added BruteForceMatcher_GPU

pull/13383/head
Vladislav Vinogradov 14 years ago
parent 77027f6075
commit 8891acb67a
  1. 2
      modules/gpu/CMakeLists.txt
  2. 148
      modules/gpu/include/opencv2/gpu/gpu.hpp
  3. 605
      modules/gpu/src/brute_force_matcher.cpp
  4. 1205
      modules/gpu/src/cuda/brute_force_matcher.cu
  5. 175
      tests/gpu/src/brute_force_matcher.cpp
  6. 3
      tests/gpu/src/gputest.hpp

@ -1,6 +1,6 @@
set(name "gpu")
set(DEPS "opencv_core" "opencv_imgproc" "opencv_objdetect")
set(DEPS "opencv_core" "opencv_imgproc" "opencv_objdetect" "opencv_features2d" "opencv_flann")
set(OPENCV_LINKER_LIBS ${OPENCV_LINKER_LIBS} opencv_gpu)

@ -48,6 +48,7 @@
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/objdetect/objdetect.hpp"
#include "opencv2/gpu/devmem2d.hpp"
#include "opencv2/features2d/features2d.hpp"
namespace cv
{
@ -1118,7 +1119,152 @@ namespace cv
// Gradients conputation results
GpuMat grad, qangle;
};
};
////////////////////////////////// BruteForceMatcher //////////////////////////////////
class CV_EXPORTS BruteForceMatcher_GPU_base
{
public:
enum DistType {L1Dist = 0, L2Dist};
explicit BruteForceMatcher_GPU_base(DistType distType = L2Dist);
// Add descriptors to train descriptor collection.
void add(const std::vector<GpuMat>& descCollection);
// Get train descriptors collection.
const std::vector<GpuMat>& getTrainDescriptors() const;
// Clear train descriptors collection.
void clear();
// Return true if there are not train descriptors in collection.
bool empty() const;
// Return true if the matcher supports mask in match methods.
bool isMaskSupported() const;
// Find one best match for each query descriptor.
// trainIdx.at<int>(0, queryIdx) will contain best train index for queryIdx
// distance.at<float>(0, queryIdx) will contain distance
void matchSingle(const GpuMat& queryDescs, const GpuMat& trainDescs,
GpuMat& trainIdx, GpuMat& distance,
const GpuMat& mask = GpuMat());
// Download trainIdx and distance to CPU vector with DMatch
static void matchDownload(const GpuMat& trainIdx, const GpuMat& distance, std::vector<DMatch>& matches);
// Find one best match for each query descriptor.
void match(const GpuMat& queryDescs, const GpuMat& trainDescs, std::vector<DMatch>& matches,
const GpuMat& mask = GpuMat());
// Make gpu collection of trains and masks in suitable format for matchCollection function
void makeGpuCollection(GpuMat& trainCollection, GpuMat& maskCollection,
const vector<GpuMat>& masks = std::vector<GpuMat>());
// Find one best match from train collection for each query descriptor.
// trainIdx.at<int>(0, queryIdx) will contain best train index for queryIdx
// imgIdx.at<int>(0, queryIdx) will contain best image index for queryIdx
// distance.at<float>(0, queryIdx) will contain distance
void matchCollection(const GpuMat& queryDescs, const GpuMat& trainCollection,
GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance,
const GpuMat& maskCollection);
// Download trainIdx, imgIdx and distance to CPU vector with DMatch
static void matchDownload(const GpuMat& trainIdx, GpuMat& imgIdx, const GpuMat& distance,
std::vector<DMatch>& matches);
// Find one best match from train collection for each query descriptor.
void match(const GpuMat& queryDescs, std::vector<DMatch>& matches,
const std::vector<GpuMat>& masks = std::vector<GpuMat>());
// Find k best matches for each query descriptor (in increasing order of distances).
// trainIdx.at<int>(queryIdx, i) will contain index of i'th best trains (i < k).
// distance.at<float>(queryIdx, i) will contain distance.
