mirror of https://github.com/opencv/opencv.git
parent
77027f6075
commit
8891acb67a
6 changed files with 2135 additions and 3 deletions
@ -0,0 +1,605 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other GpuMaterials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or bpied warranties, including, but not limited to, the bpied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
|
||||
using namespace cv; |
||||
using namespace cv::gpu; |
||||
using namespace std; |
||||
|
||||
#if !defined (HAVE_CUDA) |
||||
|
||||
cv::gpu::BruteForceMatcher_GPU_base::BruteForceMatcher_GPU_base(DistType) { throw_nogpu(); } |
||||
void cv::gpu::BruteForceMatcher_GPU_base::add(const vector<GpuMat>&) { throw_nogpu(); } |
||||
const vector<GpuMat>& cv::gpu::BruteForceMatcher_GPU_base::getTrainDescriptors() const { throw_nogpu(); return trainDescCollection; } |
||||
void cv::gpu::BruteForceMatcher_GPU_base::clear() { throw_nogpu(); } |
||||
bool cv::gpu::BruteForceMatcher_GPU_base::empty() const { throw_nogpu(); return true; } |
||||
bool cv::gpu::BruteForceMatcher_GPU_base::isMaskSupported() const { throw_nogpu(); return true; } |
||||
void cv::gpu::BruteForceMatcher_GPU_base::matchSingle(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, const GpuMat&) { throw_nogpu(); } |
||||
void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat&, const GpuMat&, vector<DMatch>&) { throw_nogpu(); } |
||||
void cv::gpu::BruteForceMatcher_GPU_base::match(const GpuMat&, const GpuMat&, vector<DMatch>&, const GpuMat&) { throw_nogpu(); } |
||||
void cv::gpu::BruteForceMatcher_GPU_base::makeGpuCollection(GpuMat&, GpuMat&, const vector<GpuMat>&) { throw_nogpu(); } |
||||
void cv::gpu::BruteForceMatcher_GPU_base::matchCollection(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, GpuMat&, const GpuMat&) { throw_nogpu(); } |
||||
void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat&, GpuMat&, const GpuMat&, std::vector<DMatch>&) { throw_nogpu(); } |
||||
void cv::gpu::BruteForceMatcher_GPU_base::match(const GpuMat&, std::vector<DMatch>&, const std::vector<GpuMat>&) { throw_nogpu(); } |
||||
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, const GpuMat&) { throw_nogpu(); } |
||||
void cv::gpu::BruteForceMatcher_GPU_base::knnMatchDownload(const GpuMat&, const GpuMat&, std::vector< std::vector<DMatch> >&, bool) { throw_nogpu(); } |
||||
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat&, const GpuMat&, std::vector< std::vector<DMatch> >&, int, const GpuMat&, bool) { throw_nogpu(); } |
||||
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat&, std::vector< std::vector<DMatch> >&, int, const std::vector<GpuMat>&, bool) { throw_nogpu(); } |
||||
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, GpuMat&, float, const GpuMat&) { throw_nogpu(); } |
||||
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchDownload(const GpuMat&, const GpuMat&, const GpuMat&, std::vector< std::vector<DMatch> >&, bool) { throw_nogpu(); } |
||||
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat&, const GpuMat&, std::vector< std::vector<DMatch> >&, float, const GpuMat&, bool) { throw_nogpu(); } |
||||
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat&, std::vector< std::vector<DMatch> >&, float, const std::vector<GpuMat>&, bool) { throw_nogpu(); } |
||||
|
||||
#else /* !defined (HAVE_CUDA) */ |
||||
|
||||
namespace cv { namespace gpu { namespace bfmatcher |
||||
{ |
||||
template <typename T> |
||||
void matchSingleL1_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs,
|
||||
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance); |
||||
template <typename T> |
||||
void matchSingleL2_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs,
|
||||
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance); |
