Merge pull request #16658 from YashasSamaga:cuda4dnn-refactor-activations

cuda4dnn(activations, eltwise, scale_shift): refactor to reduce code duplication

* refactor activations

* refactor eltwise kernels

* move all functors to functors.hpp

* remove bias1 and scale1 kernels
pull/16720/head
Yashas Samaga B L 5 years ago committed by GitHub
parent 333a767be4
commit 8808aaccff
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
  1. 609
      modules/dnn/src/cuda/activations.cu
  2. 312
      modules/dnn/src/cuda/bias_activation.cu
  3. 314
      modules/dnn/src/cuda/eltwise_ops.cu
  4. 6
      modules/dnn/src/cuda/execution.hpp
  5. 139
      modules/dnn/src/cuda/functors.hpp
  6. 88
      modules/dnn/src/cuda/scale_shift.cu
  7. 2
      modules/dnn/src/cuda4dnn/kernels/bias_activation.hpp
  8. 6
      modules/dnn/src/cuda4dnn/kernels/scale_shift.hpp
  9. 2
      modules/dnn/src/cuda4dnn/primitives/convolution.hpp
  10. 2
      modules/dnn/src/cuda4dnn/primitives/normalize_bbox.hpp

@ -5,7 +5,7 @@
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include "math.hpp"
#include "functors.hpp"
#include "types.hpp"
#include "vector_traits.hpp"
#include "grid_stride_range.hpp"
@ -25,519 +25,178 @@ using namespace cv::dnn::cuda4dnn::csl::device;
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
namespace raw {
template <class T, std::size_t N>
__global__ void abs_vec(Span<T> output, View<T> input) {
using vector_type = get_vector_type_t<T, N>;
auto output_vPtr = vector_type::get_pointer(output.data());
auto input_vPtr = vector_type::get_pointer(input.data());
for (auto i : grid_stride_range(output.size() / vector_type::size())) {
vector_type vec;
v_load(vec, input_vPtr[i]);
for (int j = 0; j < vector_type::size(); j++) {
using device::abs;
vec.data[j] = abs(vec.data[j]);
}
v_store(output_vPtr[i], vec);
}
}
template <class T, std::size_t N>
__global__ void tanh_vec(Span<T> output, View<T> input) {
using vector_type = get_vector_type_t<T, N>;
auto output_vPtr = vector_type::get_pointer(output.data());
auto input_vPtr = vector_type::get_pointer(input.data());
for (auto i : grid_stride_range(output.size() / vector_type::size())) {
vector_type vec;
v_load(vec, input_vPtr[i]);
for (int j = 0; j < vector_type::size(); j++) {
using device::tanh;
vec.data[j] = tanh(vec.data[j]);
}
v_store(output_vPtr[i], vec);
}
}
template <class T, std::size_t N>
__global__ void swish_vec(Span<T> output, View<T> input) {
using vector_type = get_vector_type_t<T, N>;
auto output_vPtr = vector_type::get_pointer(output.data());
auto input_vPtr = vector_type::get_pointer(input.data());
for (auto i : grid_stride_range(output.size() / vector_type::size())) {
vector_type vec;
v_load(vec, input_vPtr[i]);
for (int j = 0; j < vector_type::size(); j++) {
using device::sigmoid;
vec.data[j] = vec.data[j] * sigmoid(vec.data[j]);
}
v_store(output_vPtr[i], vec);
}
}
template <class T, std::size_t N>
__global__ void mish_vec(Span<T> output, View<T> input) {
using vector_type = get_vector_type_t<T, N>;
auto output_vPtr = vector_type::get_pointer(output.data());
auto input_vPtr = vector_type::get_pointer(input.data());
for (auto i : grid_stride_range(output.size() / vector_type::size())) {
vector_type vec;
v_load(vec, input_vPtr[i]);
for (int j = 0; j < vector_type::size(); j++) {
using device::tanh;
using device::log1pexp;
vec.data[j] = vec.data[j] * tanh(log1pexp(vec.data[j]));
}
v_store(output_vPtr[i], vec);
}
}
template <class T, std::size_t N>
__global__ void sigmoid_vec(Span<T> output, View<T> input) {
using vector_type = get_vector_type_t<T, N>;
auto output_vPtr = vector_type::get_pointer(output.data());
auto input_vPtr = vector_type::get_pointer(input.data());
for (auto i : grid_stride_range(output.size() / vector_type::size())) {
vector_type vec;
v_load(vec, input_vPtr[i]);
for (int j = 0; j < vector_type::size(); j++) {
using device::sigmoid;
vec.data[j] = sigmoid(vec.data[j]);
}
v_store(output_vPtr[i], vec);
}
}
template <class T, std::size_t N>
__global__ void bnll_vec(Span<T> output, View<T> input) {
using vector_type = get_vector_type_t<T, N>;