// allDist is a buffer to store all distance between query descriptors and train descriptors
// it have size (nQuery,nTrain) and CV_32F type
// allDist.at<float>(queryIdx, trainIdx) will contain FLT_MAX, if trainIdx is one from k best,
// otherwise it will contain distance between queryIdx and trainIdx descriptors
void knnMatch(const GpuMat& queryDescs, const GpuMat& trainDescs,
GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k, const GpuMat& mask = GpuMat());
// Download trainIdx and distance to CPU vector with DMatch
// compactResult is used when mask is not empty. If compactResult is false matches
// vector will have the same size as queryDescriptors rows. If compactResult is true
// matches vector will not contain matches for fully masked out query descriptors.
static void knnMatchDownload(const GpuMat& trainIdx, const GpuMat& distance,
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
// Find k best matches for each query descriptor (in increasing order of distances).
// compactResult is used when mask is not empty. If compactResult is false matches
// vector will have the same size as queryDescriptors rows. If compactResult is true
// matches vector will not contain matches for fully masked out query descriptors.
void knnMatch(const GpuMat& queryDescs, const GpuMat& trainDescs,
std::vector< std::vector<DMatch> >& matches, int k, const GpuMat& mask = GpuMat(),
bool compactResult = false);
// Find k best matches for each query descriptor (in increasing order of distances).
// compactResult is used when mask is not empty. If compactResult is false matches
// vector will have the same size as queryDescriptors rows. If compactResult is true
// matches vector will not contain matches for fully masked out query descriptors.
void knnMatch(const GpuMat& queryDescs, std::vector< std::vector<DMatch> >& matches, int knn,
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), bool compactResult = false );
// Find best matches for each query descriptor which have distance less than maxDistance.
// nMatches.at<unsigned int>(0, queruIdx) will contain matches count for queryIdx.
// carefully nMatches can be greater than trainIdx.cols - it means that matcher didn't find all matches,
// because it didn't have enough memory.
// trainIdx.at<int>(queruIdx, i) will contain ith train index (i < min(nMatches.at<unsigned int>(0, queruIdx), trainIdx.cols))
// distance.at<int>(queruIdx, i) will contain ith distance (i < min(nMatches.at<unsigned int>(0, queruIdx), trainIdx.cols))
// If trainIdx is empty, then trainIdx and distance will be created with size nQuery x nTrain,
// otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches
// Matches doesn't sorted.
void radiusMatch(const GpuMat& queryDescs, const GpuMat& trainDescs,
GpuMat& trainIdx, GpuMat& nMatches, GpuMat& distance, float maxDistance,
const GpuMat& mask = GpuMat());
// Download trainIdx, nMatches and distance to CPU vector with DMatch.
// matches will be sorted in increasing order of distances.
// compactResult is used when mask is not empty. If compactResult is false matches
// vector will have the same size as queryDescriptors rows. If compactResult is true
// matches vector will not contain matches for fully masked out query descriptors.
static void radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& nMatches, const GpuMat& distance,
std::vector< std::vector<DMatch> >& matches, bool compactResult = false);
// Find best matches for each query descriptor which have distance less than maxDistance
// in increasing order of distances).
void radiusMatch(const GpuMat& queryDescs, const GpuMat& trainDescs,
std::vector< std::vector<DMatch> >& matches, float maxDistance,
const GpuMat& mask = GpuMat(), bool compactResult = false);
// Find best matches from train collection for each query descriptor which have distance less than
// maxDistance (in increasing order of distances).
