diff --git a/modules/ocl/include/opencv2/ocl/ocl.hpp b/modules/ocl/include/opencv2/ocl/ocl.hpp index 7dcf96fd5a..e7b133e672 100644 --- a/modules/ocl/include/opencv2/ocl/ocl.hpp +++ b/modules/ocl/include/opencv2/ocl/ocl.hpp @@ -838,7 +838,7 @@ namespace cv //! Compute closest centers for each lines in source and lable it after center's index // supports CV_32FC1/CV_32FC2/CV_32FC4 data type - void DistanceComputer(oclMat &dists, oclMat &labels, const oclMat &src, const oclMat ¢ers); + CV_EXPORTS void distanceToCenters(oclMat &dists, oclMat &labels, const oclMat &src, const oclMat ¢ers); //!Does k-means procedure on GPU // supports CV_32FC1/CV_32FC2/CV_32FC4 data type diff --git a/modules/ocl/src/kmeans.cpp b/modules/ocl/src/kmeans.cpp index e1a91caa5f..22f86600a8 100644 --- a/modules/ocl/src/kmeans.cpp +++ b/modules/ocl/src/kmeans.cpp @@ -51,11 +51,11 @@ using namespace ocl; namespace cv { - namespace ocl - { - ////////////////////////////////////OpenCL kernel strings////////////////////////// - extern const char *kmeans_kernel; - } +namespace ocl +{ +////////////////////////////////////OpenCL kernel strings////////////////////////// +extern const char *kmeans_kernel; +} } static void generateRandomCenter(const vector& box, float* center, RNG& rng) @@ -142,7 +142,7 @@ static void generateCentersPP(const Mat& _data, Mat& _out_centers, int ci = i; parallel_for_(Range(0, N), - KMeansPPDistanceComputer(tdist2, data, dist, dims, step, step*ci)); + KMeansPPDistanceComputer(tdist2, data, dist, dims, step, step*ci)); for( i = 0; i < N; i++ ) { s += tdist2[i]; @@ -169,7 +169,7 @@ static void generateCentersPP(const Mat& _data, Mat& _out_centers, } } -void cv::ocl::DistanceComputer(oclMat &dists, oclMat &labels, const oclMat &src, const oclMat ¢ers) +void cv::ocl::distanceToCenters(oclMat &dists, oclMat &labels, const oclMat &src, const oclMat ¢ers) { //if(src.clCxt -> impl -> double_support == 0 && src.type() == CV_64F) //{ @@ -179,7 +179,7 @@ void cv::ocl::DistanceComputer(oclMat &dists, oclMat &labels, const oclMat &src, Context *clCxt = src.clCxt; int labels_step = (int)(labels.step/labels.elemSize()); - string kernelname = "kmeansComputeDistance"; + string kernelname = "distanceToCenters"; int threadNum = src.rows > 256 ? 256 : src.rows; size_t localThreads[3] = {1, threadNum, 1}; size_t globalThreads[3] = {1, src.rows, 1}; @@ -198,7 +198,7 @@ void cv::ocl::DistanceComputer(oclMat &dists, oclMat &labels, const oclMat &src, } ///////////////////////////////////k - means ///////////////////////////////////////////////////////// double cv::ocl::kmeans(const oclMat &_src, int K, oclMat &_bestLabels, - TermCriteria criteria, int attempts, int flags, oclMat &_centers) + TermCriteria criteria, int attempts, int flags, oclMat &_centers) { const int SPP_TRIALS = 3; bool isrow = _src.rows == 1 && _src.oclchannels() > 1; @@ -214,16 +214,16 @@ double cv::ocl::kmeans(const oclMat &_src, int K, oclMat &_bestLabels, if( flags & CV_KMEANS_USE_INITIAL_LABELS ) { CV_Assert( (_bestLabels.cols == 1 || _bestLabels.rows == 1) && - _bestLabels.cols * _bestLabels.rows == N && - _bestLabels.type() == CV_32S ); + _bestLabels.cols * _bestLabels.rows == N && + _bestLabels.type() == CV_32S ); _bestLabels.download(_labels); } else { if( !((_bestLabels.cols == 1 || _bestLabels.rows == 1) && - _bestLabels.cols * _bestLabels.rows == N && - _bestLabels.type() == CV_32S && - _bestLabels.isContinuous())) + _bestLabels.cols * _bestLabels.rows == N && + _bestLabels.type() == CV_32S && + _bestLabels.isContinuous())) _bestLabels.create(N, 1, CV_32S); _labels.create(_bestLabels.size(), _bestLabels.type()); } @@ -307,7 +307,7 @@ double cv::ocl::kmeans(const oclMat &_src, int K, oclMat &_bestLabels, k = labels[i]; float* center = centers.ptr(k); j=0; - #if CV_ENABLE_UNROLLED +#if CV_ENABLE_UNROLLED for(; j <= dims - 4; j += 4 ) { float t0 = center[j] + sample[j]; @@ -322,7 +322,7 @@ double cv::ocl::kmeans(const oclMat &_src, int K, oclMat &_bestLabels, center[j+2] = t0; center[j+3] = t1; } - #endif +#endif for( ; j < dims; j++ ) center[j] += sample[j]; counters[k]++; @@ -410,10 +410,10 @@ double cv::ocl::kmeans(const oclMat &_src, int K, oclMat &_bestLabels, // assign labels oclMat _dists(1, N, CV_64F); - + _bestLabels.upload(_labels); _centers.upload(centers); - DistanceComputer(_dists, _bestLabels, _src, _centers); + distanceToCenters(_dists, _bestLabels, _src, _centers); Mat dists; _dists.download(dists); diff --git a/modules/ocl/src/opencl/kmeans_kernel.cl b/modules/ocl/src/opencl/kmeans_kernel.cl index d6f6c721a9..c6af0ad249 100644 --- a/modules/ocl/src/opencl/kmeans_kernel.cl +++ b/modules/ocl/src/opencl/kmeans_kernel.cl @@ -43,7 +43,7 @@ // //M*/ -__kernel void kmeansComputeDistance( +__kernel void distanceToCenters( int label_step, int K, __global float *src, __global int *labels, int dims, int rows, @@ -51,20 +51,20 @@ __kernel void kmeansComputeDistance( __global float *dists) { int gid = get_global_id(1); - + float dist, euDist, min; int minCentroid; - + if(gid >= rows) return; - for(int i = 0 ;i < K; i++) + for(int i = 0 ; i < K; i++) { euDist = 0; for(int j = 0; j < dims; j++) { - dist = (src[j + gid * dims] - - centers[j + i * dims]); + dist = (src[j + gid * dims] + - centers[j + i * dims]); euDist += dist * dist; } @@ -72,7 +72,8 @@ __kernel void kmeansComputeDistance( { min = euDist; minCentroid = 0; - } else if(euDist < min) + } + else if(euDist < min) { min = euDist; minCentroid = i;