auto output_vPtr = vector_type::get_pointer(output.data());
auto input_vPtr = vector_type::get_pointer(input.data());
for (auto i : grid_stride_range(output.size() / vector_type::size())) {
vector_type vec;
v_load(vec, input_vPtr[i]);
for (int j = 0; j < vector_type::size(); j++) {
using device::log1pexp;
vec.data[j] = vec.data[j] > T(0) ? vec.data[j] + log1pexp(-vec.data[j]) : log1pexp(vec.data[j]);
}
v_store(output_vPtr[i], vec);
}
}
template <class T, std::size_t N>
__global__ void elu_vec(Span<T> output, View<T> input) {
using vector_type = get_vector_type_t<T, N>;
auto output_vPtr = vector_type::get_pointer(output.data());
auto input_vPtr = vector_type::get_pointer(input.data());
for (auto i : grid_stride_range(output.size() / vector_type::size())) {
vector_type vec;
v_load(vec, input_vPtr[i]);
for (int j = 0; j < vector_type::size(); j++) {
using device::expm1;
vec.data[j] = vec.data[j] >= T(0) ? vec.data[j] : expm1(vec.data[j]);
}
v_store(output_vPtr[i], vec);
}
}
template <class T, std::size_t N>
__global__ void relu_vec(Span<T> output, View<T> input, T slope) {
using vector_type = get_vector_type_t<T, N>;
auto output_vPtr = vector_type::get_pointer(output.data());
auto input_vPtr = vector_type::get_pointer(input.data());
for (auto i : grid_stride_range(output.size() / vector_type::size())) {
vector_type vec;
v_load(vec, input_vPtr[i]);
for(int j = 0; j < vector_type::size(); j++)
vec.data[j] = vec.data[j] >= T(0) ? vec.data[j] : slope * vec.data[j];
v_store(output_vPtr[i], vec);
}
}
template <class T, std::size_t N>
__global__ void clipped_relu_vec(Span<T> output, View<T> input, T floor, T ceiling) {
using vector_type = get_vector_type_t<T, N>;
auto output_vPtr = vector_type::get_pointer(output.data());
auto input_vPtr = vector_type::get_pointer(input.data());
for (auto i : grid_stride_range(output.size() / vector_type::size())) {
using device::clamp;
vector_type vec;
v_load(vec, input_vPtr[i]);
for (int j = 0; j < vector_type::size(); j++)
vec.data[j] = clamp(vec.data[j], floor, ceiling);
v_store(output_vPtr[i], vec);
}
}
template <class T, std::size_t N>
__global__ void axiswise_relu_vec(Span<T> output, View<T> input, size_type inner_size, View<T> slope) {
using vector_type = get_vector_type_t<T, N>;
auto output_vPtr = vector_type::get_pointer(output.data());
auto input_vPtr = vector_type::get_pointer(input.data());
inner_size /= vector_type::size();
for (auto i : grid_stride_range(output.size() / vector_type::size())) {
const index_type c = (i / inner_size) % static_cast<size_type>(slope.size());
vector_type vec;
v_load(vec, input_vPtr[i]);
for (int j = 0; j < vector_type::size(); j++)
vec.data[j] = vec.data[j] > T(0) ? vec.data[j] : vec.data[j] * slope[c];
v_store(output_vPtr[i], vec);
}
}
template <class T, std::size_t N>
__global__ void power_vec(Span<T> output, View<T> input, T exp, T scale, T shift) {
using vector_type = get_vector_type_t<T, N>;
auto output_vPtr = vector_type::get_pointer(output.data());
auto input_vPtr = vector_type::get_pointer(input.data());
for (auto i : grid_stride_range(output.size() / vector_type::size())) {
using device::pow;
vector_type vec;
v_load(vec, input_vPtr[i]);
for (int j = 0; j < vector_type::size(); j++)
vec.data[j] = pow(shift + scale * vec.data[j], exp);
v_store(output_vPtr[i], vec);
}
}
}
template <class T, std::size_t N>
void launch_vectorized_abs(const Stream& stream, Span<T> output, View<T> input) {
CV_Assert(is_fully_aligned<T>(output, N));
CV_Assert(is_fully_aligned<T>(input, N));
auto kernel = raw::abs_vec<T, N>;
auto policy = make_policy(kernel, output.size() / N, 0, stream);
launch_kernel(kernel, policy, output, input);
}
template <class T>
void abs(const Stream& stream, Span<T> output, View<T> input) {
CV_Assert(input.size() == output.size());
if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(input, 4)) {
launch_vectorized_abs<T, 4>(stream, output, input);
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(input, 2)) {
launch_vectorized_abs<T, 2>(stream, output, input);
} else {