void radiusMatch(const GpuMat& queryDescs, std::vector< std::vector<DMatch> >& matches, float maxDistance,
const std::vector<GpuMat>& masks = std::vector<GpuMat>(), bool compactResult = false);
private:
DistType distType;
std::vector<GpuMat> trainDescCollection;
};
template <class Distance>
class CV_EXPORTS BruteForceMatcher_GPU;
template <typename T>
class CV_EXPORTS BruteForceMatcher_GPU< L1<T> > : public BruteForceMatcher_GPU_base
{
public:
explicit BruteForceMatcher_GPU(L1<T> d = L1<T>()) : BruteForceMatcher_GPU_base(L1Dist) {}
};
template <typename T>
class CV_EXPORTS BruteForceMatcher_GPU< L2<T> > : public BruteForceMatcher_GPU_base
{
public:
explicit BruteForceMatcher_GPU(L2<T> d = L2<T>()) : BruteForceMatcher_GPU_base(L2Dist) {}
};
}

@ -0,0 +1,605 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other GpuMaterials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or bpied warranties, including, but not limited to, the bpied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
using namespace cv;
using namespace cv::gpu;
using namespace std;
#if !defined (HAVE_CUDA)
cv::gpu::BruteForceMatcher_GPU_base::BruteForceMatcher_GPU_base(DistType) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::add(const vector<GpuMat>&) { throw_nogpu(); }
const vector<GpuMat>& cv::gpu::BruteForceMatcher_GPU_base::getTrainDescriptors() const { throw_nogpu(); return trainDescCollection; }
void cv::gpu::BruteForceMatcher_GPU_base::clear() { throw_nogpu(); }
bool cv::gpu::BruteForceMatcher_GPU_base::empty() const { throw_nogpu(); return true; }
bool cv::gpu::BruteForceMatcher_GPU_base::isMaskSupported() const { throw_nogpu(); return true; }
void cv::gpu::BruteForceMatcher_GPU_base::matchSingle(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, const GpuMat&) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat&, const GpuMat&, vector<DMatch>&) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::match(const GpuMat&, const GpuMat&, vector<DMatch>&, const GpuMat&) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::makeGpuCollection(GpuMat&, GpuMat&, const vector<GpuMat>&) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::matchCollection(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, GpuMat&, const GpuMat&) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat&, GpuMat&, const GpuMat&, std::vector<DMatch>&) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::match(const GpuMat&, std::vector<DMatch>&, const std::vector<GpuMat>&) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, GpuMat&, int, const GpuMat&) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::knnMatchDownload(const GpuMat&, const GpuMat&, std::vector< std::vector<DMatch> >&, bool) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat&, const GpuMat&, std::vector< std::vector<DMatch> >&, int, const GpuMat&, bool) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat&, std::vector< std::vector<DMatch> >&, int, const std::vector<GpuMat>&, bool) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, GpuMat&, float, const GpuMat&) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchDownload(const GpuMat&, const GpuMat&, const GpuMat&, std::vector< std::vector<DMatch> >&, bool) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat&, const GpuMat&, std::vector< std::vector<DMatch> >&, float, const GpuMat&, bool) { throw_nogpu(); }
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat&, std::vector< std::vector<DMatch> >&, float, const std::vector<GpuMat>&, bool) { throw_nogpu(); }
#else /* !defined (HAVE_CUDA) */
namespace cv { namespace gpu { namespace bfmatcher
{
template <typename T>
void matchSingleL1_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs,
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance);
template <typename T>
void matchSingleL2_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs,
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance);
template <typename T>
void matchCollectionL1_gpu(const DevMem2D& queryDescs, const DevMem2D& trainCollection,
const DevMem2D_<PtrStep>& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx,
const DevMem2Df& distance);
template <typename T>
void matchCollectionL2_gpu(const DevMem2D& queryDescs, const DevMem2D& trainCollection,
const DevMem2D_<PtrStep>& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx,
const DevMem2Df& distance);
template <typename T>
void knnMatchL1_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn,
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist);
template <typename T>
void knnMatchL2_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn,
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist);
template <typename T>
void radiusMatchL1_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance,
const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance);
template <typename T>
void radiusMatchL2_gpu(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance,
const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance);
}}}
cv::gpu::BruteForceMatcher_GPU_base::BruteForceMatcher_GPU_base(DistType distType_) : distType(distType_)
{
}
////////////////////////////////////////////////////////////////////
// Train collection
void cv::gpu::BruteForceMatcher_GPU_base::add(const vector<GpuMat>& descCollection)
{
trainDescCollection.insert(trainDescCollection.end(), descCollection.begin(), descCollection.end());
}
const vector<GpuMat>& cv::gpu::BruteForceMatcher_GPU_base::getTrainDescriptors() const
{
return trainDescCollection;
}
void cv::gpu::BruteForceMatcher_GPU_base::clear()
{
trainDescCollection.clear();
}
bool cv::gpu::BruteForceMatcher_GPU_base::empty() const
{
return trainDescCollection.empty();
}
bool cv::gpu::BruteForceMatcher_GPU_base::isMaskSupported() const
{
return true;
}
////////////////////////////////////////////////////////////////////
// Match
void cv::gpu::BruteForceMatcher_GPU_base::matchSingle(const GpuMat& queryDescs, const GpuMat& trainDescs,
GpuMat& trainIdx, GpuMat& distance, const GpuMat& mask)
{
using namespace cv::gpu::bfmatcher;
typedef void (*match_caller_t)(const DevMem2D& queryDescs, const DevMem2D& trainDescs,
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance);
static const match_caller_t match_callers[2][8] =
{
{
matchSingleL1_gpu<unsigned char>, matchSingleL1_gpu<char>, matchSingleL1_gpu<unsigned short>,
matchSingleL1_gpu<short>, matchSingleL1_gpu<int>, matchSingleL1_gpu<float>, 0, 0
},
{
matchSingleL2_gpu<unsigned char>, matchSingleL2_gpu<char>, matchSingleL2_gpu<unsigned short>,
matchSingleL2_gpu<short>, matchSingleL2_gpu<int>, matchSingleL2_gpu<float>, 0, 0
}
};
CV_Assert(queryDescs.channels() == 1);
CV_Assert(trainDescs.cols == queryDescs.cols && trainDescs.type() == queryDescs.type());
const int nQuery = queryDescs.rows;
trainIdx.create(1, nQuery, CV_32S);
distance.create(1, nQuery, CV_32F);
match_caller_t func = match_callers[distType][queryDescs.depth()];
CV_Assert(func != 0);
// For single train there is no need to save imgIdx, so we just save imgIdx to trainIdx.