||||
template <typename T> |
||||
void matchCollectionL1_gpu(const DevMem2D& queryDescs, const DevMem2D& trainCollection,
|
||||
const DevMem2D_<PtrStep>& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx,
|
||||
const DevMem2Df& distance); |
||||
template <typename T> |
||||
void matchCollectionL2_gpu(const DevMem2D& queryDescs, const DevMem2D& trainCollection,
|
||||
const DevMem2D_<PtrStep>& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx,
|
||||
const DevMem2Df& distance); |
||||
|
||||
template <typename T> |
||||
void knnMatchL1_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, |
||||
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist); |
||||
template <typename T> |
||||
void knnMatchL2_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, |
||||
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist); |
||||
|
||||
template <typename T> |
||||
void radiusMatchL1_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, |
||||
const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance); |
||||
template <typename T> |
||||
void radiusMatchL2_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, |
||||
const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance); |
||||
}}} |
||||
|
||||
cv::gpu::BruteForceMatcher_GPU_base::BruteForceMatcher_GPU_base(DistType distType_) : distType(distType_) |
||||
{ |
||||
} |
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
// Train collection
|
||||
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::add(const vector<GpuMat>& descCollection) |
||||
{ |
||||
trainDescCollection.insert(trainDescCollection.end(), descCollection.begin(), descCollection.end()); |
||||
} |
||||
|
||||
const vector<GpuMat>& cv::gpu::BruteForceMatcher_GPU_base::getTrainDescriptors() const
|
||||
{ |
||||
return trainDescCollection; |
||||
} |
||||
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::clear()
|
||||
{ |
||||
trainDescCollection.clear(); |
||||
} |
||||
|
||||
bool cv::gpu::BruteForceMatcher_GPU_base::empty() const |
||||
{ |
||||
return trainDescCollection.empty(); |
||||
} |
||||
|
||||
bool cv::gpu::BruteForceMatcher_GPU_base::isMaskSupported() const |
||||
{ |
||||
return true; |
||||
} |
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
// Match
|
||||
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::matchSingle(const GpuMat& queryDescs, const GpuMat& trainDescs,
|
||||
GpuMat& trainIdx, GpuMat& distance, const GpuMat& mask) |
||||
{ |
||||
using namespace cv::gpu::bfmatcher; |
||||
|
||||
typedef void (*match_caller_t)(const DevMem2D& queryDescs, const DevMem2D& trainDescs,
|
||||
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance); |
||||
|
||||
static const match_caller_t match_callers[2][8] =
|
||||
{ |
||||
{ |
||||
matchSingleL1_gpu<unsigned char>, matchSingleL1_gpu<char>, matchSingleL1_gpu<unsigned short>,
|
||||
matchSingleL1_gpu<short>, matchSingleL1_gpu<int>, matchSingleL1_gpu<float>, 0, 0 |
||||
}, |
||||
{ |
||||
matchSingleL2_gpu<unsigned char>, matchSingleL2_gpu<char>, matchSingleL2_gpu<unsigned short>,
|
||||
matchSingleL2_gpu<short>, matchSingleL2_gpu<int>, matchSingleL2_gpu<float>, 0, 0 |
||||
} |
||||
}; |
||||
|
||||
CV_Assert(queryDescs.channels() == 1); |
||||
CV_Assert(trainDescs.cols == queryDescs.cols && trainDescs.type() == queryDescs.type()); |
||||
|
||||
const int nQuery = queryDescs.rows; |
||||
|
||||
trainIdx.create(1, nQuery, CV_32S); |
||||
distance.create(1, nQuery, CV_32F); |
||||
|
||||
match_caller_t func = match_callers[distType][queryDescs.depth()]; |
||||
CV_Assert(func != 0); |
||||
|
||||
// For single train there is no need to save imgIdx, so we just save imgIdx to trainIdx.
|
||||
// trainIdx store after imgIdx, so we doesn't lose it value.