launch_vectorized_abs<T, 1>(stream, output, input);
}
}
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
template void abs<__half>(const Stream& stream, Span<__half> output, View<__half> input);
#endif
template void abs<float>(const Stream& stream, Span<float> output, View<float> input);
template <class T, std::size_t N>
void launch_vectorized_tanh(const Stream& stream, Span<T> output, View<T> input) {
CV_Assert(is_fully_aligned<T>(output, N));
CV_Assert(is_fully_aligned<T>(input, N));
auto kernel = raw::tanh_vec<T, N>;
auto policy = make_policy(kernel, output.size() / N, 0, stream);
launch_kernel(kernel, policy, output, input);
}
template <class T>
void tanh(const Stream& stream, Span<T> output, View<T> input) {
CV_Assert(input.size() == output.size());
if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(input, 4)) {
launch_vectorized_tanh<T, 4>(stream, output, input);
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(input, 2)) {
launch_vectorized_tanh<T, 2>(stream, output, input);
} else {
launch_vectorized_tanh<T, 1>(stream, output, input);
}
}
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
template void tanh<__half>(const Stream&, Span<__half>, View<__half>);
#endif
template void tanh<float>(const Stream&, Span<float>, View<float>);
template <class T, std::size_t N>
void launch_vectorized_swish(const Stream& stream, Span<T> output, View<T> input) {
CV_Assert(is_fully_aligned<T>(output, N));
CV_Assert(is_fully_aligned<T>(input, N));
auto kernel = raw::swish_vec<T, N>;
auto policy = make_policy(kernel, output.size() / N, 0, stream);
launch_kernel(kernel, policy, output, input);
}
template <class T>
void swish(const Stream& stream, Span<T> output, View<T> input) {
CV_Assert(input.size() == output.size());
if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(input, 4)) {
launch_vectorized_swish<T, 4>(stream, output, input);
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(input, 2)) {
launch_vectorized_swish<T, 2>(stream, output, input);
} else {
launch_vectorized_swish<T, 1>(stream, output, input);
}
}
namespace raw {
template <class T, class Functor, std::size_t N, class ...FunctorArgs>
__global__ void generic_op_vec(Span<T> output, View<T> input, FunctorArgs ...functorArgs) {
using vector_type = get_vector_type_t<T, N>;
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
template void swish<__half>(const Stream&, Span<__half>, View<__half>);
#endif
template void swish<float>(const Stream&, Span<float>, View<float>);
auto output_vPtr = vector_type::get_pointer(output.data());
auto input_vPtr = vector_type::get_pointer(input.data());
template <class T, std::size_t N>
void launch_vectorized_mish(const Stream& stream, Span<T> output, View<T> input) {
CV_Assert(is_fully_aligned<T>(output, N));
CV_Assert(is_fully_aligned<T>(input, N));
Functor functor(functorArgs...);
auto kernel = raw::mish_vec<T, N>;
auto policy = make_policy(kernel, output.size() / N, 0, stream);
launch_kernel(kernel, policy, output, input);
}
template <class T>
void mish(const Stream& stream, Span<T> output, View<T> input) {
CV_Assert(input.size() == output.size());
if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(input, 4)) {
launch_vectorized_mish<T, 4>(stream, output, input);
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(input, 2)) {
launch_vectorized_mish<T, 2>(stream, output, input);
} else {
launch_vectorized_mish<T, 1>(stream, output, input);
for (auto i : grid_stride_range(output.size() / vector_type::size())) {
vector_type vec;
v_load(vec, input_vPtr[i]);
for (int j = 0; j < vector_type::size(); j++)
vec.data[j] = functor(vec.data[j]);
v_store(output_vPtr[i], vec);
}
}
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
template void mish<__half>(const Stream&, Span<__half>, View<__half>);
#endif
template void mish<float>(const Stream&, Span<float>, View<float>);
template <class T, std::size_t N>
void launch_vectorized_sigmoid(const Stream& stream, Span<T> output, View<T> input) {
CV_Assert(is_fully_aligned<T>(output, N));
CV_Assert(is_fully_aligned<T>(input, N));
