From 894f208de3b8f1c1457ea0777f8cd3403212c980 Mon Sep 17 00:00:00 2001 From: Alexander Alekhin Date: Sat, 15 Jun 2019 12:17:25 +0000 Subject: [PATCH] dnn(test): replace SkipTestException with tags --- modules/dnn/test/test_backends.cpp | 62 ++++++++-------- modules/dnn/test/test_caffe_importer.cpp | 32 ++++----- modules/dnn/test/test_common.hpp | 19 +++++ modules/dnn/test/test_common.impl.hpp | 42 +++++++++++ modules/dnn/test/test_darknet_importer.cpp | 10 +-- modules/dnn/test/test_googlenet.cpp | 12 ++-- modules/dnn/test/test_halide_layers.cpp | 24 +++---- modules/dnn/test/test_layers.cpp | 43 ++++++------ modules/dnn/test/test_main.cpp | 19 +---- modules/dnn/test/test_misc.cpp | 2 +- modules/dnn/test/test_onnx_importer.cpp | 82 ++++++++++++++-------- modules/dnn/test/test_tf_importer.cpp | 63 +++++++++-------- modules/dnn/test/test_torch_importer.cpp | 22 +++--- modules/ts/include/opencv2/ts.hpp | 32 ++++++++- modules/ts/src/ts_tags.cpp | 72 +++++++++++++++++-- 15 files changed, 354 insertions(+), 182 deletions(-) diff --git a/modules/dnn/test/test_backends.cpp b/modules/dnn/test/test_backends.cpp index 457f5557e9..c1dcbb66b1 100644 --- a/modules/dnn/test/test_backends.cpp +++ b/modules/dnn/test/test_backends.cpp @@ -157,9 +157,10 @@ TEST_P(DNNTestNetwork, Inception_5h) TEST_P(DNNTestNetwork, ENet) { applyTestTag(target == DNN_TARGET_CPU ? "" : CV_TEST_TAG_MEMORY_512MB); - if ((backend == DNN_BACKEND_INFERENCE_ENGINE) || - (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)) - throw SkipTestException(""); + if (backend == DNN_BACKEND_INFERENCE_ENGINE) + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE); + if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) + applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); processNet("dnn/Enet-model-best.net", "", Size(512, 512), "l367_Deconvolution", target == DNN_TARGET_OPENCL ? "dnn/halide_scheduler_opencl_enet.yml" : "dnn/halide_scheduler_enet.yml", @@ -170,7 +171,7 @@ TEST_P(DNNTestNetwork, MobileNet_SSD_Caffe) { applyTestTag(CV_TEST_TAG_MEMORY_512MB); if (backend == DNN_BACKEND_HALIDE) - throw SkipTestException(""); + applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); Mat sample = imread(findDataFile("dnn/street.png")); Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false); float diffScores = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 1.5e-2 : 0.0; @@ -184,11 +185,11 @@ TEST_P(DNNTestNetwork, MobileNet_SSD_Caffe) TEST_P(DNNTestNetwork, MobileNet_SSD_Caffe_Different_Width_Height) { if (backend == DNN_BACKEND_HALIDE) - throw SkipTestException(""); + applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) - throw SkipTestException("Test is disabled for MyriadX"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); #endif Mat sample = imread(findDataFile("dnn/street.png")); Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 560), Scalar(127.5, 127.5, 127.5), false); @@ -203,7 +204,7 @@ TEST_P(DNNTestNetwork, MobileNet_SSD_v1_TensorFlow) { applyTestTag(target == DNN_TARGET_CPU ? "" : CV_TEST_TAG_MEMORY_512MB); if (backend == DNN_BACKEND_HALIDE) - throw SkipTestException(""); + applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); Mat sample = imread(findDataFile("dnn/street.png")); Mat inp = blobFromImage(sample, 1.0f, Size(300, 300), Scalar(), false); float l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.095 : 0.0; @@ -217,11 +218,11 @@ TEST_P(DNNTestNetwork, MobileNet_SSD_v1_TensorFlow) TEST_P(DNNTestNetwork, MobileNet_SSD_v1_TensorFlow_Different_Width_Height) { if (backend == DNN_BACKEND_HALIDE) - throw SkipTestException(""); + applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) - throw SkipTestException("Test is disabled for MyriadX"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); #endif Mat sample = imread(findDataFile("dnn/street.png")); Mat inp = blobFromImage(sample, 1.0f, Size(300, 560), Scalar(), false); @@ -236,7 +237,7 @@ TEST_P(DNNTestNetwork, MobileNet_SSD_v2_TensorFlow) { applyTestTag(target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB); if (backend == DNN_BACKEND_HALIDE) - throw SkipTestException(""); + applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); Mat sample = imread(findDataFile("dnn/street.png")); Mat inp = blobFromImage(sample, 1.0f, Size(300, 300), Scalar(), false); float l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.013 : 2e-5; @@ -251,7 +252,7 @@ TEST_P(DNNTestNetwork, SSD_VGG16) applyTestTag(CV_TEST_TAG_LONG, (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB), CV_TEST_TAG_DEBUG_VERYLONG); if (backend == DNN_BACKEND_HALIDE && target == DNN_TARGET_CPU) - throw SkipTestException(""); + applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); // TODO HALIDE_CPU double scoreThreshold = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.0325 : 0.0; const float lInf = (target == DNN_TARGET_MYRIAD) ? 0.032 : 0.0; Mat sample = imread(findDataFile("dnn/street.png")); @@ -264,13 +265,13 @@ TEST_P(DNNTestNetwork, SSD_VGG16) TEST_P(DNNTestNetwork, OpenPose_pose_coco) { applyTestTag(CV_TEST_TAG_LONG, (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB), - CV_TEST_TAG_DEBUG_VERYLONG); + CV_TEST_TAG_DEBUG_LONG); if (backend == DNN_BACKEND_HALIDE) - throw SkipTestException(""); + applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) - throw SkipTestException("Test is disabled for OpenVINO <= 2018R5 + MyriadX target"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_2018R5); #endif const float l1 = (target == DNN_TARGET_MYRIAD) ? 0.0056 : 0.0; @@ -285,11 +286,11 @@ TEST_P(DNNTestNetwork, OpenPose_pose_mpi) applyTestTag(CV_TEST_TAG_LONG, (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_1GB : CV_TEST_TAG_MEMORY_2GB), CV_TEST_TAG_DEBUG_VERYLONG); if (backend == DNN_BACKEND_HALIDE) - throw SkipTestException(""); + applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) - throw SkipTestException("Test is disabled for OpenVINO <= 2018R5 + MyriadX target"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_2018R5); #endif // output range: [-0.001, 0.97] @@ -304,11 +305,11 @@ TEST_P(DNNTestNetwork, OpenPose_pose_mpi_faster_4_stages) { applyTestTag(CV_TEST_TAG_LONG, CV_TEST_TAG_MEMORY_1GB); if (backend == DNN_BACKEND_HALIDE) - throw SkipTestException(""); + applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) - throw SkipTestException("Test is disabled for OpenVINO <= 2018R5 + MyriadX target"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_2018R5); #endif // The same .caffemodel but modified .prototxt @@ -323,11 +324,11 @@ TEST_P(DNNTestNetwork, OpenFace) #if defined(INF_ENGINE_RELEASE) #if INF_ENGINE_VER_MAJOR_EQ(2018050000) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) - throw SkipTestException("Test is disabled for Myriad targets"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_2018R5); #endif #endif if (backend == DNN_BACKEND_HALIDE) - throw SkipTestException(""); + applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); const float l1 = (target == DNN_TARGET_MYRIAD) ? 0.0024 : 0.0; const float lInf = (target == DNN_TARGET_MYRIAD) ? 