renamed createDetector to createFeatureDetectorpull/13383/head
parent
eab003d06e
commit
8ab3fdbcca
6 changed files with 340 additions and 6 deletions
@ -0,0 +1,334 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
#include "cvtest.h" |
||||
#include "opencv2/core/core.hpp" |
||||
|
||||
using namespace std; |
||||
using namespace cv; |
||||
|
||||
const string FEATURES2D_DIR = "features2d"; |
||||
const string DETECTOR_DIR = FEATURES2D_DIR + "/feature_detectors"; |
||||
const string DESCRIPTOR_DIR = FEATURES2D_DIR + "/descriptor_extractors"; |
||||
const string IMAGE_FILENAME = "tsukuba.png"; |
||||
|
||||
/****************************************************************************************\
|
||||
* Regression tests for feature detectors comparing keypoints. * |
||||
\****************************************************************************************/ |
||||
|
||||
class CV_FeatureDetectorTest : public CvTest |
||||
{ |
||||
public: |
||||
CV_FeatureDetectorTest( const char* testName, const Ptr<FeatureDetector>& _fdetector ) : |
||||
CvTest( testName, "cv::FeatureDetector::detect"), fdetector(_fdetector) {} |
||||
|
||||
protected: |
||||
virtual void run( int start_from ) |
||||
{ |
||||
const float maxPtDif = 1.f; |
||||
const float maxSizeDif = 1.f; |
||||
const float maxAngleDif = 2.f; |
||||
const float maxResponseDif = 0.1f; |
||||
|
||||
string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME; |
||||
string resFilename = string(ts->get_data_path()) + DETECTOR_DIR + "/" + string(name) + "_res.xml.gz"; |
||||
|
||||
if( fdetector.empty() ) |
||||
{ |
||||
ts->printf( CvTS::LOG, "Feature detector is empty" ); |
||||
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA ); |
||||
return; |
||||
} |
||||
|
||||
Mat image = imread( imgFilename, 0 ); |
||||
if( image.empty() ) |
||||
{ |
||||
ts->printf( CvTS::LOG, "image %s can not be read \n", imgFilename.c_str() ); |
||||
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA ); |
||||
return; |
||||
} |
||||
|
||||
FileStorage fs( resFilename, FileStorage::READ ); |
||||
|
||||
vector<KeyPoint> calcKeypoints; |
||||
fdetector->detect( image, calcKeypoints ); |
||||
|
||||
if( fs.isOpened() ) // compare computed and valid keypoints
|
||||
{ |
||||
// TODO compare saved feature detector params with current ones
|
||||
vector<KeyPoint> validKeypoints; |
||||
read( fs["keypoints"], validKeypoints ); |
||||
if( validKeypoints.empty() ) |
||||
{ |
||||
ts->printf( CvTS::LOG, "Keypoints can nod be read\n" ); |
||||
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA ); |
||||
return; |
||||
} |
||||
|
||||
int progress = 0, progressCount = validKeypoints.size() * calcKeypoints.size(); |
||||
int badPointCount = 0, commonPointCount = max(validKeypoints.size(), calcKeypoints.size()); |
||||
for( size_t v = 0; v < validKeypoints.size(); v++ ) |
||||
{ |
||||
int nearestIdx = -1; |
||||
float minDist = std::numeric_limits<float>::max(); |
||||
|
||||
for( size_t c = 0; c < calcKeypoints.size(); c++ ) |
||||
{ |
||||
progress = update_progress( progress, v*calcKeypoints.size() + c, progressCount, 0 ); |
||||
float curDist = norm( calcKeypoints[c].pt - validKeypoints[v].pt ); |
||||
if( curDist < minDist ) |
||||
{ |
||||
minDist = curDist; |
||||
nearestIdx = c; |
||||
} |
||||
} |
||||
|
||||
if( minDist > maxPtDif || |
||||
fabs(calcKeypoints[nearestIdx].size - validKeypoints[v].size) > maxSizeDif || |
||||
abs(calcKeypoints[nearestIdx].angle - validKeypoints[v].angle) > maxAngleDif || |
||||
abs(calcKeypoints[nearestIdx].response - validKeypoints[v].response) > maxResponseDif || |
||||
calcKeypoints[nearestIdx].octave != validKeypoints[v].octave |
||||
|
||||
// TODO !!!!!!!
