Merge pull request #2073 from KonstantinMatskevich:ocl_tapi_clahe

pull/2093/merge
Andrey Pavlenko 11 years ago committed by OpenCV Buildbot
commit 8a456c5a6b
  1. 1
      modules/core/include/opencv2/core/ocl.hpp
  2. 10
      modules/core/src/ocl.cpp
  3. 127
      modules/imgproc/src/clahe.cpp
  4. 252
      modules/imgproc/src/opencl/clahe.cl

@ -489,6 +489,7 @@ public:
bool runTask(bool sync, const Queue& q=Queue()); bool runTask(bool sync, const Queue& q=Queue());
size_t workGroupSize() const; size_t workGroupSize() const;
size_t preferedWorkGroupSizeMultiple() const;
bool compileWorkGroupSize(size_t wsz[]) const; bool compileWorkGroupSize(size_t wsz[]) const;
size_t localMemSize() const; size_t localMemSize() const;

@ -2817,6 +2817,16 @@ size_t Kernel::workGroupSize() const
sizeof(val), &val, &retsz) >= 0 ? val : 0; sizeof(val), &val, &retsz) >= 0 ? val : 0;
} }
size_t Kernel::preferedWorkGroupSizeMultiple() const
{
if(!p)
return 0;
size_t val = 0, retsz = 0;
cl_device_id dev = (cl_device_id)Device::getDefault().ptr();
return clGetKernelWorkGroupInfo(p->handle, dev, CL_KERNEL_PREFERRED_WORK_GROUP_SIZE_MULTIPLE,
sizeof(val), &val, &retsz) >= 0 ? val : 0;
}
bool Kernel::compileWorkGroupSize(size_t wsz[]) const bool Kernel::compileWorkGroupSize(size_t wsz[]) const
{ {
if(!p || !wsz) if(!p || !wsz)