0.0071 : 0.0; processNet("dnn/openface_nn4.small2.v1.t7", "", Size(96, 96), "", "", l1, lInf); @@ -336,7 +337,7 @@ TEST_P(DNNTestNetwork, OpenFace) TEST_P(DNNTestNetwork, opencv_face_detector) { if (backend == DNN_BACKEND_HALIDE) - throw SkipTestException(""); + applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); Mat img = imread(findDataFile("gpu/lbpcascade/er.png")); Mat inp = blobFromImage(img, 1.0, Size(), Scalar(104.0, 177.0, 123.0), false, false); processNet("dnn/opencv_face_detector.caffemodel", "dnn/opencv_face_detector.prototxt", @@ -353,10 +354,10 @@ TEST_P(DNNTestNetwork, Inception_v2_SSD_TensorFlow) #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) - throw SkipTestException("Test is disabled for MyriadX"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); #endif if (backend == DNN_BACKEND_HALIDE) - throw SkipTestException(""); + applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); Mat sample = imread(findDataFile("dnn/street.png")); Mat inp = blobFromImage(sample, 1.0f, Size(300, 300), Scalar(), false); float l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.015 : 0.0; @@ -370,7 +371,7 @@ TEST_P(DNNTestNetwork, DenseNet_121) { applyTestTag(CV_TEST_TAG_MEMORY_512MB); if (backend == DNN_BACKEND_HALIDE) - throw SkipTestException(""); + applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); // Reference output values are in range [-3.807, 4.605] float l1 = 0.0, lInf = 0.0; if (target == DNN_TARGET_OPENCL_FP16) @@ -389,14 +390,15 @@ TEST_P(DNNTestNetwork, FastNeuralStyle_eccv16) { applyTestTag(CV_TEST_TAG_MEMORY_512MB, CV_TEST_TAG_DEBUG_VERYLONG); - if (backend == DNN_BACKEND_HALIDE || - (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)) - throw SkipTestException(""); + if (backend == DNN_BACKEND_HALIDE) + applyTestTag(CV_TEST_TAG_DNN_SKIP_HALIDE); + if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); #if defined(INF_ENGINE_RELEASE) -#if INF_ENGINE_RELEASE <= 2018050000 +#if INF_ENGINE_VER_MAJOR_LE(2018050000) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL) - throw SkipTestException(""); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_2018R5); #endif #endif @@ -406,7 +408,7 @@ TEST_P(DNNTestNetwork, FastNeuralStyle_eccv16) float l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.4 : 4e-5; float lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 7.45 : 2e-3; processNet("dnn/fast_neural_style_eccv16_starry_night.t7", "", inp, "", "", l1, lInf); -#if defined(HAVE_INF_ENGINE) && INF_ENGINE_RELEASE >= 2019010000 +#if defined(HAVE_INF_ENGINE) && INF_ENGINE_VER_MAJOR_GE(2019010000) expectNoFallbacksFromIE(net); #endif } diff --git a/modules/dnn/test/test_caffe_importer.cpp b/modules/dnn/test/test_caffe_importer.cpp index 4ac3e7e63a..c2d4673876 100644 --- a/modules/dnn/test/test_caffe_importer.cpp +++ b/modules/dnn/test/test_caffe_importer.cpp @@ -113,7 +113,7 @@ TEST(Test_Caffe, read_googlenet) TEST_P(Test_Caffe_nets, Axpy) { if (backend == DNN_BACKEND_INFERENCE_ENGINE) - throw SkipTestException(""); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE); String proto = _tf("axpy.prototxt"); Net net = readNetFromCaffe(proto); @@ -158,8 +158,7 @@ TEST_P(Reproducibility_AlexNet, Accuracy) { Target targetId = get<1>(GetParam()); applyTestTag(targetId == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB); - if (!ocl::useOpenCL() && targetId != DNN_TARGET_CPU) - throw SkipTestException("OpenCL is disabled"); + ASSERT_TRUE(ocl::useOpenCL() || targetId == DNN_TARGET_CPU); bool readFromMemory = get<0>(GetParam()); Net net; @@ -197,7 +196,7 @@ TEST_P(Reproducibility_AlexNet, Accuracy) } INSTANTIATE_TEST_CASE_P(/**/, Reproducibility_AlexNet, Combine(testing::Bool(), - Values(DNN_TARGET_CPU, DNN_TARGET_OPENCL, DNN_TARGET_OPENCL_FP16))); + testing::ValuesIn(getAvailableTargets(DNN_BACKEND_OPENCV)))); TEST(Reproducibility_FCN, Accuracy) { @@ -329,8 +328,7 @@ TEST_P(Reproducibility_ResNet50, Accuracy) { Target targetId = GetParam(); applyTestTag(targetId == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB); - if (!ocl::useOpenCL() && targetId != DNN_TARGET_CPU) - throw SkipTestException("OpenCL is disabled"); + ASSERT_TRUE(ocl::useOpenCL() || targetId == DNN_TARGET_CPU); Net net = readNetFromCaffe(findDataFile("dnn/ResNet-50-deploy.prototxt"), findDataFile("dnn/ResNet-50-model.caffemodel", false)); @@ -362,14 +360,14 @@ TEST_P(Reproducibility_ResNet50, Accuracy) } } INSTANTIATE_TEST_CASE_P(/**/, Reproducibility_ResNet50, - Values(DNN_TARGET_CPU, DNN_TARGET_OPENCL, DNN_TARGET_OPENCL_FP16)); + testing::ValuesIn(getAvailableTargets(DNN_BACKEND_OPENCV))); typedef testing::TestWithParam Reproducibility_SqueezeNet_v1_1; TEST_P(Reproducibility_SqueezeNet_v1_1, Accuracy) { int targetId = GetParam(); if(targetId == DNN_TARGET_OPENCL_FP16) - throw SkipTestException("This test does not support FP16"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); Net net = readNetFromCaffe(findDataFile("dnn/squeezenet_v1.1.prototxt"), findDataFile("dnn/squeezenet_v1.1.caffemodel", false)); net.setPreferableBackend(DNN_BACKEND_OPENCV); @@ -600,10 +598,10 @@ TEST_P(Test_Caffe_nets, FasterRCNN_vgg16) #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) - throw SkipTestException("Test is disabled for DLIE OpenCL targets"); // very slow + applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) - throw SkipTestException("Test is disabled for Myriad targets"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); #endif static Mat ref = (Mat_(3, 7) << 0, 2, 0.949398, 99.2454, 210.141, 601.205, 462.849, @@ -618,9 +616,10 @@ TEST_P(Test_Caffe_nets, FasterRCNN_zf) (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB), CV_TEST_TAG_DEBUG_LONG ); - if ((backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16) || - (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)) - throw SkipTestException(""); + if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16) + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); + if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); static Mat ref = (Mat_(3, 7) << 0, 2, 0.90121, 120.407, 115.83, 570.586, 528.395, 0, 7, 0.988779, 469.849, 75.1756, 718.64, 186.762, 0, 12, 0.967198, 138.588, 206.843, 329.766, 553.176); @@ -634,9 +633,10 @@ TEST_P(Test_Caffe_nets, RFCN) CV_TEST_TAG_LONG, CV_TEST_TAG_DEBUG_VERYLONG ); - if ((backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16) || - (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)) - throw SkipTestException(""); + if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16) + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); + if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); double scoreDiff = (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) ? 4e-3 : default_l1; double iouDiff = (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) ? 