// trainIdx store after imgIdx, so we doesn't lose it value.
func(queryDescs, trainDescs, mask, trainIdx, trainIdx, distance);
}
void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat& trainIdx, const GpuMat& distance,
vector<DMatch>& matches)
{
const int nQuery = trainIdx.cols;
Mat trainIdxCPU = trainIdx;
Mat distanceCPU = distance;
matches.clear();
matches.reserve(nQuery);
const int* trainIdx_ptr = trainIdxCPU.ptr<int>();
const float* distance_ptr = distanceCPU.ptr<float>();
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx, ++trainIdx_ptr, ++distance_ptr)
{
int trainIdx = *trainIdx_ptr;
if (trainIdx == -1)
continue;
float distance = *distance_ptr;
DMatch m(queryIdx, trainIdx, 0, distance);
matches.push_back(m);
}
}
void cv::gpu::BruteForceMatcher_GPU_base::match(const GpuMat& queryDescs, const GpuMat& trainDescs,
vector<DMatch>& matches, const GpuMat& mask)
{
GpuMat trainIdx, distance;
matchSingle(queryDescs, trainDescs, trainIdx, distance, mask);
matchDownload(trainIdx, distance, matches);
}
void cv::gpu::BruteForceMatcher_GPU_base::makeGpuCollection(GpuMat& trainCollection, GpuMat& maskCollection,
const vector<GpuMat>& masks)
{
if (masks.empty())
{
Mat trainCollectionCPU(1, trainDescCollection.size(), CV_8UC(sizeof(DevMem2D)));
for (size_t i = 0; i < trainDescCollection.size(); ++i)
{
const GpuMat& trainDescs = trainDescCollection[i];
trainCollectionCPU.ptr<DevMem2D>(0)[i] = trainDescs;
}
trainCollection.upload(trainCollectionCPU);
}
else
{
CV_Assert(masks.size() == trainDescCollection.size());
Mat trainCollectionCPU(1, trainDescCollection.size(), CV_8UC(sizeof(DevMem2D)));
Mat maskCollectionCPU(1, trainDescCollection.size(), CV_8UC(sizeof(PtrStep)));
for (size_t i = 0; i < trainDescCollection.size(); ++i)
{
const GpuMat& trainDescs = trainDescCollection[i];
const GpuMat& mask = masks[i];
CV_Assert(mask.empty() || (mask.type() == CV_8UC1));
trainCollectionCPU.ptr<DevMem2D>(0)[i] = trainDescs;
maskCollectionCPU.ptr<PtrStep>(0)[i] = static_cast<PtrStep>(mask);
}
trainCollection.upload(trainCollectionCPU);
maskCollection.upload(maskCollectionCPU);
}
}
void cv::gpu::BruteForceMatcher_GPU_base::matchCollection(const GpuMat& queryDescs, const GpuMat& trainCollection,
GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, const GpuMat& maskCollection)
{
using namespace cv::gpu::bfmatcher;
typedef void (*match_caller_t)(const DevMem2D& queryDescs, const DevMem2D& trainCollection,
const DevMem2D_<PtrStep>& maskCollection, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx,
const DevMem2Df& distance);
static const match_caller_t match_callers[2][8] =
{
{
matchCollectionL1_gpu<unsigned char>, matchCollectionL1_gpu<char>,
matchCollectionL1_gpu<unsigned short>, matchCollectionL1_gpu<short>,
matchCollectionL1_gpu<int>, matchCollectionL1_gpu<float>, 0, 0
},
{
matchCollectionL2_gpu<unsigned char>, matchCollectionL2_gpu<char>,
matchCollectionL2_gpu<unsigned short>, matchCollectionL2_gpu<short>,
matchCollectionL2_gpu<int>, matchCollectionL2_gpu<float>, 0, 0
}
};
CV_Assert(queryDescs.channels() == 1);
const int nQuery = queryDescs.rows;
trainIdx.create(1, nQuery, CV_32S);
imgIdx.create(1, nQuery, CV_32S);
distance.create(1, nQuery, CV_32F);
match_caller_t func = match_callers[distType][queryDescs.depth()];