__global__ void axiswise_relu_vec(Span<T> output, View<T> input, size_type inner_size, View<T> slope) {
using vector_type = get_vector_type_t<T, N>;
auto kernel = raw::sigmoid_vec<T, N>;
auto policy = make_policy(kernel, output.size() / N, 0, stream);
launch_kernel(kernel, policy, output, input);
}
auto output_vPtr = vector_type::get_pointer(output.data());
auto input_vPtr = vector_type::get_pointer(input.data());
template <class T>
void sigmoid(const Stream& stream, Span<T> output, View<T> input) {
CV_Assert(input.size() == output.size());
inner_size /= vector_type::size();
for (auto i : grid_stride_range(output.size() / vector_type::size())) {
const index_type c = (i / inner_size) % static_cast<size_type>(slope.size());
if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(input, 4)) {
launch_vectorized_sigmoid<T, 4>(stream, output, input);
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(input, 2)) {
launch_vectorized_sigmoid<T, 2>(stream, output, input);
} else {
launch_vectorized_sigmoid<T, 1>(stream, output, input);
vector_type vec;
v_load(vec, input_vPtr[i]);
for (int j = 0; j < vector_type::size(); j++)
vec.data[j] = vec.data[j] > T(0) ? vec.data[j] : vec.data[j] * slope[c];
v_store(output_vPtr[i], vec);
}
}
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
template void sigmoid<__half>(const Stream&, Span<__half>, View<__half>);
#endif
template void sigmoid<float>(const Stream&, Span<float>, View<float>);
} /* namespace raw */
template <class T, std::size_t N>
void launch_vectorized_bnll(const Stream& stream, Span<T> output, View<T> input) {
CV_Assert(is_fully_aligned<T>(output, N));
CV_Assert(is_fully_aligned<T>(input, N));
template <class T, template <class> class Activation, std::size_t N, class ...ActivationArgs> static
void launch_vectorized_generic_op(const Stream& stream, Span<T> output, View<T> input, ActivationArgs ...activationArgs) {
CV_Assert(is_fully_aligned<T>(output, N));
CV_Assert(is_fully_aligned<T>(input, N));
auto kernel = raw::bnll_vec<T, N>;
auto policy = make_policy(kernel, output.size() / N, 0, stream);
launch_kernel(kernel, policy, output, input);
}
auto kernel = raw::generic_op_vec<T, Activation<T>, N, ActivationArgs...>;
auto policy = make_policy(kernel, output.size() / N, 0, stream);
launch_kernel(kernel, policy, output, input, activationArgs...);
}
template <class T>
void bnll(const Stream& stream, Span<T> output, View<T> input) {
CV_Assert(input.size() == output.size());
template <class T, template <class> class Activation, class ...ActivationArgs> static
void generic_op(const Stream& stream, Span<T> output, View<T> input, ActivationArgs ...activationArgs) {
CV_Assert(input.size() == output.size());
if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(input, 4)) {
launch_vectorized_bnll<T, 4>(stream, output, input);
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(input, 2)) {
launch_vectorized_bnll<T, 2>(stream, output, input);
} else {
launch_vectorized_bnll<T, 1>(stream, output, input);
}
if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(input, 4)) {
launch_vectorized_generic_op<T, Activation, 4>(stream, output, input, activationArgs...);
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(input, 2)) {
launch_vectorized_generic_op<T, Activation, 2>(stream, output, input, activationArgs...);
} else {
launch_vectorized_generic_op<T, Activation, 1>(stream, output, input, activationArgs...);
}
}
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
template void bnll<__half>(const Stream&, Span<__half>, View<__half>);
#endif
template void bnll<float>(const Stream&, Span<float>, View<float>);
template <class T, std::size_t N>
void launch_vectorized_elu(const Stream& stream, Span<T> output, View<T> input) {
CV_Assert(is_fully_aligned<T>(output, N));
CV_Assert(is_fully_aligned<T>(input, N));
template <class T>
void abs(const Stream& stream, Span<T> output, View<T> input) {
generic_op<T, abs_functor>(stream, output, input);
}
auto kernel = raw::elu_vec<T, N>;
auto policy = make_policy(kernel, output.size() / N, 0, stream);
launch_kernel(kernel, policy, output, input);