8e-2 : default_lInf; static Mat ref = (Mat_(2, 7) << 0, 7, 0.991359, 491.822, 81.1668, 702.573, 178.234, diff --git a/modules/dnn/test/test_common.hpp b/modules/dnn/test/test_common.hpp index debde659ac..03acac38eb 100644 --- a/modules/dnn/test/test_common.hpp +++ b/modules/dnn/test/test_common.hpp @@ -11,6 +11,20 @@ #include "opencv2/core/ocl.hpp" #endif +#define CV_TEST_TAG_DNN_SKIP_HALIDE "dnn_skip_halide" +#define CV_TEST_TAG_DNN_SKIP_OPENCL "dnn_skip_ocl" +#define CV_TEST_TAG_DNN_SKIP_OPENCL_FP16 "dnn_skip_ocl_fp16" +#define CV_TEST_TAG_DNN_SKIP_IE "dnn_skip_ie" +#define CV_TEST_TAG_DNN_SKIP_IE_2018R5 "dnn_skip_ie_2018r5" +#define CV_TEST_TAG_DNN_SKIP_IE_2019R1 "dnn_skip_ie_2019r1" +#define CV_TEST_TAG_DNN_SKIP_IE_2019R1_1 "dnn_skip_ie_2019r1_1" +#define CV_TEST_TAG_DNN_SKIP_IE_OPENCL "dnn_skip_ie_ocl" +#define CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16 "dnn_skip_ie_ocl_fp16" +#define CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2 "dnn_skip_ie_myriad2" +#define CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X "dnn_skip_ie_myriadx" +#define CV_TEST_TAG_DNN_SKIP_IE_MYRIAD CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2, CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X + + namespace cv { namespace dnn { CV__DNN_EXPERIMENTAL_NS_BEGIN @@ -28,6 +42,8 @@ CV__DNN_EXPERIMENTAL_NS_END namespace opencv_test { +void initDNNTests(); + using namespace cv::dnn; static inline const std::string &getOpenCVExtraDir() @@ -106,7 +122,10 @@ public: { if (inp && ref && inp->dims == 4 && ref->dims == 4 && inp->size[0] != 1 && inp->size[0] != ref->size[0]) + { + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); throw SkipTestException("Inconsistent batch size of input and output blobs for Myriad plugin"); + } } } diff --git a/modules/dnn/test/test_common.impl.hpp b/modules/dnn/test/test_common.impl.hpp index 60dedbf374..ee0a3a66b5 100644 --- a/modules/dnn/test/test_common.impl.hpp +++ b/modules/dnn/test/test_common.impl.hpp @@ -270,6 +270,14 @@ static bool validateVPUType_() exit(1); } } + if (have_vpu_target) + { + std::string dnn_vpu_type = getInferenceEngineVPUType(); + if (dnn_vpu_type == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2) + registerGlobalSkipTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2); + if (dnn_vpu_type == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) + registerGlobalSkipTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); + } return true; } @@ -280,4 +288,38 @@ bool validateVPUType() } #endif // HAVE_INF_ENGINE + +void initDNNTests() +{ + const char* extraTestDataPath = +#ifdef WINRT + NULL; +#else + getenv("OPENCV_DNN_TEST_DATA_PATH"); +#endif + if (extraTestDataPath) + cvtest::addDataSearchPath(extraTestDataPath); + + registerGlobalSkipTag( + CV_TEST_TAG_DNN_SKIP_HALIDE, + CV_TEST_TAG_DNN_SKIP_OPENCL, CV_TEST_TAG_DNN_SKIP_OPENCL_FP16 + ); +#if defined(INF_ENGINE_RELEASE) + registerGlobalSkipTag( +#if INF_ENGINE_VER_MAJOR_EQ(2018050000) + CV_TEST_TAG_DNN_SKIP_IE_2018R5, +#elif INF_ENGINE_VER_MAJOR_EQ(2019010000) + CV_TEST_TAG_DNN_SKIP_IE_2019R1, +#elif INF_ENGINE_VER_MAJOR_EQ(2019010100) + CV_TEST_TAG_DNN_SKIP_IE_2019R1_1 +#endif + CV_TEST_TAG_DNN_SKIP_IE + ); +#endif + registerGlobalSkipTag( + // see validateVPUType(): CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2, CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X + CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16 + ); +} + } // namespace diff --git a/modules/dnn/test/test_darknet_importer.cpp b/modules/dnn/test/test_darknet_importer.cpp index 6a5f5024fe..2263ce20a3 100644 --- a/modules/dnn/test/test_darknet_importer.cpp +++ b/modules/dnn/test/test_darknet_importer.cpp @@ -273,12 +273,12 @@ TEST_P(Test_Darknet_nets, YoloVoc) #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL_FP16) - throw SkipTestException("Test is disabled"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); #endif #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) - throw SkipTestException("Test is disabled for MyriadX (need to update check function)"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); // need to update check function #endif // batchId, classId, confidence, left, top, right, bottom @@ -314,7 +314,7 @@ TEST_P(Test_Darknet_nets, TinyYoloVoc) #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) - throw SkipTestException("Test is disabled for MyriadX (need to update check function)"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); // need to update check function #endif // batchId, classId, confidence, left, top, right, bottom Mat ref = (Mat_(4, 7) << 0, 6, 0.761967f, 0.579042f, 0.159161f, 0.894482f, 0.31994f, // a car @@ -346,7 +346,7 @@ TEST_P(Test_Darknet_nets, YOLOv3) #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) - throw SkipTestException("Test is disabled for MyriadX"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); #endif // batchId, classId, confidence, left, top, right, bottom @@ -373,7 +373,7 @@ TEST_P(Test_Darknet_nets, YOLOv3) #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL) - throw SkipTestException("Test with 'batch size 2' is disabled for DLIE/OpenCL target"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL) // Test with 'batch size 2' is disabled for DLIE/OpenCL target #endif { diff --git a/modules/dnn/test/test_googlenet.cpp b/modules/dnn/test/test_googlenet.cpp index 4db04e0b35..e51dcd0988 100644 --- a/modules/dnn/test/test_googlenet.cpp +++ b/modules/dnn/test/test_googlenet.cpp @@ -56,8 +56,8 @@ typedef testing::TestWithParam Reproducibility_GoogLeNet; TEST_P(Reproducibility_GoogLeNet, Batching) { const int targetId = GetParam(); - if(targetId == DNN_TARGET_OPENCL_FP16) - throw SkipTestException("This test does not support FP16"); + if (targetId == DNN_TARGET_OPENCL_FP16) + applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); Net net = readNetFromCaffe(findDataFile("dnn/bvlc_googlenet.prototxt"), findDataFile("dnn/bvlc_googlenet.caffemodel", false)); net.setPreferableBackend(DNN_BACKEND_OPENCV); @@ -87,8 +87,8 @@ TEST_P(Reproducibility_GoogLeNet, Batching) TEST_P(Reproducibility_GoogLeNet, IntermediateBlobs) { const int targetId = GetParam(); - if(targetId == DNN_TARGET_OPENCL_FP16) - throw SkipTestException("This test does not support FP16"); + if (targetId == DNN_TARGET_OPENCL_FP16) + applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); Net net = readNetFromCaffe(findDataFile("dnn/bvlc_googlenet.prototxt"), findDataFile("dnn/bvlc_googlenet.caffemodel", false)); net.setPreferableBackend(DNN_BACKEND_OPENCV); @@ -118,8 +118,8 @@ TEST_P(Reproducibility_GoogLeNet, IntermediateBlobs) TEST_P(Reproducibility_GoogLeNet, SeveralCalls) { const int targetId = GetParam(); - if(targetId == DNN_TARGET_OPENCL_FP16) - throw SkipTestException("This test does not support FP16"); + if (targetId == DNN_TARGET_OPENCL_FP16) + applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); Net net = readNetFromCaffe(findDataFile("dnn/bvlc_googlenet.prototxt"), findDataFile("dnn/bvlc_googlenet.caffemodel", false)); net.setPreferableBackend(DNN_BACKEND_OPENCV); diff --git a/modules/dnn/test/test_halide_layers.cpp b/modules/dnn/test/test_halide_layers.cpp index ff10842052..42f67f4817 100644 --- a/modules/dnn/test/test_halide_layers.cpp +++ b/modules/dnn/test/test_halide_layers.cpp @@ -165,7 +165,7 @@ TEST_P(Deconvolution, Accuracy) && inChannels == 6 && outChannels == 4 && group == 1 && kernel == Size(1, 3) && pad == Size(1, 0) && stride == Size(1, 1) && dilation == Size(1, 1)) - throw SkipTestException("Test is