|
||||
func(queryDescs, trainDescs, mask, trainIdx, trainIdx, distance); |
||||
} |
||||
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat& trainIdx, const GpuMat& distance,
|
||||
vector<DMatch>& matches) |
||||
{ |
||||
const int nQuery = trainIdx.cols; |
||||
|
||||
Mat trainIdxCPU = trainIdx; |
||||
Mat distanceCPU = distance; |
||||
|
||||
matches.clear(); |
||||
matches.reserve(nQuery); |
||||
|
||||
const int* trainIdx_ptr = trainIdxCPU.ptr<int>(); |
||||
const float* distance_ptr = distanceCPU.ptr<float>(); |
||||
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx, ++trainIdx_ptr, ++distance_ptr) |
||||
{ |
||||
int trainIdx = *trainIdx_ptr; |
||||
if (trainIdx == -1) |
||||
continue; |
||||
|
||||
float distance = *distance_ptr; |
||||
|
||||
DMatch m(queryIdx, trainIdx, 0, distance); |
||||
|
||||
matches.push_back(m); |
||||
} |
||||
} |
||||
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::match(const GpuMat& queryDescs, const GpuMat& trainDescs,
|
||||
vector<DMatch>& matches, const GpuMat& mask) |
||||
{ |
||||
GpuMat trainIdx, distance; |
||||
matchSingle(queryDescs, trainDescs, trainIdx, distance, mask); |
||||
matchDownload(trainIdx, distance, matches); |
||||
} |
||||
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::makeGpuCollection(GpuMat& trainCollection, GpuMat& maskCollection,
|
||||
const vector<GpuMat>& masks) |
||||
{ |
||||
if (masks.empty()) |
||||
{
|
||||
Mat trainCollectionCPU(1, trainDescCollection.size(), CV_8UC(sizeof(DevMem2D))); |
||||
|
||||
for (size_t i = 0; i < trainDescCollection.size(); ++i) |
||||
{ |
||||
const GpuMat& trainDescs = trainDescCollection[i]; |
||||
|
||||
trainCollectionCPU.ptr<DevMem2D>(0)[i] = trainDescs; |
||||
} |
||||
|
||||
trainCollection.upload(trainCollectionCPU); |
||||
} |
||||
else |
||||
{ |
||||
CV_Assert(masks.size() == trainDescCollection.size()); |
||||
|
||||
Mat trainCollectionCPU(1, trainDescCollection.size(), CV_8UC(sizeof(DevMem2D))); |
||||
Mat maskCollectionCPU(1, trainDescCollection.size(), CV_8UC(sizeof(PtrStep))); |
||||
|
||||
for (size_t i = 0; i < trainDescCollection.size(); ++i) |
||||
{ |
||||
const GpuMat& trainDescs = trainDescCollection[i]; |
||||
const GpuMat& mask = masks[i]; |
||||
|
||||
CV_Assert(mask.empty() || (mask.type() == CV_8UC1)); |
||||
|
||||
trainCollectionCPU.ptr<DevMem2D>(0)[i] = trainDescs; |
||||
|
||||
maskCollectionCPU.ptr<PtrStep>(0)[i] = static_cast<PtrStep>(mask); |
||||
} |
||||
|
||||
trainCollection.upload(trainCollectionCPU); |
||||
maskCollection.upload(maskCollectionCPU); |
||||
} |
||||
} |
||||
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::matchCollection(const GpuMat& queryDescs, const GpuMat& trainCollection,
|
||||
GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, const GpuMat& maskCollection) |
||||
{ |
||||
using namespace cv::gpu::bfmatcher; |
||||
|
||||
typedef void (*match_caller_t)(const DevMem2D& queryDescs, const DevMem2D& trainCollection,
|
||||
const DevMem2D_<PtrStep>& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx,
|
||||
const DevMem2Df& distance); |
||||
|
||||
static const match_caller_t match_callers[2][8] =
|
||||
{ |
||||
{ |
||||
matchCollectionL1_gpu<unsigned char>, matchCollectionL1_gpu<char>,
|
||||
matchCollectionL1_gpu<unsigned short>, matchCollectionL1_gpu<short>,