CV_Assert(func != 0);
func(queryDescs, trainCollection, maskCollection, trainIdx, imgIdx, distance);
}
void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat& trainIdx, GpuMat& imgIdx,
const GpuMat& distance, vector<DMatch>& matches)
{
const int nQuery = trainIdx.cols;
Mat trainIdxCPU = trainIdx;
Mat imgIdxCPU = imgIdx;
Mat distanceCPU = distance;
matches.clear();
matches.reserve(nQuery);
const int* trainIdx_ptr = trainIdxCPU.ptr<int>();
const int* imgIdx_ptr = imgIdxCPU.ptr<int>();
const float* distance_ptr = distanceCPU.ptr<float>();
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx, ++trainIdx_ptr, ++imgIdx_ptr, ++distance_ptr)
{
int trainIdx = *trainIdx_ptr;
if (trainIdx == -1)
continue;
int imgIdx = *imgIdx_ptr;
float distance = *distance_ptr;
DMatch m(queryIdx, trainIdx, imgIdx, distance);
matches.push_back(m);
}
}
void cv::gpu::BruteForceMatcher_GPU_base::match(const GpuMat& queryDescs, vector<DMatch>& matches,
const vector<GpuMat>& masks)
{
GpuMat trainCollection;
GpuMat maskCollection;
makeGpuCollection(trainCollection, maskCollection, masks);
GpuMat trainIdx, imgIdx, distance;
matchCollection(queryDescs, trainCollection, trainIdx, imgIdx, distance, maskCollection);
matchDownload(trainIdx, imgIdx, distance, matches);
}
////////////////////////////////////////////////////////////////////
// KnnMatch
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat& queryDescs, const GpuMat& trainDescs,
GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k, const GpuMat& mask)
{
using namespace cv::gpu::bfmatcher;
typedef void (*match_caller_t)(const DevMem2D& queryDescs, const DevMem2D& trainDescs, int knn,
const DevMem2D& mask, const DevMem2Di& trainIdx, const DevMem2Df& distance, const DevMem2Df& allDist);
static const match_caller_t match_callers[2][8] =
{
{
knnMatchL1_gpu<unsigned char>, knnMatchL1_gpu<char>, knnMatchL1_gpu<unsigned short>,
knnMatchL1_gpu<short>, knnMatchL1_gpu<int>, knnMatchL1_gpu<float>, 0, 0
},
{
knnMatchL2_gpu<unsigned char>, knnMatchL2_gpu<char>, knnMatchL2_gpu<unsigned short>,
knnMatchL2_gpu<short>, knnMatchL2_gpu<int>, knnMatchL2_gpu<float>, 0, 0
}
};
CV_Assert(queryDescs.channels() == 1);
const int nQuery = queryDescs.rows;
const int nTrain = trainDescs.rows;
trainIdx.create(nQuery, k, CV_32S);
trainIdx.setTo(Scalar::all(-1));
distance.create(nQuery, k, CV_32F);
allDist.create(nQuery, nTrain, CV_32F);
match_caller_t func = match_callers[distType][queryDescs.depth()];
CV_Assert(func != 0);
func(queryDescs, trainDescs, k, mask, trainIdx, distance, allDist);
}
void cv::gpu::BruteForceMatcher_GPU_base::knnMatchDownload(const GpuMat& trainIdx, const GpuMat& distance,
vector< vector<DMatch> >& matches, bool compactResult)
{
const int nQuery = distance.rows;
const int k = trainIdx.cols;
Mat trainIdxCPU = trainIdx;
Mat distanceCPU = distance;
matches.clear();
matches.reserve(nQuery);
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx)
{
matches.push_back(vector<DMatch>());
vector<DMatch>& curMatches = matches.back();
curMatches.reserve(k);
int* trainIdx_ptr = trainIdxCPU.ptr<int>(queryIdx);
float* distance_ptr = distanceCPU.ptr<float>(queryIdx);
for (int i = 0; i < k; ++i, ++trainIdx_ptr, ++distance_ptr)
{
int trainIdx = *trainIdx_ptr;
if (trainIdx != -1)