}
template <class T>
void tanh(const Stream& stream, Span<T> output, View<T> input) {
generic_op<T, tanh_functor>(stream, output, input);
}
template <class T>
void elu(const Stream& stream, Span<T> output, View<T> input) {
CV_Assert(input.size() == output.size());
template <class T>
void swish(const Stream& stream, Span<T> output, View<T> input) {
generic_op<T, swish_functor>(stream, output, input);
}
if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(input, 4)) {
launch_vectorized_elu<T, 4>(stream, output, input);
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(input, 2)) {
launch_vectorized_elu<T, 2>(stream, output, input);
} else {
launch_vectorized_elu<T, 1>(stream, output, input);
}
}
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
template void elu<__half>(const Stream&, Span<__half>, View<__half>);
#endif
template void elu<float>(const Stream&, Span<float>, View<float>);
template <class T>
void mish(const Stream& stream, Span<T> output, View<T> input) {
generic_op<T, mish_functor>(stream, output, input);
}
template <class T, std::size_t N>
void launch_vectorized_relu(const Stream& stream, Span<T> output, View<T> input, T slope) {
CV_Assert(is_fully_aligned<T>(output, N));
CV_Assert(is_fully_aligned<T>(input, N));
template <class T>
void sigmoid(const Stream& stream, Span<T> output, View<T> input) {
generic_op<T, sigmoid_functor>(stream, output, input);
}
auto kernel = raw::relu_vec<T, N>;
auto policy = make_policy(kernel, output.size() / N, 0, stream);
launch_kernel(kernel, policy, output, input, slope);
}
template <class T>
void bnll(const Stream& stream, Span<T> output, View<T> input) {
generic_op<T, bnll_functor>(stream, output, input);
}
template <class T>
void relu(const Stream& stream, Span<T> output, View<T> input, T slope) {
CV_Assert(input.size() == output.size());
template <class T>
void elu(const Stream& stream, Span<T> output, View<T> input) {
generic_op<T, elu_functor>(stream, output, input);
}
if(is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(input, 4)) {
launch_vectorized_relu<T, 4>(stream, output, input, slope);
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(input, 2)) {
launch_vectorized_relu<T, 2>(stream, output, input, slope);
} else {
launch_vectorized_relu<T, 1>(stream, output, input, slope);
}
}
template <class T>
void relu(const Stream& stream, Span<T> output, View<T> input, T slope) {
generic_op<T, relu_functor>(stream, output, input, slope);
}
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
template void relu<__half>(const Stream&, Span<__half>, View<__half>, __half);
#endif
template void relu<float>(const Stream&, Span<float>, View<float>, float);
template <class T>
void clipped_relu(const Stream& stream, Span<T> output, View<T> input, T floor, T ceiling) {
CV_Assert(static_cast<double>(floor) <= static_cast<double>(ceiling));
generic_op<T, clipped_relu_functor>(stream, output, input, floor, ceiling);
}
template <class T, std::size_t N>
void launch_vectorized_clipped_relu(const Stream& stream, Span<T> output, View<T> input, T floor, T ceiling) {
CV_Assert(is_fully_aligned<T>(output, N));
CV_Assert(is_fully_aligned<T>(input, N));
template <class T>
void power(const Stream& stream, Span<T> output, View<T> input, T exp, T scale, T shift) {
CV_Assert(input.size() == output.size());
auto kernel = raw::clipped_relu_vec<T, N>;
auto policy = make_policy(kernel, output.size() / N, 0, stream);
launch_kernel(kernel, policy, output, input, floor, ceiling);
if (static_cast<float>(exp) == 1.0f) {
scale1_with_bias1(stream, output, input, scale, shift);
return;
}
template <class T>
void clipped_relu(const Stream& stream, Span<T> output, View<T> input, T floor, T ceiling) {
CV_Assert(input.size() == output.size());
CV_Assert(static_cast<double>(floor) <= static_cast<double>(ceiling));
if(is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(input, 4)) {
launch_vectorized_clipped_relu<T, 4>(stream, output, input, floor, ceiling);
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(input, 2)) {
launch_vectorized_clipped_relu<T, 2>(stream, output, input, floor, ceiling);