disabled"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); #endif int sz[] = {inChannels, outChannels / group, kernel.height, kernel.width}; @@ -231,7 +231,7 @@ TEST_P(LRN, Accuracy) if ((inSize.width == 5 || inSize.height == 5) && targetId == DNN_TARGET_MYRIAD && nrmType == "ACROSS_CHANNELS") - throw SkipTestException("This test case is disabled"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); LayerParams lp; lp.set("norm_region", nrmType); @@ -276,7 +276,7 @@ TEST_P(AvePooling, Accuracy) if (backendId == DNN_BACKEND_INFERENCE_ENGINE && targetId == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X && kernel == Size(1, 1) && (stride == Size(1, 1) || stride == Size(2, 2))) - throw SkipTestException("Test is disabled for MyriadX target"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); #endif const int inWidth = (outSize.width - 1) * stride.width + kernel.width; @@ -324,7 +324,7 @@ TEST_P(MaxPooling, Accuracy) && (stride == Size(1, 1) || stride == Size(2, 2)) && (pad == Size(0, 1) || pad == Size(1, 1)) ) - throw SkipTestException("Test is disabled in OpenVINO <= 2018R5"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_2018R5); #endif #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2018050000) @@ -332,7 +332,7 @@ TEST_P(MaxPooling, Accuracy) && (kernel == Size(2, 2) || kernel == Size(3, 2)) && stride == Size(1, 1) && (pad == Size(0, 0) || pad == Size(0, 1)) ) - throw SkipTestException("Problems with output dimension in OpenVINO 2018R5"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_2018R5); #endif #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000) @@ -341,7 +341,7 @@ TEST_P(MaxPooling, Accuracy) && (stride == Size(1, 1) || stride == Size(2, 2)) && (pad == Size(0, 1) || pad == Size(1, 1)) ) - throw SkipTestException("Test is disabled for MyriadX target"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_2019R1, CV_TEST_TAG_DNN_SKIP_IE_2019R1_1); #endif LayerParams lp; @@ -382,7 +382,7 @@ TEST_P(FullyConnected, Accuracy) Backend backendId = get<0>(get<4>(GetParam())); Target targetId = get<1>(get<4>(GetParam())); if (backendId == DNN_BACKEND_INFERENCE_ENGINE) - throw SkipTestException(""); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE); Mat weights(outChannels, inChannels * inSize.height * inSize.width, CV_32F); randu(weights, -1.0f, 1.0f); @@ -440,7 +440,7 @@ INSTANTIATE_TEST_CASE_P(Layer_Test_Halide, SoftMax, Combine( TEST_P(Test_Halide_layers, MaxPoolUnpool) { if (backend == DNN_BACKEND_INFERENCE_ENGINE) - throw SkipTestException(""); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE); LayerParams pool; pool.set("pool", "max"); @@ -656,14 +656,14 @@ TEST_P(Concat, Accuracy) if (backendId == DNN_BACKEND_INFERENCE_ENGINE && targetId == DNN_TARGET_MYRIAD && inSize == Vec3i(1, 4, 5) && numChannels == Vec3i(1, 6, 2) ) - throw SkipTestException("Test is disabled for Myriad target"); // crash + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_2018R5); // crash #endif #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000) if (backendId == DNN_BACKEND_INFERENCE_ENGINE && targetId == DNN_TARGET_CPU && inSize == Vec3i(1, 4, 5) && numChannels == Vec3i(1, 6, 2) ) - throw SkipTestException("Test is disabled for DLIE/CPU target"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE, CV_TEST_TAG_DNN_SKIP_IE_2019R1, CV_TEST_TAG_DNN_SKIP_IE_2019R1_1); // TODO: IE_CPU #endif Net net; @@ -737,12 +737,12 @@ TEST_P(Eltwise, Accuracy) #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000) if (backendId == DNN_BACKEND_INFERENCE_ENGINE && targetId == DNN_TARGET_MYRIAD && inSize == Vec3i(1, 4, 5)) - throw SkipTestException("Test is disabled for Myriad target"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_2018R5); #endif #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000) if (backendId == DNN_BACKEND_INFERENCE_ENGINE && numConv > 1) - throw SkipTestException("Test is disabled for DLIE backend"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE, CV_TEST_TAG_DNN_SKIP_IE_2019R1, CV_TEST_TAG_DNN_SKIP_IE_2019R1_1); #endif Net net; diff --git a/modules/dnn/test/test_layers.cpp b/modules/dnn/test/test_layers.cpp index 8812714bff..18f47c0a2e 100644 --- a/modules/dnn/test/test_layers.cpp +++ b/modules/dnn/test/test_layers.cpp @@ -142,15 +142,16 @@ TEST_P(Test_Caffe_layers, Convolution) TEST_P(Test_Caffe_layers, DeConvolution) { if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_CPU) - throw SkipTestException("Test is disabled for DLIE/CPU"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE); // TODO IE_CPU testLayerUsingCaffeModels("layer_deconvolution", true, false); } TEST_P(Test_Caffe_layers, InnerProduct) { - if (backend == DNN_BACKEND_INFERENCE_ENGINE || - (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)) - throw SkipTestException(""); + if (backend == DNN_BACKEND_INFERENCE_ENGINE) + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE); + if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) + applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); testLayerUsingCaffeModels("layer_inner_product", true); } @@ -236,7 +237,7 @@ TEST_P(Test_Caffe_layers, Concat) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) - throw SkipTestException("Test is disabled for Myriad targets"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_2019R1, CV_TEST_TAG_DNN_SKIP_IE_2019R1_1); #endif testLayerUsingCaffeModels("layer_concat"); testLayerUsingCaffeModels("layer_concat_optim", true, false); @@ -246,15 +247,13 @@ TEST_P(Test_Caffe_layers, Concat) TEST_P(Test_Caffe_layers, Fused_Concat) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000) - if (backend == DNN_BACKEND_INFERENCE_ENGINE) - throw SkipTestException("Test is disabled for DLIE due negative_slope parameter"); + if (backend == DNN_BACKEND_INFERENCE_ENGINE) // Test is disabled for DLIE due negative_slope parameter + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE, CV_TEST_TAG_DNN_SKIP_IE_2019R1, CV_TEST_TAG_DNN_SKIP_IE_2019R1_1); #endif #if defined(INF_ENGINE_RELEASE) - if (backend == DNN_BACKEND_INFERENCE_ENGINE - && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16) - ) - throw SkipTestException("Test is disabled for DLIE"); + if (backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) + applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); #endif checkBackend(); @@ -300,7 +299,7 @@ TEST_P(Test_Caffe_layers, Fused_Concat) TEST_P(Test_Caffe_layers, Eltwise) { if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) - throw SkipTestException(""); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); testLayerUsingCaffeModels("layer_eltwise"); } @@ -313,7 +312,7 @@ TEST_P(Test_Caffe_layers, PReLU) TEST_P(Test_Caffe_layers, layer_prelu_fc) { if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) - throw SkipTestException(""); + applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); // Reference output values are in range [-0.0001, 10.3906] double l1 = (target == DNN_TARGET_MYRIAD) ? 0.005 : 0.0; double lInf = (target == DNN_TARGET_MYRIAD) ? 