{
float distance = *distance_ptr;
DMatch m(queryIdx, trainIdx, 0, distance);
curMatches.push_back(m);
}
}
if (compactResult && curMatches.empty())
matches.pop_back();
}
}
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat& queryDescs, const GpuMat& trainDescs,
vector< vector<DMatch> >& matches, int k, const GpuMat& mask, bool compactResult)
{
GpuMat trainIdx, distance, allDist;
knnMatch(queryDescs, trainDescs, trainIdx, distance, allDist, k, mask);
knnMatchDownload(trainIdx, distance, matches, compactResult);
}
namespace
{
class ImgIdxSetter
{
public:
ImgIdxSetter(int imgIdx_) : imgIdx(imgIdx_) {}
void operator()(DMatch& m) const {m.imgIdx = imgIdx;}
private:
int imgIdx;
};
}
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat& queryDescs,
vector< vector<DMatch> >& matches, int knn, const vector<GpuMat>& masks, bool compactResult)
{
vector< vector<DMatch> > curMatches;
vector<DMatch> temp;
temp.reserve(2 * knn);
matches.resize(queryDescs.rows);
for_each(matches.begin(), matches.end(), bind2nd(mem_fun_ref(&vector<DMatch>::reserve), knn));
for (size_t imgIdx = 0; imgIdx < trainDescCollection.size(); ++imgIdx)
{
knnMatch(queryDescs, trainDescCollection[imgIdx], curMatches, knn,
masks.empty() ? GpuMat() : masks[imgIdx]);
for (int queryIdx = 0; queryIdx < queryDescs.rows; ++queryIdx)
{
vector<DMatch>& localMatch = curMatches[queryIdx];
vector<DMatch>& globalMatch = matches[queryIdx];
for_each(localMatch.begin(), localMatch.end(), ImgIdxSetter(imgIdx));
temp.clear();
merge(globalMatch.begin(), globalMatch.end(), localMatch.begin(), localMatch.end(), back_inserter(temp));
globalMatch.clear();
const size_t count = std::min((size_t)knn, temp.size());
copy(temp.begin(), temp.begin() + count, back_inserter(globalMatch));
}
}
if (compactResult)
{
vector< vector<DMatch> >::iterator new_end = remove_if(matches.begin(), matches.end(),
mem_fun_ref(&vector<DMatch>::empty));
matches.erase(new_end, matches.end());
}
}
////////////////////////////////////////////////////////////////////
// RadiusMatch
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat& queryDescs, const GpuMat& trainDescs,
GpuMat& trainIdx, GpuMat& nMatches, GpuMat& distance, float maxDistance, const GpuMat& mask)
{
using namespace cv::gpu::bfmatcher;
typedef void (*radiusMatch_caller_t)(const DevMem2D& queryDescs, const DevMem2D& trainDescs, float maxDistance,
const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance);
static const radiusMatch_caller_t radiusMatch_callers[2][8] =
{
{
radiusMatchL1_gpu<unsigned char>, radiusMatchL1_gpu<char>, radiusMatchL1_gpu<unsigned short>,
radiusMatchL1_gpu<short>, radiusMatchL1_gpu<int>, radiusMatchL1_gpu<float>, 0, 0
},
{
radiusMatchL2_gpu<unsigned char>, radiusMatchL2_gpu<char>, radiusMatchL2_gpu<unsigned short>,
radiusMatchL2_gpu<short>, radiusMatchL2_gpu<int>, radiusMatchL2_gpu<float>, 0, 0
}
};
const int nQuery = queryDescs.rows;
const int nTrain = trainDescs.rows;
CV_Assert(queryDescs.channels() == 1);
CV_Assert(trainDescs.type() == queryDescs.type() && trainDescs.cols == queryDescs.cols);
CV_Assert(trainIdx.empty() || trainIdx.rows == nQuery);
nMatches.create(1, nQuery, CV_32SC1);
nMatches.setTo(Scalar::all(0));
if (trainIdx.empty())
{
trainIdx.create(nQuery, nTrain, CV_32SC1);
