *inputs[0];
Mat& buffer = internals[0];
size_t num = inp0.size[0];
size_t channels = inp0.size[1];
size_t channelSize = inp0.size[2] * inp0.size[3];
Mat zeroBuffer(channels, channelSize, CV_32F, Scalar(0));
Mat absDiff;
Mat scale = blobs[0];
for (size_t j = 0; j < inputs.size(); j++)
{
size_t channelSize = inp0.total() / (num * channels);
for (size_t n = 0; n < num; ++n)
{
Mat src = Mat(channels, channelSize, CV_32F, inputs[j]->ptr<float>(n));
Mat dst = Mat(channels, channelSize, CV_32F, outputs[j].ptr<float>(n));
Mat src = Mat(channels, channelSize, CV_32F, (void*)inp0.ptr<float>(n));
Mat dst = Mat(channels, channelSize, CV_32F, (void*)outputs[0].ptr<float>(n));
buffer = src.mul(src);
cv::pow(abs(src), pnorm, buffer);
if (_across_spatial)
if (acrossSpatial)
{
absdiff(buffer, zeroBuffer, absDiff);
// add eps to avoid overflow
double absSum = sum(absDiff)[0] + _eps;
float norm = sqrt(absSum);
dst = src / norm;
float absSum = sum(buffer)[0] + epsilon;
float norm = pow(absSum, 1.0f / pnorm);
multiply(src, 1.0f / norm, dst);
}
else
{
Mat norm(channelSize, 1, buffer.type()); // 1 x channelSize
// (_channels x channelSize)T * _channels x 1 -> channelSize x 1
gemm(buffer, sumChannelMultiplier, 1, norm, 0, norm, GEMM_1_T);
Mat norm;
reduce(buffer, norm, 0, REDUCE_SUM);
norm += epsilon;
// compute norm
pow(norm, 0.5f, norm);
// compute inverted norm to call multiply instead divide
cv::pow(norm, -1.0f / pnorm, norm);
// scale the layer
// _channels x 1 * (channelSize x 1)T -> _channels x channelSize
gemm(sumChannelMultiplier, norm, 1, buffer, 0, buffer, GEMM_2_T);
dst = src / buffer;
repeat(norm, channels, 1, buffer);
multiply(src, buffer, dst);
}
if (!blobs.empty())
{
// scale the output
if (_channel_shared)
Mat scale = blobs[0];
if (scale.total() == 1)
{
// _scale: 1 x 1
dst *= scale.at<float>(0, 0);
@ -206,15 +121,13 @@ public:
else
{
// _scale: _channels x 1
// _channels x 1 * 1 x channelSize -> _channels x channelSize
gemm(scale, sumSpatialMultiplier, 1, buffer, 0, buffer);
dst = dst.mul(buffer);
CV_Assert(scale.total() == channels);
repeat(scale, 1, dst.cols, buffer);
multiply(dst, buffer, dst);
}
}
}
}
};

@ -706,7 +706,7 @@ struct TorchImporter : public ::cv::dnn::Importer
if (scalarParams.has("eps"))
layerParams.set("eps", scalarParams.get<float>("eps"));
newModule->apiType = "LPNormalize";
newModule->apiType = "Normalize";
curModule->modules.push_back(newModule);
}
else if (nnName == "Padding")

Loading…
Cancel
Save