0.021 : 0.0; @@ -343,7 +342,7 @@ TEST_P(Test_Caffe_layers, layer_prelu_fc) TEST_P(Test_Caffe_layers, Reshape_Split_Slice) { if (backend == DNN_BACKEND_INFERENCE_ENGINE) - throw SkipTestException(""); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE); Net net = readNetFromCaffe(_tf("reshape_and_slice_routines.prototxt")); ASSERT_FALSE(net.empty()); @@ -365,7 +364,7 @@ TEST_P(Test_Caffe_layers, Conv_Elu) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE <= 2018050000 if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) - throw SkipTestException(""); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_2018R5); #endif Net net = readNetFromTensorflow(_tf("layer_elu_model.pb")); @@ -548,9 +547,11 @@ TEST(Layer_Test_ROIPooling, Accuracy) TEST_P(Test_Caffe_layers, FasterRCNN_Proposal) { - if ((backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) || - backend == DNN_BACKEND_INFERENCE_ENGINE) - throw SkipTestException(""); + if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) + applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); + if (backend == DNN_BACKEND_INFERENCE_ENGINE) + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE); + Net net = readNetFromCaffe(_tf("net_faster_rcnn_proposal.prototxt")); Mat scores = blobFromNPY(_tf("net_faster_rcnn_proposal.scores.npy")); @@ -774,7 +775,8 @@ TEST_P(Test_Caffe_layers, Average_pooling_kernel_area) TEST_P(Test_Caffe_layers, PriorBox_squares) { if (backend == DNN_BACKEND_INFERENCE_ENGINE) - throw SkipTestException(""); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); + LayerParams lp; lp.name = "testPriorBox"; lp.type = "PriorBox"; @@ -1307,7 +1309,8 @@ TEST_P(Test_Caffe_layers, DISABLED_Interp) // requires patched protobuf (availa #endif { if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) - throw SkipTestException(""); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); + // Test a custom layer. CV_DNN_REGISTER_LAYER_CLASS(Interp, CustomInterpLayer); try diff --git a/modules/dnn/test/test_main.cpp b/modules/dnn/test/test_main.cpp index 4842c15240..6bd364660a 100644 --- a/modules/dnn/test/test_main.cpp +++ b/modules/dnn/test/test_main.cpp @@ -1,20 +1,3 @@ #include "test_precomp.hpp" -static const char* extraTestDataPath = -#ifdef WINRT - NULL; -#else - getenv("OPENCV_DNN_TEST_DATA_PATH"); -#endif - -CV_TEST_MAIN("", - extraTestDataPath ? (void)cvtest::addDataSearchPath(extraTestDataPath) : (void)0 -) - -namespace opencv_test -{ - -using namespace cv; -using namespace cv::dnn; - -} +CV_TEST_MAIN("", initDNNTests()); diff --git a/modules/dnn/test/test_misc.cpp b/modules/dnn/test/test_misc.cpp index 4babc7cd5f..ecc7e27115 100644 --- a/modules/dnn/test/test_misc.cpp +++ b/modules/dnn/test/test_misc.cpp @@ -158,7 +158,7 @@ TEST_P(setInput, normalization) const bool kSwapRB = true; if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16 && dtype != CV_32F) - throw SkipTestException(""); + applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); Mat inp(5, 5, CV_8UC3); randu(inp, 0, 255); diff --git a/modules/dnn/test/test_onnx_importer.cpp b/modules/dnn/test/test_onnx_importer.cpp index 9edd0ef7b4..05fa79dcf1 100644 --- a/modules/dnn/test/test_onnx_importer.cpp +++ b/modules/dnn/test/test_onnx_importer.cpp @@ -104,7 +104,7 @@ TEST_P(Test_ONNX_layers, Two_convolution) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X ) - throw SkipTestException("Test is disabled for MyriadX"); // 2018R5+ is failed + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); #endif // Reference output values are in range [-0.855, 0.611] testONNXModels("two_convolution"); @@ -127,7 +127,7 @@ TEST_P(Test_ONNX_layers, Dropout) TEST_P(Test_ONNX_layers, Linear) { if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) - throw SkipTestException(""); + applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); testONNXModels("linear"); } @@ -143,9 +143,12 @@ TEST_P(Test_ONNX_layers, MaxPooling_Sigmoid) TEST_P(Test_ONNX_layers, Concatenation) { - if (backend == DNN_BACKEND_INFERENCE_ENGINE && - (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_OPENCL || target == DNN_TARGET_MYRIAD)) - throw SkipTestException(""); + if (backend == DNN_BACKEND_INFERENCE_ENGINE) + { + if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); + if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL); + if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); + } testONNXModels("concatenation"); } @@ -191,24 +194,32 @@ TEST_P(Test_ONNX_layers, BatchNormalization) TEST_P(Test_ONNX_layers, BatchNormalization3D) { - if (backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU) - throw SkipTestException(""); + if (backend == DNN_BACKEND_INFERENCE_ENGINE) + { + if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); + if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL); + if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); + } testONNXModels("batch_norm_3d"); } TEST_P(Test_ONNX_layers, Transpose) { - if (backend == DNN_BACKEND_INFERENCE_ENGINE && - (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_OPENCL || target == DNN_TARGET_MYRIAD)) - throw SkipTestException(""); + if (backend == DNN_BACKEND_INFERENCE_ENGINE) + { + if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); + if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL); + if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); + } testONNXModels("transpose"); } TEST_P(Test_ONNX_layers, Multiplication) { - if ((backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) || - (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD)) - throw SkipTestException(""); + if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) + applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); + if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); testONNXModels("mul"); } @@ -217,7 +228,7 @@ TEST_P(Test_ONNX_layers, Constant) #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LE(2018050000) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) - throw SkipTestException("Test is disabled for OpenVINO <= 2018R5 + MyriadX target"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X, CV_TEST_TAG_DNN_SKIP_IE_2018R5); #endif testONNXModels("constant"); } @@ -261,8 +272,11 @@ TEST_P(Test_ONNX_layers, MultyInputs) TEST_P(Test_ONNX_layers, DynamicReshape) { - if (backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) - throw SkipTestException(""); + if (backend == DNN_BACKEND_INFERENCE_ENGINE) + { + if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); + if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL); + } testONNXModels("dynamic_reshape"); } @@ -325,7 +339,7 @@ TEST_P(Test_ONNX_nets, Squeezenet) TEST_P(Test_ONNX_nets, Googlenet) { if (backend == DNN_BACKEND_INFERENCE_ENGINE) - throw SkipTestException(""); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE); const String model = _tf("models/googlenet.onnx", false); @@ -409,14 +423,18 @@ TEST_P(Test_ONNX_nets, ResNet101_DUC_HDC) #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_GE(2019010000) if (backend == DNN_BACKEND_INFERENCE_ENGINE) - throw SkipTestException("Test is disabled for DLIE targets"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE, CV_TEST_TAG_DNN_SKIP_IE_2019R1, CV_TEST_TAG_DNN_SKIP_IE_2019R1_1); #endif #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) - throw