|
||||
matchCollectionL1_gpu<int>, matchCollectionL1_gpu<float>, 0, 0 |
||||
}, |
||||
{ |
||||
matchCollectionL2_gpu<unsigned char>, matchCollectionL2_gpu<char>,
|
||||
matchCollectionL2_gpu<unsigned short>, matchCollectionL2_gpu<short>,
|
||||
matchCollectionL2_gpu<int>, matchCollectionL2_gpu<float>, 0, 0 |
||||
} |
||||
}; |
||||
|
||||
CV_Assert(queryDescs.channels() == 1); |
||||
|
||||
const int nQuery = queryDescs.rows; |
||||
|
||||
trainIdx.create(1, nQuery, CV_32S); |
||||
imgIdx.create(1, nQuery, CV_32S); |
||||
distance.create(1, nQuery, CV_32F); |
||||
|
||||
match_caller_t func = match_callers[distType][queryDescs.depth()]; |
||||
CV_Assert(func != 0); |
||||
|
||||
func(queryDescs, trainCollection, maskCollection, trainIdx, imgIdx, distance); |
||||
} |
||||
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat& trainIdx, GpuMat& imgIdx,
|
||||
const GpuMat& distance, vector<DMatch>& matches) |
||||
{ |
||||
const int nQuery = trainIdx.cols; |
||||
|
||||
Mat trainIdxCPU = trainIdx; |
||||
Mat imgIdxCPU = imgIdx; |
||||
Mat distanceCPU = distance; |
||||
|
||||
matches.clear(); |
||||
matches.reserve(nQuery); |
||||
|
||||
const int* trainIdx_ptr = trainIdxCPU.ptr<int>(); |
||||
const int* imgIdx_ptr = imgIdxCPU.ptr<int>(); |
||||
const float* distance_ptr = distanceCPU.ptr<float>(); |
||||
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx, ++trainIdx_ptr, ++imgIdx_ptr, ++distance_ptr) |
||||
{ |
||||
int trainIdx = *trainIdx_ptr; |
||||
if (trainIdx == -1) |
||||
continue; |
||||
|
||||
int imgIdx = *imgIdx_ptr; |
||||
|
||||
float distance = *distance_ptr; |
||||
|
||||
DMatch m(queryIdx, trainIdx, imgIdx, distance); |
||||
|
||||
matches.push_back(m); |
||||
} |
||||
} |
||||
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::match(const GpuMat& queryDescs, vector<DMatch>& matches,
|
||||
const vector<GpuMat>& masks) |
||||
{
|
||||
GpuMat trainCollection; |
||||
GpuMat maskCollection; |
||||
|
||||
makeGpuCollection(trainCollection, maskCollection, masks); |
||||
|
||||
GpuMat trainIdx, imgIdx, distance; |
||||
|
||||
matchCollection(queryDescs, trainCollection, trainIdx, imgIdx, distance, maskCollection); |
||||
matchDownload(trainIdx, imgIdx, distance, matches); |
||||
} |
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
// KnnMatch
|
||||
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat& queryDescs, const GpuMat& trainDescs,
|
||||
GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k, const GpuMat& mask) |
||||
{ |
||||
using namespace cv::gpu::bfmatcher; |
||||
|
||||
typedef void (*match_caller_t)(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn, |
||||
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist); |
||||
|
||||
static const match_caller_t match_callers[2][8] =
|
||||
{ |
||||
{ |
||||
knnMatchL1_gpu<unsigned char>, knnMatchL1_gpu<char>, knnMatchL1_gpu<unsigned short>,
|
||||
knnMatchL1_gpu<short>, knnMatchL1_gpu<int>, knnMatchL1_gpu<float>, 0, 0 |
||||
}, |
||||
{ |
||||
knnMatchL2_gpu<unsigned char>, knnMatchL2_gpu<char>, knnMatchL2_gpu<unsigned short>,
|
||||
knnMatchL2_gpu<short>, knnMatchL2_gpu<int>, knnMatchL2_gpu<float>, 0, 0 |
||||
} |
||||
}; |
||||
|
||||
CV_Assert(queryDescs.channels() == 1); |
||||
|
||||
const int nQuery = queryDescs.rows; |
