add NMS according to Dollar's paper.

pull/181/head
marina.kolpakova 12 years ago
parent 67ce03d7dd
commit 88c71d1b7d
  1. 6
      modules/objdetect/include/opencv2/objdetect/objdetect.hpp
  2. 8
      modules/objdetect/src/objdetect_init.cpp
  3. 70
      modules/objdetect/src/softcascade.cpp

@ -534,12 +534,14 @@ public:
int shrinkage;
};
enum { NO_REJECT = 1, DOLLAR = 2, /*PASCAL = 4,*/ DEFAULT = NO_REJECT};
// An empty cascade will be created.
// Param minScale is a minimum scale relative to the original size of the image on which cascade will be applyed.
// Param minScale is a maximum scale relative to the original size of the image on which cascade will be applyed.
// Param scales is a number of scales from minScale to maxScale.
// Param rejfactor is used for NMS.
CV_WRAP SCascade(const double minScale = 0.4, const double maxScale = 5., const int scales = 55, const int rejfactor = 1);
CV_WRAP SCascade(const double minScale = 0.4, const double maxScale = 5., const int scales = 55, const int rejCriteria = 1);
CV_WRAP virtual ~SCascade();
@ -571,7 +573,7 @@ private:
double maxScale;
int scales;
int rejfactor;
int rejCriteria;
};
CV_EXPORTS bool initModule_objdetect(void);

@ -46,10 +46,10 @@ namespace cv
{
CV_INIT_ALGORITHM(SCascade, "CascadeDetector.SCascade",
obj.info()->addParam(obj, "minScale", obj.minScale);
obj.info()->addParam(obj, "maxScale", obj.maxScale);
obj.info()->addParam(obj, "scales", obj.scales);
obj.info()->addParam(obj, "rejfactor", obj.rejfactor));
obj.info()->addParam(obj, "minScale", obj.minScale);
obj.info()->addParam(obj, "maxScale", obj.maxScale);
obj.info()->addParam(obj, "scales", obj.scales);
obj.info()->addParam(obj, "rejCriteria", obj.rejCriteria));
bool initModule_objdetect(void)
{

@ -422,7 +422,7 @@ struct cv::SCascade::Fields
};
cv::SCascade::SCascade(const double mins, const double maxs, const int nsc, const int rej)
: fields(0), minScale(mins), maxScale(maxs), scales(nsc), rejfactor(rej) {}
: fields(0), minScale(mins), maxScale(maxs), scales(nsc), rejCriteria(rej) {}
cv::SCascade::~SCascade() { delete fields;}
@ -439,6 +439,68 @@ bool cv::SCascade::load(const FileNode& fn)
return fields->fill(fn);
}
namespace {
typedef cv::SCascade::Detection Detection;
typedef std::vector<Detection> dvector;
struct NMS
{
virtual ~NMS(){}
virtual void apply(dvector& objects) const = 0;
};
struct ConfidenceLess
{
bool operator()(const Detection& a, const Detection& b) const
{
return a.confidence > b.confidence;
}
};
struct DollarNMS: public NMS
{
virtual ~DollarNMS(){}
static float overlap(const cv::Rect &a, const cv::Rect &b)
{
int w = std::min(a.x + a.width, b.x + b.width) - std::max(a.x, b.x);
int h = std::min(a.y + a.height, b.y + b.height) - std::max(a.y, b.y);
return (w < 0 || h < 0)? 0.f : (float)(w * h);
}
virtual void apply(dvector& objects) const
{
std::sort(objects.begin(), objects.end(), ConfidenceLess());
for (dvector::iterator dIt = objects.begin(); dIt != objects.end(); ++dIt)
{
const Detection &a = *dIt;
for (dvector::iterator next = dIt + 1; next != objects.end(); )
{
const Detection &b = *next;
const float ovl = overlap(a.bb, b.bb) / std::min(a.bb.area(), b.bb.area());
if (ovl > 0.65f)
next = objects.erase(next);
else
++next;
}
}
}
};
cv::Ptr<NMS> createNMS(int type)
{
CV_Assert(type == cv::SCascade::DOLLAR);
return cv::Ptr<NMS>(new DollarNMS);
}
}
void cv::SCascade::detectNoRoi(const cv::Mat& image, std::vector<Detection>& objects) const
{
Fields& fld = *fields;
@ -459,6 +521,9 @@ void cv::SCascade::detectNoRoi(const cv::Mat& image, std::vector<Detection>& obj
}
}
}
if (rejCriteria != NO_REJECT)
createNMS(rejCriteria)->apply(objects);
}
void cv::SCascade::detect(cv::InputArray _image, cv::InputArray _rois, std::vector<Detection>& objects) const
@ -506,6 +571,9 @@ void cv::SCascade::detect(cv::InputArray _image, cv::InputArray _rois, std::vect
}
}
}
if (rejCriteria != NO_REJECT)
createNMS(rejCriteria)->apply(objects);
}
void cv::SCascade::detect(InputArray _image, InputArray _rois, OutputArray _rects, OutputArray _confs) const

Loading…
Cancel
Save