SkipTestException("Test is disabled for Myriad targets"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); #endif if (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_OPENCL) + { + if (backend == DNN_BACKEND_OPENCV) + applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_OPENCL : CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); throw SkipTestException("Test is disabled for OpenCL targets"); + } testONNXModels("resnet101_duc_hdc", pb); } @@ -430,12 +448,12 @@ TEST_P(Test_ONNX_nets, TinyYolov2) if (backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16) ) - throw SkipTestException("Test is disabled for DLIE OpenCL targets"); + applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X ) - throw SkipTestException("Test is disabled for MyriadX"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); #endif // output range: [-11; 8] @@ -462,9 +480,12 @@ TEST_P(Test_ONNX_nets, LResNet100E_IR) (target == DNN_TARGET_CPU ? CV_TEST_TAG_MEMORY_512MB : CV_TEST_TAG_MEMORY_1GB), CV_TEST_TAG_DEBUG_LONG ); - if (backend == DNN_BACKEND_INFERENCE_ENGINE && - (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_OPENCL || target == DNN_TARGET_MYRIAD)) - throw SkipTestException(""); + if (backend == DNN_BACKEND_INFERENCE_ENGINE) + { + if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); + if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL); + if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); + } double l1 = default_l1; double lInf = default_lInf; @@ -486,7 +507,7 @@ TEST_P(Test_ONNX_nets, Emotion_ferplus) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X ) - throw SkipTestException("Test is disabled for MyriadX"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); #endif double l1 = default_l1; @@ -524,16 +545,19 @@ TEST_P(Test_ONNX_nets, Inception_v1) { #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) - throw SkipTestException("Test is disabled for Myriad targets"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); #endif testONNXModels("inception_v1", pb); } TEST_P(Test_ONNX_nets, Shufflenet) { - if (backend == DNN_BACKEND_INFERENCE_ENGINE && - (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_OPENCL || target == DNN_TARGET_MYRIAD)) - throw SkipTestException(""); + if (backend == DNN_BACKEND_INFERENCE_ENGINE) + { + if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); + if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL); + if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); + } testONNXModels("shufflenet", pb); } diff --git a/modules/dnn/test/test_tf_importer.cpp b/modules/dnn/test/test_tf_importer.cpp index d3d138daa4..e80774caf5 100644 --- a/modules/dnn/test/test_tf_importer.cpp +++ b/modules/dnn/test/test_tf_importer.cpp @@ -154,7 +154,7 @@ TEST_P(Test_TensorFlow_layers, padding_same) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X ) - throw SkipTestException("Test is disabled for MyriadX"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); #endif // Reference output values are in range [0.0006, 2.798] runTensorFlowNet("padding_same"); @@ -196,14 +196,19 @@ TEST_P(Test_TensorFlow_layers, batch_norm) TEST_P(Test_TensorFlow_layers, batch_norm3D) { if (backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU) + { + if (target == DNN_TARGET_OPENCL_FP16) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); + if (target == DNN_TARGET_OPENCL) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL); + if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); throw SkipTestException(""); + } runTensorFlowNet("batch_norm3d"); } TEST_P(Test_TensorFlow_layers, slim_batch_norm) { if (backend == DNN_BACKEND_INFERENCE_ENGINE) - throw SkipTestException("Test is disabled for DLIE"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE); // Output values range: [-40.0597, 207.827] double l1 = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.041 : default_l1; double lInf = (target == DNN_TARGET_OPENCL_FP16 || target == DNN_TARGET_MYRIAD) ? 0.33 : default_lInf; @@ -226,7 +231,7 @@ TEST_P(Test_TensorFlow_layers, ave_pool_same) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X ) - throw SkipTestException("Test is disabled for MyriadX"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); #endif runTensorFlowNet("ave_pool_same"); } @@ -266,7 +271,7 @@ TEST_P(Test_TensorFlow_layers, deconvolution) TEST_P(Test_TensorFlow_layers, matmul) { if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) - throw SkipTestException(""); + applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); runTensorFlowNet("matmul"); runTensorFlowNet("nhwc_transpose_reshape_matmul"); // Reference output values are in range [-5.688, 4.484] @@ -278,7 +283,7 @@ TEST_P(Test_TensorFlow_layers, matmul) TEST_P(Test_TensorFlow_layers, reshape) { if (backend == DNN_BACKEND_INFERENCE_ENGINE) - throw SkipTestException(""); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE); runTensorFlowNet("shift_reshape_no_reorder"); runTensorFlowNet("reshape_no_reorder"); runTensorFlowNet("reshape_reduce"); @@ -291,7 +296,7 @@ TEST_P(Test_TensorFlow_layers, flatten) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2 ) - throw SkipTestException("Test is disabled for Myriad2"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2); #endif runTensorFlowNet("flatten", true); @@ -307,7 +312,7 @@ TEST_P(Test_TensorFlow_layers, leaky_relu) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2018050000) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL) - throw SkipTestException("Test is disabled for DLIE/OCL target (OpenVINO 2018R5)"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_2018R5); #endif runTensorFlowNet("leaky_relu_order1"); runTensorFlowNet("leaky_relu_order2"); @@ -320,7 +325,7 @@ TEST_P(Test_TensorFlow_layers, l2_normalize) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X ) - throw SkipTestException("Test is disabled for MyriadX"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); #endif runTensorFlowNet("l2_normalize"); @@ -333,11 +338,11 @@ TEST_P(Test_TensorFlow_layers, l2_normalize_3d) if (backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16) ) - throw SkipTestException("Test is disabled for DLIE for OpenCL targets"); + applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); #endif #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) - throw SkipTestException("Test is disabled for Myriad targets"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); #endif runTensorFlowNet("l2_normalize_3d"); @@ -352,9 +357,9 @@ TEST_P(Test_TensorFlow_nets, MobileNet_SSD) { #if INF_ENGINE_VER_MAJOR_GE(2019010000) if (getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) - throw SkipTestException("Test is disabled for MyriadX"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); #else - throw SkipTestException("Test is disabled for Myriad"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); #endif } #endif @@ -393,7 +398,7 @@ TEST_P(Test_TensorFlow_nets, Inception_v2_SSD) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X ) - throw SkipTestException("Test is disabled for MyriadX"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); #endif checkBackend(); @@ -431,7 +436,7 @@ TEST_P(Test_TensorFlow_nets, MobileNet_v1_SSD) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X ) - throw SkipTestException("Test is disabled for MyriadX"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); #endif std::string proto = findDataFile("dnn/ssd_mobilenet_v1_coco_2017_11_17.pbtxt"); @@ -466,9 +471,10 @@ TEST_P(Test_TensorFlow_nets, Faster_RCNN) "faster_rcnn_resnet50_coco_2018_01_28"}; checkBackend(); - if ((backend == DNN_BACKEND_INFERENCE_ENGINE) || - (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)) - throw SkipTestException(""); + if (backend == DNN_BACKEND_INFERENCE_ENGINE) + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE); + if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) + applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); double scoresDiff = backend == DNN_BACKEND_INFERENCE_ENGINE ? 