||||
const int nTrain = trainDescs.rows; |
||||
|
||||
trainIdx.create(nQuery, k, CV_32S); |
||||
trainIdx.setTo(Scalar::all(-1)); |
||||
distance.create(nQuery, k, CV_32F); |
||||
|
||||
allDist.create(nQuery, nTrain, CV_32F); |
||||
|
||||
match_caller_t func = match_callers[distType][queryDescs.depth()]; |
||||
CV_Assert(func != 0); |
||||
|
||||
func(queryDescs, trainDescs, k, mask, trainIdx, distance, allDist); |
||||
} |
||||
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::knnMatchDownload(const GpuMat& trainIdx, const GpuMat& distance, |
||||
vector< vector<DMatch> >& matches, bool compactResult) |
||||
{ |
||||
const int nQuery = distance.rows; |
||||
const int k = trainIdx.cols; |
||||
|
||||
Mat trainIdxCPU = trainIdx; |
||||
Mat distanceCPU = distance; |
||||
|
||||
matches.clear(); |
||||
matches.reserve(nQuery); |
||||
|
||||
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx) |
||||
{ |
||||
matches.push_back(vector<DMatch>()); |
||||
vector<DMatch>& curMatches = matches.back(); |
||||
curMatches.reserve(k); |
||||
|
||||
int* trainIdx_ptr = trainIdxCPU.ptr<int>(queryIdx); |
||||
float* distance_ptr = distanceCPU.ptr<float>(queryIdx); |
||||
for (int i = 0; i < k; ++i, ++trainIdx_ptr, ++distance_ptr) |
||||
{ |
||||
int trainIdx = *trainIdx_ptr; |
||||
|
||||
if (trainIdx != -1) |
||||
{ |
||||
float distance = *distance_ptr; |
||||
|
||||
DMatch m(queryIdx, trainIdx, 0, distance); |
||||
|
||||
curMatches.push_back(m); |
||||
} |
||||
} |
||||
|
||||
if (compactResult && curMatches.empty()) |
||||
matches.pop_back(); |
||||
} |
||||
} |
||||
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat& queryDescs, const GpuMat& trainDescs,
|
||||
vector< vector<DMatch> >& matches, int k, const GpuMat& mask, bool compactResult) |
||||
{ |
||||
GpuMat trainIdx, distance, allDist; |
||||
knnMatch(queryDescs, trainDescs, trainIdx, distance, allDist, k, mask); |
||||
knnMatchDownload(trainIdx, distance, matches, compactResult); |
||||
} |
||||
|
||||
namespace |
||||
{ |
||||
class ImgIdxSetter |
||||
{ |
||||
public: |
||||
ImgIdxSetter(int imgIdx_) : imgIdx(imgIdx_) {} |
||||
void operator()(DMatch& m) const {m.imgIdx = imgIdx;} |
||||
private: |
||||
int imgIdx; |
||||
}; |
||||
} |
||||
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat& queryDescs,
|
||||
vector< vector<DMatch> >& matches, int knn, const vector<GpuMat>& masks, bool compactResult) |
||||
{ |
||||
vector< vector<DMatch> > curMatches; |
||||
vector<DMatch> temp; |
||||
temp.reserve(2 * knn); |
||||
|
||||
matches.resize(queryDescs.rows); |
||||
for_each(matches.begin(), matches.end(), bind2nd(mem_fun_ref(&vector<DMatch>::reserve), knn)); |
||||
|
||||
for (size_t imgIdx = 0; imgIdx < trainDescCollection.size(); ++imgIdx) |
||||
{ |
||||
knnMatch(queryDescs, trainDescCollection[imgIdx], curMatches, knn,
|
||||
masks.empty() ? GpuMat() : masks[imgIdx]); |
||||
|
||||
for (int queryIdx = 0; queryIdx < queryDescs.rows; ++queryIdx) |
||||
{ |
||||
vector<DMatch>& localMatch = curMatches[queryIdx]; |
||||
vector<DMatch>& globalMatch = matches[queryIdx]; |
||||
|
||||
for_each(localMatch.begin(), localMatch.end(), ImgIdxSetter(imgIdx)); |
||||
|
||||
temp.clear(); |
||||
merge(globalMatch.begin(), globalMatch.end(), localMatch.begin(), localMatch.end(), back_inserter(temp)); |