@ -40,10 +40,90 @@
//M*/ //M*/
#include "precomp.hpp" #include "precomp.hpp"
#include "opencl_kernels.hpp"
// ---------------------------------------------------------------------- // ----------------------------------------------------------------------
// CLAHE // CLAHE
namespace clahe
{
static bool calcLut(cv::InputArray _src, cv::OutputArray _dst,
const int tilesX, const int tilesY, const cv::Size tileSize,
const int clipLimit, const float lutScale)
{
cv::ocl::Kernel _k("calcLut", cv::ocl::imgproc::clahe_oclsrc);
bool is_cpu = cv::ocl::Device::getDefault().type() == cv::ocl::Device::TYPE_CPU;
cv::String opts;
if(is_cpu)
opts = "-D CPU ";
else
opts = cv::format("-D WAVE_SIZE=%d", _k.preferedWorkGroupSizeMultiple());
cv::ocl::Kernel k("calcLut", cv::ocl::imgproc::clahe_oclsrc, opts);
if(k.empty())
return false;
cv::UMat src = _src.getUMat();
_dst.create(tilesX * tilesY, 256, CV_8UC1);
cv::UMat dst = _dst.getUMat();
int tile_size[2];
tile_size[0] = tileSize.width;
tile_size[1] = tileSize.height;
size_t localThreads[3] = { 32, 8, 1 };
size_t globalThreads[3] = { tilesX * localThreads[0], tilesY * localThreads[1], 1 };
int idx = 0;
idx = k.set(idx, cv::ocl::KernelArg::ReadOnlyNoSize(src));
idx = k.set(idx, cv::ocl::KernelArg::WriteOnlyNoSize(dst));
idx = k.set(idx, tile_size);
idx = k.set(idx, tilesX);
idx = k.set(idx, clipLimit);
idx = k.set(idx, lutScale);
if (!k.run(2, globalThreads, localThreads, false))
return false;
return true;
}
static bool transform(const cv::InputArray _src, cv::OutputArray _dst, const cv::InputArray _lut,
const int tilesX, const int tilesY, const cv::Size & tileSize)
{
cv::ocl::Kernel k("transform", cv::ocl::imgproc::clahe_oclsrc);
if(k.empty())
return false;
int tile_size[2];
tile_size[0] = tileSize.width;
tile_size[1] = tileSize.height;
cv::UMat src = _src.getUMat();
_dst.create(src.size(), src.type());
cv::UMat dst = _dst.getUMat();
cv::UMat lut = _lut.getUMat();
size_t localThreads[3] = { 32, 8, 1 };
size_t globalThreads[3] = { src.cols, src.rows, 1 };
int idx = 0;
idx = k.set(idx, cv::ocl::KernelArg::ReadOnlyNoSize(src));
idx = k.set(idx, cv::ocl::KernelArg::WriteOnlyNoSize(dst));
idx = k.set(idx, cv::ocl::KernelArg::ReadOnlyNoSize(lut));
idx = k.set(idx, src.cols);
idx = k.set(idx, src.rows);
idx = k.set(idx, tile_size);
idx = k.set(idx, tilesX);
idx = k.set(idx, tilesY);
if (!k.run(2, globalThreads, localThreads, false))
return false;
return true;
}
}
namespace namespace
{ {
class CLAHE_CalcLut_Body : public cv::ParallelLoopBody class CLAHE_CalcLut_Body : public cv::ParallelLoopBody
@ -241,7 +321,9 @@ namespace
int tilesY_; int tilesY_;
cv::Mat srcExt_; cv::Mat srcExt_;
cv::UMat usrcExt_;
cv::Mat lut_; cv::Mat lut_;
cv::UMat ulut_;
}; };
CLAHE_Impl::CLAHE_Impl(double clipLimit, int tilesX, int tilesY) : CLAHE_Impl::CLAHE_Impl(double clipLimit, int tilesX, int tilesY) :
@ -256,31 +338,34 @@ namespace
void CLAHE_Impl::apply(cv::InputArray _src, cv::OutputArray _dst) void CLAHE_Impl::apply(cv::InputArray _src, cv::OutputArray _dst)
{ {
cv::Mat src = _src.getMat(); CV_Assert( _src.type() == CV_8UC1 );
CV_Assert( src.type() == CV_8UC1 ); bool useOpenCL = cv::ocl::useOpenCL() && _src.isUMat() && _src.dims()<=2;
_dst.create( src.size(), src.type() );
cv::Mat dst = _dst.getMat();
const int histSize = 256; const int histSize = 256;
lut_.create(tilesX_ * tilesY_, histSize, CV_8UC1);
cv::Size tileSize; cv::Size tileSize;
cv::Mat srcForLut; cv::_InputArray _srcForLut;
if (src.cols % tilesX_ == 0 && src.rows % tilesY_ == 0) if (_src.size().width % tilesX_ == 0 && _src.size().height % tilesY_ == 0)
{ {
tileSize = cv::Size(src.cols / tilesX_, src.rows / tilesY_); tileSize = cv::Size(_src.size().width / tilesX_, _src.size().height / tilesY_);
srcForLut = src; _srcForLut = _src;
} }
else else
{ {
cv::copyMakeBorder(src, srcExt_, 0, tilesY_ - (src.rows % tilesY_), 0, tilesX_ - (src.cols % tilesX_), cv::BORDER_REFLECT_101); if(useOpenCL)
{
tileSize = cv::Size(srcExt_.cols / tilesX_, srcExt_.rows / tilesY_); cv::copyMakeBorder(_src, usrcExt_, 0, tilesY_ - (_src.size().height % tilesY_), 0, tilesX_ - (_src.size().width % tilesX_), cv::BORDER_REFLECT_101);
srcForLut = srcExt_; tileSize = cv::Size(usrcExt_.size().width / tilesX_, usrcExt_.size().height / tilesY_);
_srcForLut = usrcExt_;
}
else
{
cv::copyMakeBorder(_src, srcExt_, 0, tilesY_ - (_src.size().height % tilesY_), 0, tilesX_ - (_src.size().width % tilesX_), cv::BORDER_REFLECT_101);
tileSize = cv::Size(srcExt_.size().width / tilesX_, srcExt_.size().height / tilesY_);
_srcForLut = srcExt_;
}
} }
const int tileSizeTotal = tileSize.area(); const int tileSizeTotal = tileSize.area();
@ -293,6 +378,16 @@ namespace
clipLimit = std::max(clipLimit, 1); clipLimit = std::max(clipLimit, 1);
} }
if(useOpenCL && clahe::calcLut(_srcForLut, ulut_, tilesX_, tilesY_, tileSize, clipLimit, lutScale) )
if( clahe::transform(_src, _dst, ulut_, tilesX_, tilesY_, tileSize) )
return;
cv::Mat src = _src.getMat();
_dst.create( src.size(), src.type() );
cv::Mat dst = _dst.getMat();
cv::Mat srcForLut = _srcForLut.getMat();
lut_.create(tilesX_ * tilesY_, histSize, CV_8UC1);
CLAHE_CalcLut_Body calcLutBody(srcForLut, lut_, tileSize, tilesX_, tilesY_, clipLimit, lutScale); CLAHE_CalcLut_Body calcLutBody(srcForLut, lut_, tileSize, tilesX_, tilesY_, clipLimit, lutScale);
cv::parallel_for_(cv::Range(0, tilesX_ * tilesY_), calcLutBody); cv::parallel_for_(cv::Range(0, tilesX_ * tilesY_), calcLutBody);
@ -325,6 +420,8 @@ namespace
{ {
srcExt_.release(); srcExt_.release();
lut_.release(); lut_.release();
usrcExt_.release();
ulut_.release();
} }
} }