2.9e-5 : 1e-5; for (int i = 0; i < 2; ++i) @@ -494,7 +500,7 @@ TEST_P(Test_TensorFlow_nets, MobileNet_v1_SSD_PPN) { #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_EQ(2018050000) if (backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) - throw SkipTestException("Test is disabled for DLIE OpenCL targets in OpenVINO 2018R5"); + applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); #endif checkBackend(); @@ -566,7 +572,7 @@ TEST_P(Test_TensorFlow_nets, EAST_text_detection) #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) - throw SkipTestException("Test is disabled for Myriad targets"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); #endif checkBackend(); @@ -645,7 +651,7 @@ TEST_P(Test_TensorFlow_layers, fp16_padding_same) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X ) - throw SkipTestException("Test is disabled for MyriadX"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); #endif // Reference output values are in range [-3.504, -0.002] @@ -664,9 +670,10 @@ TEST_P(Test_TensorFlow_layers, quantized) TEST_P(Test_TensorFlow_layers, lstm) { - if (backend == DNN_BACKEND_INFERENCE_ENGINE || - (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)) - throw SkipTestException(""); + if (backend == DNN_BACKEND_INFERENCE_ENGINE) + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE); + if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) + applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); runTensorFlowNet("lstm", true); runTensorFlowNet("lstm", true, 0.0, 0.0, true); } @@ -674,7 +681,7 @@ TEST_P(Test_TensorFlow_layers, lstm) TEST_P(Test_TensorFlow_layers, split) { if (backend == DNN_BACKEND_INFERENCE_ENGINE) - throw SkipTestException(""); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE); runTensorFlowNet("split_equals"); } @@ -688,7 +695,7 @@ TEST_P(Test_TensorFlow_layers, slice) { if (backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) - throw SkipTestException(""); + applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); runTensorFlowNet("slice_4d"); runTensorFlowNet("strided_slice"); } @@ -705,7 +712,7 @@ TEST_P(Test_TensorFlow_layers, slim_softmax_v2) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2 ) - throw SkipTestException("Test is disabled for Myriad2"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2); #endif runTensorFlowNet("slim_softmax_v2"); } @@ -719,7 +726,7 @@ TEST_P(Test_TensorFlow_layers, relu6) TEST_P(Test_TensorFlow_layers, subpixel) { if (backend == DNN_BACKEND_INFERENCE_ENGINE) - throw SkipTestException(""); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE); runTensorFlowNet("subpixel"); } @@ -740,7 +747,7 @@ TEST_P(Test_TensorFlow_layers, squeeze) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_2 ) - throw SkipTestException("Test is disabled for Myriad2"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_2); #endif int inpShapes[][4] = {{1, 3, 4, 2}, {1, 3, 1, 2}, {1, 3, 4, 1}, {1, 3, 4, 1}}; // TensorFlow's shape (NHWC) int outShapes[][3] = {{3, 4, 2}, {1, 3, 2}, {1, 3, 4}, {1, 3, 4}}; diff --git a/modules/dnn/test/test_torch_importer.cpp b/modules/dnn/test/test_torch_importer.cpp index 5bd79c081b..ddc7f18acb 100644 --- a/modules/dnn/test/test_torch_importer.cpp +++ b/modules/dnn/test/test_torch_importer.cpp @@ -120,7 +120,7 @@ TEST_P(Test_Torch_layers, run_convolution) TEST_P(Test_Torch_layers, run_pool_max) { if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) - throw SkipTestException(""); + applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); runTorchNet("net_pool_max", "", true); } @@ -137,7 +137,7 @@ TEST_P(Test_Torch_layers, run_reshape_change_batch_size) TEST_P(Test_Torch_layers, run_reshape) { if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) - throw SkipTestException("Test is disabled for Myriad targets"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); runTorchNet("net_reshape_batch"); runTorchNet("net_reshape_channels", "", false, true); } @@ -153,7 +153,7 @@ TEST_P(Test_Torch_layers, run_reshape_single_sample) TEST_P(Test_Torch_layers, run_linear) { if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16) - throw SkipTestException(""); + applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16); runTorchNet("net_linear_2d"); } @@ -210,7 +210,7 @@ TEST_P(Test_Torch_layers, net_lp_pooling) TEST_P(Test_Torch_layers, net_conv_gemm_lrn) { if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) - throw SkipTestException(""); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); runTorchNet("net_conv_gemm_lrn", "", false, true, true, target == DNN_TARGET_OPENCL_FP16 ? 0.046 : 0.0, target == DNN_TARGET_OPENCL_FP16 ? 0.023 : 0.0); @@ -237,14 +237,14 @@ TEST_P(Test_Torch_layers, net_non_spatial) { if (backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) - throw SkipTestException(""); + applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); runTorchNet("net_non_spatial", "", false, true); } TEST_P(Test_Torch_layers, run_paralel) { if (backend != DNN_BACKEND_OPENCV || target != DNN_TARGET_CPU) - throw SkipTestException(""); + throw SkipTestException(""); // TODO: Check this runTorchNet("net_parallel", "l5_torchMerge"); } @@ -253,7 +253,7 @@ TEST_P(Test_Torch_layers, net_residual) #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_RELEASE == 2018050000 if (backend == DNN_BACKEND_INFERENCE_ENGINE && (target == DNN_TARGET_OPENCL || target == DNN_TARGET_OPENCL_FP16)) - throw SkipTestException("Test is disabled for OpenVINO 2018R5"); + applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); #endif runTorchNet("net_residual", "", false, true); } @@ -264,7 +264,7 @@ TEST_P(Test_Torch_nets, OpenFace_accuracy) { #if defined(INF_ENGINE_RELEASE) if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD) - throw SkipTestException("Test is disabled for Myriad targets"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD); #endif checkBackend(); @@ -339,7 +339,7 @@ TEST_P(Test_Torch_nets, ENet_accuracy) checkBackend(); if (backend == DNN_BACKEND_INFERENCE_ENGINE || (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)) - throw SkipTestException(""); + applyTestTag(target == DNN_TARGET_OPENCL ? CV_TEST_TAG_DNN_SKIP_IE_OPENCL : CV_TEST_TAG_DNN_SKIP_IE_OPENCL_FP16); Net net; { @@ -391,7 +391,7 @@ TEST_P(Test_Torch_nets, FastNeuralStyle_accuracy) #if defined INF_ENGINE_RELEASE if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_MYRIAD && getInferenceEngineVPUType() == CV_DNN_INFERENCE_ENGINE_VPU_TYPE_MYRIAD_X) - throw SkipTestException("Test is disabled for MyriadX target"); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD_X); #endif checkBackend(); @@ -399,7 +399,7 @@ TEST_P(Test_Torch_nets, FastNeuralStyle_accuracy) #if defined(INF_ENGINE_RELEASE) #if INF_ENGINE_RELEASE <= 2018050000 if (backend == DNN_BACKEND_INFERENCE_ENGINE && target == DNN_TARGET_OPENCL) - throw SkipTestException(""); + applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_OPENCL, CV_TEST_TAG_DNN_SKIP_IE_2018R5); #endif #endif diff --git a/modules/ts/include/opencv2/ts.hpp b/modules/ts/include/opencv2/ts.hpp index f08142899a..35b7d12934 100644 --- a/modules/ts/include/opencv2/ts.hpp +++ b/modules/ts/include/opencv2/ts.hpp @@ -212,6 +212,36 @@ static inline void applyTestTag(const std::string& tag1, const std::string& tag2 { applyTestTag_(tag1); applyTestTag_(tag2); applyTestTag_(tag3); applyTestTag_(tag4); checkTestTags(); } +/** Append global skip test tags +*/ +void registerGlobalSkipTag(const std::string& skipTag); +static inline void registerGlobalSkipTag(const std::string& tag1, const std::string& tag2) +{ registerGlobalSkipTag(tag1); registerGlobalSkipTag(tag2); } +static inline void registerGlobalSkipTag(const std::string& tag1, const std::string& tag2, const std::string& tag3) +{ registerGlobalSkipTag(tag1); registerGlobalSkipTag(tag2); registerGlobalSkipTag(tag3); } +static inline void registerGlobalSkipTag(const std::string& tag1, const std::string& tag2, const std::string& tag3, const std::string& tag4) +{ registerGlobalSkipTag(tag1); registerGlobalSkipTag(tag2); registerGlobalSkipTag(tag3); registerGlobalSkipTag(tag4); } +static inline void registerGlobalSkipTag(const std::string& tag1, const std::string& tag2, const std::string& tag3, const std::string& tag4, + const std::string& tag5) +{ + registerGlobalSkipTag(tag1); registerGlobalSkipTag(tag2); registerGlobalSkipTag(tag3); registerGlobalSkipTag(tag4); + registerGlobalSkipTag(tag5); +} +static inline void registerGlobalSkipTag(const std::string& tag1, const std::string& tag2, const std::string& tag3, const std::string& tag4, + const std::string& tag5, const std::string& tag6) +{ + registerGlobalSkipTag(tag1); registerGlobalSkipTag(tag2); registerGlobalSkipTag(tag3); registerGlobalSkipTag(tag4); + registerGlobalSkipTag(tag5); registerGlobalSkipTag(tag6); +} +static inline void registerGlobalSkipTag(const std::string& tag1, const std::string& tag2, const std::string& tag3, const std::string& tag4, + const std::string& tag5, const std::string& tag6, const std::string& tag7) +{ + registerGlobalSkipTag(tag1); registerGlobalSkipTag(tag2); registerGlobalSkipTag(tag3); registerGlobalSkipTag(tag4); + registerGlobalSkipTag(tag5); registerGlobalSkipTag(tag6); registerGlobalSkipTag(tag7); +} + + + class TS; int64 readSeed(const char* str); @@ -758,7 +788,7 @@ int main(int argc, char **argv) \ { \ CV_TRACE_FUNCTION(); \ { CV_TRACE_REGION("INIT"); \ - using namespace cvtest; \ + using namespace cvtest; using namespace opencv_test; \ TS* ts = TS::ptr(); \ ts->init(resourcesubdir); \ __CV_TEST_EXEC_ARGS(CV_TEST_INIT0_ ## INIT0) \ diff --git a/modules/ts/src/ts_tags.cpp b/modules/ts/src/ts_tags.cpp index e2738b474d..4571e4462d 100644 --- a/modules/ts/src/ts_tags.cpp +++ b/modules/ts/src/ts_tags.cpp @@ -13,6 +13,30 @@ static bool printTestTag = false; static std::vector currentDirectTestTags, currentImpliedTestTags; static std::vector skipped_tests; +static std::map& getTestTagsSkipCounts() +{ + static std::map testTagsSkipCounts; + return testTagsSkipCounts; +} +static std::map& getTestTagsSkipExtraCounts() +{ + static std::map testTagsSkipExtraCounts; + return testTagsSkipExtraCounts; +} +static void increaseTagsSkipCount(const std::string& tag, bool isMain) +{ + std::map& counts = isMain ? getTestTagsSkipCounts() : getTestTagsSkipExtraCounts(); + std::map::iterator i = counts.find(tag); + if (i == counts.end()) + { + counts[tag] = 1; + } + else + { + i->second++; + } +} + static std::vector& getTestTagsSkipList() { static std::vector testSkipWithTags; @@ -33,6 +57,17 @@ static std::vector& getTestTagsSkipList() return testSkipWithTags; } +void registerGlobalSkipTag(const std::string& skipTag) +{ + std::vector& skipTags = getTestTagsSkipList(); + for (size_t i = 0; i < skipTags.size(); ++i) + { + if (skipTag == skipTags[i]) + return; // duplicate + } + skipTags.push_back(skipTag); +} + static std::vector& getTestTagsForceList() { static std::vector getTestTagsForceList; @@ -156,7 +191,27 @@ public: { if (!skipped_tests.empty()) { - std::cout << "[ SKIP ] " << skipped_tests.size() << " tests via tags" << std::endl; + std::cout << "[ SKIPSTAT ] " << skipped_tests.size() << " tests via tags" << std::endl; + const std::vector& skipTags = getTestTagsSkipList(); + const std::map& counts = getTestTagsSkipCounts(); + const std::map& countsExtra = getTestTagsSkipExtraCounts(); + for (std::vector::const_iterator i = skipTags.begin(); i != skipTags.end(); ++i) + { + int c1 = 0; + std::map::const_iterator i1 = counts.find(*i); + if (i1 != counts.end()) c1 = i1->second; + int c2 = 0; + std::map::const_iterator i2 = countsExtra.find(*i); + if (i2 != countsExtra.end()) c2 = i2->second; + if (c2 > 0) + { + std::cout << "[ SKIPSTAT ] TAG='" << *i << "' skip " << c1 << " tests (" << c2 << " times in extra skip list)" << std::endl; + } + else if (c1 > 0) + { + std::cout << "[ SKIPSTAT ] TAG='" << *i << "' skip " << c1 << " tests" << std::endl; + } + } } skipped_tests.clear(); } @@ -255,13 +310,14 @@ void checkTestTags() if (isTestTagForced(testTag)) return; } + std::string skip_message; for (size_t i = 0; i < testTags.size(); ++i) { const std::string& testTag = testTags[i]; if (isTestTagSkipped(testTag, skipTag)) { - skipped_tests.push_back(::testing::UnitTest::GetInstance()->current_test_info()); - throw SkipTestException("Test with tag '" + testTag + "' is skipped ('" + skipTag + "' is in skip list)"); + increaseTagsSkipCount(skipTag, skip_message.empty()); + if (skip_message.empty()) skip_message = "Test with tag '" + testTag + "' is skipped ('" + skipTag + "' is in skip list)"; } } const std::vector& testTagsImplied = currentImpliedTestTags; @@ -270,10 +326,16 @@ void checkTestTags() const std::string& testTag = testTagsImplied[i]; if (isTestTagSkipped(testTag, skipTag)) { - skipped_tests.push_back(::testing::UnitTest::GetInstance()->current_test_info()); - throw SkipTestException("Test with tag '" + testTag + "' is skipped ('" + skipTag + "' is in skip list)"); + increaseTagsSkipCount(skipTag, skip_message.empty()); + if (skip_message.empty()) skip_message = "Test with tag '" + testTag + "' is skipped (implied '" + skipTag + "' is in skip list)"; } } + + if (!skip_message.empty()) + { + skipped_tests.push_back(::testing::UnitTest::GetInstance()->current_test_info()); + throw SkipTestException(skip_message); + } } static bool applyTestTagImpl(const std::string& tag, bool direct = false)