|
||||
/*||
|
||||
calcKeypoints[nearestIdx].class_id != validKeypoints[v].class_id*/ ) |
||||
{ |
||||
badPointCount++; |
||||
} |
||||
} |
||||
ts->printf( CvTS::LOG, "badPointCount = %d; validPointCount = %d; calcPointCount = %d\n", |
||||
badPointCount, validKeypoints.size(), calcKeypoints.size() ); |
||||
if( badPointCount > 0.9 * commonPointCount ) |
||||
{ |
||||
ts->printf( CvTS::LOG, "Bad accuracy!\n" ); |
||||
ts->set_failed_test_info( CvTS::FAIL_BAD_ACCURACY ); |
||||
return; |
||||
} |
||||
} |
||||
else // write
|
||||
{ |
||||
fs.open( resFilename, FileStorage::WRITE ); |
||||
if( !fs.isOpened() ) |
||||
{ |
||||
ts->printf( CvTS::LOG, "file %s can not be opened to write\n", resFilename.c_str() ); |
||||
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA ); |
||||
return; |
||||
} |
||||
else |
||||
{ |
||||
fs << "detector_params" << "{"; |
||||
fdetector->write( fs ); |
||||
fs << "}"; |
||||
|
||||
write( fs, "keypoints", calcKeypoints ); |
||||
} |
||||
} |
||||
ts->set_failed_test_info( CvTS::OK ); |
||||
} |
||||
|
||||
Ptr<FeatureDetector> fdetector; |
||||
}; |
||||
|
||||
CV_FeatureDetectorTest fastTest( "detector_fast", createFeatureDetector("FAST") ); |
||||
CV_FeatureDetectorTest gfttTest( "detector_gftt", createFeatureDetector("GFTT") ); |
||||
CV_FeatureDetectorTest harrisTest( "detector_harris", createFeatureDetector("HARRIS") ); |
||||
CV_FeatureDetectorTest mserTest( "detector_mser", createFeatureDetector("MSER") ); |
||||
CV_FeatureDetectorTest siftTest( "detector_sift", createFeatureDetector("SIFT") ); |
||||
CV_FeatureDetectorTest starTest( "detector_star", createFeatureDetector("STAR") ); |
||||
CV_FeatureDetectorTest surfTest( "detector_surf", createFeatureDetector("SURF") ); |
||||
|
||||
/****************************************************************************************\
|
||||
* Regression tests for descriptor extractors. * |
||||
\****************************************************************************************/ |
||||
static void writeMatInBin( const Mat& mat, const string& filename ) |
||||
{ |
||||
FILE* f = fopen( filename.c_str(), "wb"); |
||||
if( f ) |
||||
{ |
||||
int type = mat.type(); |
||||
fwrite( (void*)&mat.rows, sizeof(int), 1, f ); |
||||
fwrite( (void*)&mat.cols, sizeof(int), 1, f ); |
||||
fwrite( (void*)&type, sizeof(int), 1, f ); |
||||
fwrite( (void*)&mat.step, sizeof(int), 1, f ); |
||||
fwrite( (void*)mat.data, 1, mat.step*mat.rows, f ); |
||||
fclose(f); |
||||
} |
||||
} |
||||
|
||||
static Mat readMatFromBin( const string& filename ) |
||||
{ |
||||
FILE* f = fopen( filename.c_str(), "rb" ); |
||||
if( f ) |
||||
{ |
||||
int rows, cols, type, step; |
||||
fread( (void*)&rows, sizeof(int), 1, f ); |
||||
fread( (void*)&cols, sizeof(int), 1, f ); |
||||
fread( (void*)&type, sizeof(int), 1, f ); |
||||
fread( (void*)&step, sizeof(int), 1, f ); |
||||
|
||||
uchar* data = (uchar*)cvAlloc(step*rows); |
||||
fread( (void*)data, 1, step*rows, f ); |
||||
fclose(f); |
||||
|
||||
return Mat( rows, cols, type, data ); |
||||
} |
||||
return Mat(); |
||||
} |
||||
|
||||
class CV_DescriptorExtractorTest : public CvTest |
||||
{ |
||||
public: |
||||
CV_DescriptorExtractorTest( const char* testName, float _normDif, const Ptr<DescriptorExtractor>& _dextractor, float _prevTime ) : |
||||
CvTest( testName, "cv::DescriptorExtractor::compute" ), normDif(_normDif), prevTime(_prevTime), dextractor(_dextractor) {} |
||||
protected: |
||||
virtual void createDescriptorExtractor() {} |
||||
|
||||
void run(int) |
||||
{ |
||||
createDescriptorExtractor(); |
||||
|
||||
if( dextractor.empty() ) |
||||
{ |
||||
ts->printf(CvTS::LOG, "Descriptor extractor is empty\n"); |
||||
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA ); |
||||
return; |
||||
} |
||||
|
||||
string imgFilename = string(ts->get_data_path()) + FEATURES2D_DIR + "/" + IMAGE_FILENAME; |
||||