||||
|
||||
globalMatch.clear(); |
||||
const size_t count = std::min((size_t)knn, temp.size()); |
||||
copy(temp.begin(), temp.begin() + count, back_inserter(globalMatch)); |
||||
} |
||||
} |
||||
|
||||
if (compactResult) |
||||
{ |
||||
vector< vector<DMatch> >::iterator new_end = remove_if(matches.begin(), matches.end(),
|
||||
mem_fun_ref(&vector<DMatch>::empty)); |
||||
matches.erase(new_end, matches.end()); |
||||
} |
||||
} |
||||
|
||||
////////////////////////////////////////////////////////////////////
|
||||
// RadiusMatch
|
||||
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat& queryDescs, const GpuMat& trainDescs,
|
||||
GpuMat& trainIdx, GpuMat& nMatches, GpuMat& distance, float maxDistance, const GpuMat& mask) |
||||
{ |
||||
using namespace cv::gpu::bfmatcher; |
||||
|
||||
typedef void (*radiusMatch_caller_t)(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance, |
||||
const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance); |
||||
|
||||
static const radiusMatch_caller_t radiusMatch_callers[2][8] =
|
||||
{ |
||||
{ |
||||
radiusMatchL1_gpu<unsigned char>, radiusMatchL1_gpu<char>, radiusMatchL1_gpu<unsigned short>,
|
||||
radiusMatchL1_gpu<short>, radiusMatchL1_gpu<int>, radiusMatchL1_gpu<float>, 0, 0 |
||||
}, |
||||
{ |
||||
radiusMatchL2_gpu<unsigned char>, radiusMatchL2_gpu<char>, radiusMatchL2_gpu<unsigned short>,
|
||||
radiusMatchL2_gpu<short>, radiusMatchL2_gpu<int>, radiusMatchL2_gpu<float>, 0, 0 |
||||
} |
||||
}; |
||||
|
||||
const int nQuery = queryDescs.rows; |
||||
const int nTrain = trainDescs.rows; |
||||
|
||||
CV_Assert(queryDescs.channels() == 1); |
||||
CV_Assert(trainDescs.type() == queryDescs.type() && trainDescs.cols == queryDescs.cols); |
||||
CV_Assert(trainIdx.empty() || trainIdx.rows == nQuery);
|
||||
|
||||
nMatches.create(1, nQuery, CV_32SC1); |
||||
nMatches.setTo(Scalar::all(0)); |
||||
if (trainIdx.empty()) |
||||
{ |
||||
trainIdx.create(nQuery, nTrain, CV_32SC1); |
||||
distance.create(nQuery, nTrain, CV_32FC1); |
||||
} |
||||
|
||||
radiusMatch_caller_t func = radiusMatch_callers[distType][queryDescs.depth()]; |
||||
CV_Assert(func != 0); |
||||
|
||||
func(queryDescs, trainDescs, maxDistance, mask, trainIdx, nMatches.ptr<unsigned int>(), distance); |
||||
} |
||||
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& nMatches,
|
||||
const GpuMat& distance, std::vector< std::vector<DMatch> >& matches, bool compactResult) |
||||
{ |
||||
const int nQuery = trainIdx.rows; |
||||
|
||||
Mat trainIdxCPU = trainIdx; |
||||
Mat nMatchesCPU = nMatches; |
||||
Mat distanceCPU = distance; |
||||
|
||||
matches.clear(); |
||||
matches.reserve(nQuery); |
||||
|
||||
const unsigned int* nMatches_ptr = nMatchesCPU.ptr<unsigned int>(); |
||||
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx) |
||||
{ |
||||
const int* trainIdx_ptr = trainIdxCPU.ptr<int>(queryIdx); |
||||
const float* distance_ptr = distanceCPU.ptr<float>(queryIdx); |
||||
|
||||
const int nMatches = std::min(static_cast<int>(nMatches_ptr[queryIdx]), trainIdx.cols); |
||||
|
||||
if (nMatches == 0) |
||||
{ |
||||
if (!compactResult) |
||||
matches.push_back(vector<DMatch>()); |
||||
continue; |
||||
} |
||||
|
||||
matches.push_back(vector<DMatch>()); |
||||