@ -0,0 +1,252 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Sen Liu, swjtuls1987@126.com
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef WAVE_SIZE
#define WAVE_SIZE 1
#endif
inline int calc_lut(__local int* smem, int val, int tid)
{
smem[tid] = val;
barrier(CLK_LOCAL_MEM_FENCE);
if (tid == 0)
for (int i = 1; i < 256; ++i)
smem[i] += smem[i - 1];
barrier(CLK_LOCAL_MEM_FENCE);
return smem[tid];
}
#ifdef CPU
inline void reduce(volatile __local int* smem, int val, int tid)
{
smem[tid] = val;
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 128)
smem[tid] = val += smem[tid + 128];
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 64)
smem[tid] = val += smem[tid + 64];
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 32)
smem[tid] += smem[tid + 32];
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 16)
smem[tid] += smem[tid + 16];
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 8)
smem[tid] += smem[tid + 8];
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 4)
smem[tid] += smem[tid + 4];
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 2)
smem[tid] += smem[tid + 2];
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 1)
smem[256] = smem[tid] + smem[tid + 1];
barrier(CLK_LOCAL_MEM_FENCE);
}
#else
inline void reduce(__local volatile int* smem, int val, int tid)
{
smem[tid] = val;
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 128)
smem[tid] = val += smem[tid + 128];
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 64)
smem[tid] = val += smem[tid + 64];
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 32)
{
smem[tid] += smem[tid + 32];
#if WAVE_SIZE < 32
} barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 16)
{
#endif
smem[tid] += smem[tid + 16];
#if WAVE_SIZE < 16
}
barrier(CLK_LOCAL_MEM_FENCE);
if (tid < 8)
{
#endif
smem[tid] += smem[tid + 8];
smem[tid] += smem[tid + 4];
smem[tid] += smem[tid + 2];
smem[tid] += smem[tid + 1];
}
}
#endif
__kernel void calcLut(__global __const uchar * src, const int srcStep,
const int src_offset, __global uchar * lut,
const int dstStep, const int dst_offset,
const int2 tileSize, const int tilesX,
const int clipLimit, const float lutScale)
{
__local int smem[512];
int tx = get_group_id(0);
int ty = get_group_id(1);
int tid = get_local_id(1) * get_local_size(0)
+ get_local_id(0);
smem[tid] = 0;
barrier(CLK_LOCAL_MEM_FENCE);
for (int i = get_local_id(1); i < tileSize.y; i += get_local_size(1))
{
__global const uchar* srcPtr = src + mad24(ty * tileSize.y + i, srcStep, tx * tileSize.x + src_offset);
for (int j = get_local_id(0); j < tileSize.x; j += get_local_size(0))
{
const int data = srcPtr[j];
atomic_inc(&smem[data]);
}
}
barrier(CLK_LOCAL_MEM_FENCE);
int tHistVal = smem[tid];
barrier(CLK_LOCAL_MEM_FENCE);
if (clipLimit > 0)
{
// clip histogram bar
int clipped = 0;
if (tHistVal > clipLimit)
{
clipped = tHistVal - clipLimit;
tHistVal = clipLimit;
}
// find number of overall clipped samples
reduce(smem, clipped, tid);
barrier(CLK_LOCAL_MEM_FENCE);
#ifdef CPU
clipped = smem[256];
#else
clipped = smem[0];
#endif
// broadcast evaluated value
__local int totalClipped;
if (tid == 0)
totalClipped = clipped;
barrier(CLK_LOCAL_MEM_FENCE);
// redistribute clipped samples evenly
int redistBatch = totalClipped / 256;
tHistVal += redistBatch;
int residual = totalClipped - redistBatch * 256;
if (tid < residual)
++tHistVal;
}
const int lutVal = calc_lut(smem, tHistVal, tid);
uint ires = (uint)convert_int_rte(lutScale * lutVal);
lut[(ty * tilesX + tx) * dstStep + tid + dst_offset] =
convert_uchar(clamp(ires, (uint)0, (uint)255));
}
__kernel void transform(__global __const uchar * src, const int srcStep, const int src_offset,
__global uchar * dst, const int dstStep, const int dst_offset,
__global uchar * lut, const int lutStep, int lut_offset,
const int cols, const int rows,
const int2 tileSize,
const int tilesX, const int tilesY)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if (x >= cols || y >= rows)
return;
const float tyf = (convert_float(y) / tileSize.y) - 0.5f;
int ty1 = convert_int_rtn(tyf);
int ty2 = ty1 + 1;
const float ya = tyf - ty1;
ty1 = max(ty1, 0);
ty2 = min(ty2, tilesY - 1);
const float txf = (convert_float(x) / tileSize.x) - 0.5f;
int tx1 = convert_int_rtn(txf);
int tx2 = tx1 + 1;
const float xa = txf - tx1;
tx1 = max(tx1, 0);
tx2 = min(tx2, tilesX - 1);
const int srcVal = src[mad24(y, srcStep, x + src_offset)];
float res = 0;
res += lut[mad24(ty1 * tilesX + tx1, lutStep, srcVal + lut_offset)] * ((1.0f - xa) * (1.0f - ya));
res += lut[mad24(ty1 * tilesX + tx2, lutStep, srcVal + lut_offset)] * ((xa) * (1.0f - ya));
res += lut[mad24(ty2 * tilesX + tx1, lutStep, srcVal + lut_offset)] * ((1.0f - xa) * (ya));
res += lut[mad24(ty2 * tilesX + tx2, lutStep, srcVal + lut_offset)] * ((xa) * (ya));
uint ires = (uint)convert_int_rte(res);
dst[mad24(y, dstStep, x + dst_offset)] = convert_uchar(clamp(ires, (uint)0, (uint)255));
}
Loading…
Cancel
Save