Mat img = imread( imgFilename, 0 ); |
||||
if( img.empty() ) |
||||
{ |
||||
ts->printf( CvTS::LOG, "image %s can not be read\n", imgFilename.c_str() ); |
||||
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA ); |
||||
return; |
||||
} |
||||
|
||||
vector<KeyPoint> keypoints; |
||||
FileStorage fs( string(ts->get_data_path()) + FEATURES2D_DIR + "/keypoints.xml.gz", FileStorage::READ ); |
||||
if( fs.isOpened() ) |
||||
read( fs.getFirstTopLevelNode(), keypoints ); |
||||
else |
||||
{ |
||||
ts->printf( CvTS::LOG, "Compute and write keypoints\n" ); |
||||
fs.open( string(ts->get_data_path()) + FEATURES2D_DIR + "/keypoints.xml.gz", FileStorage::WRITE ); |
||||
if( fs.isOpened() ) |
||||
{ |
||||
SurfFeatureDetector fd; |
||||
fd.detect(img, keypoints); |
||||
write( fs, "keypoints", keypoints ); |
||||
} |
||||
else |
||||
{ |
||||
ts->printf(CvTS::LOG, "File for writting keypoints can not be opened\n"); |
||||
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA ); |
||||
return; |
||||
} |
||||
} |
||||
|
||||
Mat calcDescriptors; |
||||
double t = (double)getTickCount(); |
||||
dextractor->compute( img, keypoints, calcDescriptors ); |
||||
t = getTickCount() - t; |
||||
ts->printf(CvTS::LOG, "\nAverage time of computiting one descriptor = %g ms (previous time = %g ms)\n", t/((double)cvGetTickFrequency()*1000.)/calcDescriptors.rows, prevTime ); |
||||
|
||||
// TODO read and write descriptor extractor parameters and check them
|
||||
Mat validDescriptors = readDescriptors(); |
||||
if( !validDescriptors.empty() ) |
||||
{ |
||||
double normVal = norm( calcDescriptors, validDescriptors, NORM_INF ); |
||||
ts->printf( CvTS::LOG, "nofm (inf) BTW valid and calculated float descriptors = %f\n", normVal ); |
||||
if( normVal > normDif ) |
||||
ts->set_failed_test_info( CvTS::FAIL_BAD_ACCURACY ); |
||||
} |
||||
else |
||||
{ |
||||
if( !writeDescriptors( calcDescriptors ) ) |
||||
{ |
||||
ts->printf( CvTS::LOG, "Descriptors can not be written\n" ); |
||||
ts->set_failed_test_info( CvTS::FAIL_INVALID_TEST_DATA ); |
||||
return; |
||||
} |
||||
} |
||||
} |
||||
|
||||
virtual Mat readDescriptors() |
||||
{ |
||||
Mat res = readMatFromBin( string(ts->get_data_path()) + DESCRIPTOR_DIR + "/" + string(name) ); |
||||
return res; |
||||
} |
||||
|
||||
virtual bool writeDescriptors( Mat& descs ) |
||||
{ |
||||
writeMatInBin( descs, string(ts->get_data_path()) + DESCRIPTOR_DIR + "/" + string(name) ); |
||||
return true; |
||||
} |
||||
|
||||
const float normDif; |
||||
const float prevTime; |
||||
|
||||
Ptr<DescriptorExtractor> dextractor; |
||||
}; |
||||
|
||||
template<typename T> |
||||
class CV_CalonderDescriptorExtractorTest : public CV_DescriptorExtractorTest |
||||
{ |
||||
public: |
||||
CV_CalonderDescriptorExtractorTest( const char* testName, float _normDif, float _prevTime ) : |
||||
CV_DescriptorExtractorTest( testName, _normDif, Ptr<DescriptorExtractor>(), _prevTime ) |
||||
{} |
||||
|
||||
virtual void createDescriptorExtractor() |
||||
{ |
||||
dextractor = new CalonderDescriptorExtractor<T>( string(ts->get_data_path()) + FEATURES2D_DIR + "/calonder_classifier.rtc"); |
||||
} |
||||
}; |
||||
|
||||
CV_DescriptorExtractorTest siftDescriptorTest( "descriptor_sift", std::numeric_limits<float>::epsilon(), |
||||
createDescriptorExtractor("SIFT"), 8.06652f ); |
||||
CV_DescriptorExtractorTest surfDescriptorTest( "descriptor_surf", std::numeric_limits<float>::epsilon(), |
||||
createDescriptorExtractor("SURF"), 0.147372f ); |
||||
#if CV_SSE2 |
||||
CV_CalonderDescriptorExtractorTest<uchar> ucharCalonderTest( "descriptor_calonder_uchar", |
||||
std::numeric_limits<float>::epsilon() + 1, |
||||
0.0132175f ); |
||||
CV_CalonderDescriptorExtractorTest<float> floatCalonderTest( "descriptor_calonder_float", |
||||
std::numeric_limits<float>::epsilon(), |
||||
0.0221308f ); |
||||
#endif // CV_SSE2
|
Loading…
Reference in new issue