} else {
launch_vectorized_clipped_relu<T, 1>(stream, output, input, floor, ceiling);
}
}
generic_op<T, power_functor>(stream, output, input, exp, scale, shift);
}
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
template void clipped_relu<__half>(const Stream&, Span<__half>, View<__half>, __half, __half);
template void abs<__half>(const Stream& stream, Span<__half> output, View<__half> input);
template void tanh<__half>(const Stream&, Span<__half>, View<__half>);
template void swish<__half>(const Stream&, Span<__half>, View<__half>);
template void mish<__half>(const Stream&, Span<__half>, View<__half>);
template void sigmoid<__half>(const Stream&, Span<__half>, View<__half>);
template void bnll<__half>(const Stream&, Span<__half>, View<__half>);
template void elu<__half>(const Stream&, Span<__half>, View<__half>);
template void relu<__half>(const Stream&, Span<__half>, View<__half>, __half);
template void clipped_relu<__half>(const Stream&, Span<__half>, View<__half>, __half, __half);
template void power<__half>(const Stream&, Span<__half>, View<__half>, __half, __half, __half);
#endif
template void clipped_relu<float>(const Stream&, Span<float>, View<float>, float, float);
template <class T, std::size_t N>
void launch_vectorized_axiswise_relu(const Stream& stream, Span<T> output, View<T> input, std::size_t inner_size, View<T> slope) {
CV_Assert(is_fully_aligned<T>(output, N));
CV_Assert(is_fully_aligned<T>(input, N));
CV_Assert(inner_size % N == 0);
auto kernel = raw::axiswise_relu_vec<T, N>;
auto policy = make_policy(kernel, output.size() / N, 0, stream);
launch_kernel(kernel, policy, output, input, inner_size, slope);
}
template <class T>
void axiswise_relu(const Stream& stream, Span<T> output, View<T> input, std::size_t inner_size, View<T> slope) {
CV_Assert(input.size() == output.size());
if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(input, 4) && inner_size % 4 == 0) {
launch_vectorized_axiswise_relu<T, 4>(stream, output, input, inner_size, slope);
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(input, 2) && inner_size % 2 == 0) {
launch_vectorized_axiswise_relu<T, 2>(stream, output, input, inner_size, slope);
} else {
launch_vectorized_axiswise_relu<T, 1>(stream, output, input, inner_size, slope);
}
}
template void abs<float>(const Stream& stream, Span<float> output, View<float> input);
template void tanh<float>(const Stream&, Span<float>, View<float>);
template void swish<float>(const Stream&, Span<float>, View<float>);
template void mish<float>(const Stream&, Span<float>, View<float>);
template void sigmoid<float>(const Stream&, Span<float>, View<float>);
template void bnll<float>(const Stream&, Span<float>, View<float>);
template void elu<float>(const Stream&, Span<float>, View<float>);
template void relu<float>(const Stream&, Span<float>, View<float>, float);
template void clipped_relu<float>(const Stream&, Span<float>, View<float>, float, float);
template void power<float>(const Stream&, Span<float>, View<float>, float, float, float);
template <class T, std::size_t N> static
void launch_vectorized_axiswise_relu(const Stream& stream, Span<T> output, View<T> input, std::size_t inner_size, View<T> slope) {
CV_Assert(is_fully_aligned<T>(output, N));
CV_Assert(is_fully_aligned<T>(input, N));
CV_Assert(inner_size % N == 0);
auto kernel = raw::axiswise_relu_vec<T, N>;
auto policy = make_policy(kernel, output.size() / N, 0, stream);
launch_kernel(kernel, policy, output, input, inner_size, slope);
}
template <class T>
void axiswise_relu(const Stream& stream, Span<T> output, View<T> input, std::size_t inner_size, View<T> slope) {
CV_Assert(input.size() == output.size());
if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(input, 4) && inner_size % 4 == 0) {
launch_vectorized_axiswise_relu<T, 4>(stream, output, input, inner_size, slope);
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(input, 2) && inner_size % 2 == 0) {
launch_vectorized_axiswise_relu<T, 2>(stream, output, input, inner_size, slope);
} else {