vector<DMatch>& curMatches = matches.back(); |
||||
curMatches.reserve(nMatches); |
||||
|
||||
for (int i = 0; i < nMatches; ++i, ++trainIdx_ptr, ++distance_ptr) |
||||
{ |
||||
int trainIdx = *trainIdx_ptr; |
||||
|
||||
float distance = *distance_ptr; |
||||
|
||||
DMatch m(queryIdx, trainIdx, 0, distance); |
||||
|
||||
curMatches.push_back(m); |
||||
} |
||||
sort(curMatches.begin(), curMatches.end()); |
||||
} |
||||
} |
||||
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat& queryDescs, const GpuMat& trainDescs,
|
||||
vector< vector<DMatch> >& matches, float maxDistance, const GpuMat& mask, bool compactResult) |
||||
{ |
||||
GpuMat trainIdx, nMatches, distance; |
||||
radiusMatch(queryDescs, trainDescs, trainIdx, nMatches, distance, maxDistance, mask); |
||||
radiusMatchDownload(trainIdx, nMatches, distance, matches, compactResult); |
||||
} |
||||
|
||||
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat& queryDescs, vector< vector<DMatch> >& matches,
|
||||
float maxDistance, const vector<GpuMat>& masks, bool compactResult) |
||||
|
||||
{ |
||||
matches.resize(queryDescs.rows); |
||||
|
||||
vector< vector<DMatch> > curMatches; |
||||
|
||||
for (size_t imgIdx = 0; imgIdx < trainDescCollection.size(); ++imgIdx) |
||||
{ |
||||
radiusMatch(queryDescs, trainDescCollection[imgIdx], curMatches, maxDistance,
|
||||
masks.empty() ? GpuMat() : masks[imgIdx]); |
||||
|
||||
for (int queryIdx = 0; queryIdx < queryDescs.rows; ++queryIdx) |
||||
{ |
||||
vector<DMatch>& localMatch = curMatches[queryIdx]; |
||||
vector<DMatch>& globalMatch = matches[queryIdx]; |
||||
|
||||
for_each(localMatch.begin(), localMatch.end(), ImgIdxSetter(imgIdx)); |
||||
|
||||
const size_t oldSize = globalMatch.size(); |
||||
|
||||
copy(localMatch.begin(), localMatch.end(), back_inserter(globalMatch)); |
||||
inplace_merge(globalMatch.begin(), globalMatch.begin() + oldSize, globalMatch.end()); |
||||
} |
||||
} |
||||
|
||||
if (compactResult) |
||||
{ |
||||
vector< vector<DMatch> >::iterator new_end = remove_if(matches.begin(), matches.end(),
|
||||
mem_fun_ref(&vector<DMatch>::empty)); |
||||
matches.erase(new_end, matches.end()); |
||||
} |
||||
} |
||||
|
||||
#endif /* !defined (HAVE_CUDA) */ |
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,175 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "gputest.hpp" |
||||
|
||||
using namespace cv; |
||||
using namespace cv::gpu; |
||||
using namespace std; |
||||
|
||||
class CV_GpuBruteForceMatcherTest : public CvTest
|
||||
{ |
||||
public: |
||||
CV_GpuBruteForceMatcherTest() : CvTest( "GPU-BruteForceMatcher", "BruteForceMatcher" ) {} |
||||
|
||||
protected: |
||||
void run(int)
|
||||
{ |
||||
try
|
||||
{ |
||||
BruteForceMatcher< L2<float> > matcherCPU; |
||||
BruteForceMatcher_GPU< L2<float> > matcherGPU; |
||||
|
||||
vector<DMatch> matchesCPU, matchesGPU; |
||||
vector< vector<DMatch> > knnMatchesCPU, knnMatchesGPU; |
||||
vector< vector<DMatch> > radiusMatchesCPU, radiusMatchesGPU; |
||||
|
||||
RNG rng(*ts->get_rng()); |
||||
|
||||
const int desc_len = rng.uniform(40, 300); |
||||
|
||||
Mat queryCPU(rng.uniform(100, 300), desc_len, CV_32F);
|
||||
rng.fill(queryCPU, cv::RNG::UNIFORM, cv::Scalar::all(0.0), cv::Scalar::all(1.0)); |
||||
GpuMat queryGPU(queryCPU); |
||||
|
||||