distance.create(nQuery, nTrain, CV_32FC1);
}
radiusMatch_caller_t func = radiusMatch_callers[distType][queryDescs.depth()];
CV_Assert(func != 0);
func(queryDescs, trainDescs, maxDistance, mask, trainIdx, nMatches.ptr<unsigned int>(), distance);
}
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& nMatches,
const GpuMat& distance, std::vector< std::vector<DMatch> >& matches, bool compactResult)
{
const int nQuery = trainIdx.rows;
Mat trainIdxCPU = trainIdx;
Mat nMatchesCPU = nMatches;
Mat distanceCPU = distance;
matches.clear();
matches.reserve(nQuery);
const unsigned int* nMatches_ptr = nMatchesCPU.ptr<unsigned int>();
for (int queryIdx = 0; queryIdx < nQuery; ++queryIdx)
{
const int* trainIdx_ptr = trainIdxCPU.ptr<int>(queryIdx);
const float* distance_ptr = distanceCPU.ptr<float>(queryIdx);
const int nMatches = std::min(static_cast<int>(nMatches_ptr[queryIdx]), trainIdx.cols);
if (nMatches == 0)
{
if (!compactResult)
matches.push_back(vector<DMatch>());
continue;
}
matches.push_back(vector<DMatch>());
vector<DMatch>& curMatches = matches.back();
curMatches.reserve(nMatches);
for (int i = 0; i < nMatches; ++i, ++trainIdx_ptr, ++distance_ptr)
{
int trainIdx = *trainIdx_ptr;
float distance = *distance_ptr;
DMatch m(queryIdx, trainIdx, 0, distance);
curMatches.push_back(m);
}
sort(curMatches.begin(), curMatches.end());
}
}
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat& queryDescs, const GpuMat& trainDescs,
vector< vector<DMatch> >& matches, float maxDistance, const GpuMat& mask, bool compactResult)
{
GpuMat trainIdx, nMatches, distance;
radiusMatch(queryDescs, trainDescs, trainIdx, nMatches, distance, maxDistance, mask);
radiusMatchDownload(trainIdx, nMatches, distance, matches, compactResult);
}
void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat& queryDescs, vector< vector<DMatch> >& matches,
float maxDistance, const vector<GpuMat>& masks, bool compactResult)
{
matches.resize(queryDescs.rows);
vector< vector<DMatch> > curMatches;
for (size_t imgIdx = 0; imgIdx < trainDescCollection.size(); ++imgIdx)
{
radiusMatch(queryDescs, trainDescCollection[imgIdx], curMatches, maxDistance,
masks.empty() ? GpuMat() : masks[imgIdx]);
for (int queryIdx = 0; queryIdx < queryDescs.rows; ++queryIdx)
{
vector<DMatch>& localMatch = curMatches[queryIdx];
vector<DMatch>& globalMatch = matches[queryIdx];
for_each(localMatch.begin(), localMatch.end(), ImgIdxSetter(imgIdx));
const size_t oldSize = globalMatch.size();
copy(localMatch.begin(), localMatch.end(), back_inserter(globalMatch));
inplace_merge(globalMatch.begin(), globalMatch.begin() + oldSize, globalMatch.end());
}
}
if (compactResult)
{
vector< vector<DMatch> >::iterator new_end = remove_if(matches.begin(), matches.end(),
mem_fun_ref(&vector<DMatch>::empty));
matches.erase(new_end, matches.end());
}
}
#endif /* !defined (HAVE_CUDA) */

File diff suppressed because it is too large Load Diff

@ -0,0 +1,175 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "gputest.hpp"
using namespace cv;
using namespace cv::gpu;
using namespace std;
class CV_GpuBruteForceMatcherTest : public CvTest
{
public:
CV_GpuBruteForceMatcherTest() : CvTest( "GPU-BruteForceMatcher", "BruteForceMatcher" ) {}
protected:
void run(int)
{
try
{
BruteForceMatcher< L2<float> > matcherCPU;