const int nTrains = rng.uniform(1, 5); |
||||
|
||||
vector<Mat> trainsCPU(nTrains); |
||||
vector<GpuMat> trainsGPU(nTrains); |
||||
|
||||
vector<Mat> masksCPU(nTrains); |
||||
vector<GpuMat> masksGPU(nTrains); |
||||
|
||||
for (int i = 0; i < nTrains; ++i) |
||||
{ |
||||
Mat train(rng.uniform(100, 300), desc_len, CV_32F); |
||||
rng.fill(train, cv::RNG::UNIFORM, cv::Scalar::all(0.0), cv::Scalar::all(1.0)); |
||||
|
||||
trainsCPU[i] = train; |
||||
trainsGPU[i].upload(train); |
||||
|
||||
bool with_mask = rng.uniform(0, 10) < 5; |
||||
if (with_mask) |
||||
{ |
||||
Mat mask(queryCPU.rows, train.rows, CV_8U, Scalar::all(1)); |
||||
rng.fill(mask, cv::RNG::UNIFORM, cv::Scalar::all(0), cv::Scalar::all(200)); |
||||
|
||||
masksCPU[i] = mask; |
||||
masksGPU[i].upload(mask); |
||||
} |
||||
} |
||||
|
||||
matcherCPU.add(trainsCPU); |
||||
matcherGPU.add(trainsGPU); |
||||
|
||||
matcherCPU.match(queryCPU, matchesCPU, masksCPU); |
||||
matcherGPU.match(queryGPU, matchesGPU, masksGPU); |
||||
|
||||
if (!compareMatches(matchesCPU, matchesGPU)) |
||||
{ |
||||
ts->set_failed_test_info(CvTS::FAIL_MISMATCH); |
||||
return; |
||||
} |
||||
|
||||
const int knn = rng.uniform(3, 10); |
||||
|
||||
matcherCPU.knnMatch(queryCPU, knnMatchesCPU, knn, masksCPU); |
||||
matcherGPU.knnMatch(queryGPU, knnMatchesGPU, knn, masksGPU); |
||||
|
||||
if (!compareMatches(knnMatchesCPU, knnMatchesGPU)) |
||||
{ |
||||
ts->set_failed_test_info(CvTS::FAIL_MISMATCH); |
||||
return; |
||||
} |
||||
|
||||
const float maxDistance = rng.uniform(0.01f, 0.3f); |
||||
|
||||
matcherCPU.radiusMatch(queryCPU, radiusMatchesCPU, maxDistance, masksCPU); |
||||
matcherGPU.radiusMatch(queryGPU, radiusMatchesGPU, maxDistance, masksGPU); |
||||
|
||||
if (!compareMatches(radiusMatchesCPU, radiusMatchesGPU)) |
||||
{ |
||||
ts->set_failed_test_info(CvTS::FAIL_MISMATCH); |
||||
return; |
||||
} |
||||
} |
||||
catch (const cv::Exception& e)
|
||||
{ |
||||
if (!check_and_treat_gpu_exception(e, ts)) |
||||
throw; |
||||
return; |
||||
} |
||||
|
||||
ts->set_failed_test_info(CvTS::OK); |
||||
} |
||||
|
||||
private: |
||||
static void convertMatches(const vector< vector<DMatch> >& knnMatches, vector<DMatch>& matches) |
||||
{ |
||||
matches.clear(); |
||||
for (size_t i = 0; i < knnMatches.size(); ++i) |
||||
copy(knnMatches[i].begin(), knnMatches[i].end(), back_inserter(matches)); |
||||
} |
||||
|
||||
static bool compareMatches(const vector<DMatch>& matches1, const vector<DMatch>& matches2) |
||||
{ |
||||
if (matches1.size() != matches2.size()) |
||||
return false; |
||||
|
||||
struct DMatchEqual : public binary_function<DMatch, DMatch, bool> |
||||
{ |
||||
bool operator()(const DMatch& m1, const DMatch& m2) |
||||
{ |
||||
return m1.imgIdx == m2.imgIdx && m1.queryIdx == m2.queryIdx && m1.trainIdx == m2.trainIdx; |
||||
} |
||||
}; |
||||
|
||||
return equal(matches1.begin(), matches1.end(), matches2.begin(), DMatchEqual()); |
||||
} |
||||
|
||||
static bool compareMatches(const vector< vector<DMatch> >& matches1, const vector< vector<DMatch> >& matches2) |
||||
{ |
||||
vector<DMatch> m1, m2; |
||||
convertMatches(matches1, m1); |
||||
convertMatches(matches2, m2); |
||||
return compareMatches(m1, m2); |
||||
} |
||||
} brute_force_matcher_test; |
Loading…
Reference in new issue