BruteForceMatcher_GPU< L2<float> > matcherGPU;
vector<DMatch> matchesCPU, matchesGPU;
vector< vector<DMatch> > knnMatchesCPU, knnMatchesGPU;
vector< vector<DMatch> > radiusMatchesCPU, radiusMatchesGPU;
RNG rng(*ts->get_rng());
const int desc_len = rng.uniform(40, 300);
Mat queryCPU(rng.uniform(100, 300), desc_len, CV_32F);
rng.fill(queryCPU, cv::RNG::UNIFORM, cv::Scalar::all(0.0), cv::Scalar::all(1.0));
GpuMat queryGPU(queryCPU);
const int nTrains = rng.uniform(1, 5);
vector<Mat> trainsCPU(nTrains);
vector<GpuMat> trainsGPU(nTrains);
vector<Mat> masksCPU(nTrains);
vector<GpuMat> masksGPU(nTrains);
for (int i = 0; i < nTrains; ++i)
{
Mat train(rng.uniform(100, 300), desc_len, CV_32F);
rng.fill(train, cv::RNG::UNIFORM, cv::Scalar::all(0.0), cv::Scalar::all(1.0));
trainsCPU[i] = train;
trainsGPU[i].upload(train);
bool with_mask = rng.uniform(0, 10) < 5;
if (with_mask)
{
Mat mask(queryCPU.rows, train.rows, CV_8U, Scalar::all(1));
rng.fill(mask, cv::RNG::UNIFORM, cv::Scalar::all(0), cv::Scalar::all(200));
masksCPU[i] = mask;
masksGPU[i].upload(mask);
}
}
matcherCPU.add(trainsCPU);
matcherGPU.add(trainsGPU);
matcherCPU.match(queryCPU, matchesCPU, masksCPU);
matcherGPU.match(queryGPU, matchesGPU, masksGPU);
if (!compareMatches(matchesCPU, matchesGPU))
{
ts->set_failed_test_info(CvTS::FAIL_MISMATCH);
return;
}
const int knn = rng.uniform(3, 10);
matcherCPU.knnMatch(queryCPU, knnMatchesCPU, knn, masksCPU);
matcherGPU.knnMatch(queryGPU, knnMatchesGPU, knn, masksGPU);
if (!compareMatches(knnMatchesCPU, knnMatchesGPU))
{
ts->set_failed_test_info(CvTS::FAIL_MISMATCH);
return;
}
const float maxDistance = rng.uniform(0.01f, 0.3f);
matcherCPU.radiusMatch(queryCPU, radiusMatchesCPU, maxDistance, masksCPU);
matcherGPU.radiusMatch(queryGPU, radiusMatchesGPU, maxDistance, masksGPU);
if (!compareMatches(radiusMatchesCPU, radiusMatchesGPU))
{
ts->set_failed_test_info(CvTS::FAIL_MISMATCH);
return;
}
}
catch (const cv::Exception& e)
{
if (!check_and_treat_gpu_exception(e, ts))
throw;
return;
}
ts->set_failed_test_info(CvTS::OK);
}
private:
static void convertMatches(const vector< vector<DMatch> >& knnMatches, vector<DMatch>& matches)
{
matches.clear();
for (size_t i = 0; i < knnMatches.size(); ++i)
copy(knnMatches[i].begin(), knnMatches[i].end(), back_inserter(matches));
}
static bool compareMatches(const vector<DMatch>& matches1, const vector<DMatch>& matches2)
{
if (matches1.size() != matches2.size())
return false;
struct DMatchEqual : public binary_function<DMatch, DMatch, bool>
{
bool operator()(const DMatch& m1, const DMatch& m2)
{
return m1.imgIdx == m2.imgIdx && m1.queryIdx == m2.queryIdx && m1.trainIdx == m2.trainIdx;
}
};
return equal(matches1.begin(), matches1.end(), matches2.begin(), DMatchEqual());
}
static bool compareMatches(const vector< vector<DMatch> >& matches1, const vector< vector<DMatch> >& matches2)
{
vector<DMatch> m1, m2;
convertMatches(matches1, m1);
convertMatches(matches2, m2);
return compareMatches(m1, m2);
}
} brute_force_matcher_test;

@ -50,7 +50,8 @@
#include <opencv2/gpu/gpu.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/features2d/features2d.hpp>
#include "cxts.h"
/****************************************************************************************/

Loading…
Cancel
Save