launch_vectorized_axiswise_relu<T, 1>(stream, output, input, inner_size, slope);
}
}
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
template void axiswise_relu<__half>(const Stream&, Span<__half>, View<__half>, std::size_t, View<__half>);
#endif
template void axiswise_relu<float>(const Stream&, Span<float>, View<float>, std::size_t, View<float>);
template <class T, std::size_t N>
void launch_vectorized_power(const Stream& stream, Span<T> output, View<T> input, T exp, T scale, T shift) {
CV_Assert(is_fully_aligned<T>(output, N));
CV_Assert(is_fully_aligned<T>(input, N));
auto kernel = raw::power_vec<T, N>;
auto policy = make_policy(kernel, output.size() / N, 0, stream);
launch_kernel(kernel, policy, output, input, exp, scale, shift);
}
template <class T>
void power(const Stream& stream, Span<T> output, View<T> input, T exp, T scale, T shift) {
CV_Assert(input.size() == output.size());
if (static_cast<float>(exp) == 1.0f) {
scale1_with_bias1(stream, output, input, scale, shift);
return;
}
if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(input, 4) && output.size()) {
launch_vectorized_power<T, 4>(stream, output, input, exp, scale, shift);
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(input, 2) && output.size()) {
launch_vectorized_power<T, 2>(stream, output, input, exp, scale, shift);
} else {
launch_vectorized_power<T, 1>(stream, output, input, exp, scale, shift);
}
}
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
template void power<__half>(const Stream&, Span<__half>, View<__half>, __half, __half, __half);
#endif
template void power<float>(const Stream&, Span<float>, View<float>, float, float, float);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */

@ -5,8 +5,8 @@
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include "functors.hpp"
#include "types.hpp"
#include "math.hpp"
#include "vector_traits.hpp"
#include "grid_stride_range.hpp"
#include "execution.hpp"
@ -20,32 +20,13 @@ using namespace cv::dnn::cuda4dnn::csl::device;
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
namespace raw {
template <class T, std::size_t N>
__global__ void biasN_relu_inplace_vec(Span<T> inplace_output, size_type inner_size, View<T> bias, T slope) {
template <class T, class Functor, std::size_t N, class ...FunctorArgs>
__global__ void biasN_generic_op_inplace_vec(Span<T> inplace_output, size_type inner_size, View<T> bias, FunctorArgs ...functorArgs) {
using vector_type = get_vector_type_t<T, N>;
auto inplace_output_vPtr = vector_type::get_pointer(inplace_output.data());
inner_size /= vector_type::size();
for (auto i : grid_stride_range(inplace_output.size() / vector_type::size())) {
const index_type bias_idx = (i / inner_size) % static_cast<size_type>(bias.size());
vector_type vec;
v_load(vec, inplace_output_vPtr[i]);
for(int j = 0; j < vec.size(); j++) {
vec.data[j] += bias[bias_idx];
vec.data[j] = vec.data[j] >= T(0) ? vec.data[j] : slope * vec.data[j];
}
v_store(inplace_output_vPtr[i], vec);
}
}
template <class T, std::size_t N>
__global__ void biasN_clipped_relu_inplace_vec(Span<T> inplace_output, size_type inner_size, View<T> bias, T floor, T ceil) {
using vector_type = get_vector_type_t<T, N>;
auto inplace_output_vPtr = vector_type::get_pointer(inplace_output.data());
Functor functor(functorArgs...);
inner_size /= vector_type::size();
for (auto i : grid_stride_range(inplace_output.size() / vector_type::size())) {
@ -53,298 +34,89 @@ namespace raw {
vector_type vec;
v_load(vec, inplace_output_vPtr[i]);
for(int j = 0; j < vec.size(); j++) {
using device::clamp;
vec.data[j] = clamp(vec.data[j] + bias[bias_idx], floor, ceil);
}
for(int j = 0; j < vec.size(); j++)
vec.data[j] = functor(vec.data[j] + bias[bias_idx]);
v_store(inplace_output_vPtr[i], vec);
}
}
template <class T, std::size_t N>
__global__ void biasN_power_inplace_vec(Span<T> inplace_output, size_type inner_size, View<T> bias, T power) {
using vector_type = get_vector_type_t<T, N>;
auto inplace_output_vPtr = vector_type::get_pointer(inplace_output.data());
inner_size /= vector_type::size();
for (auto i : grid_stride_range(inplace_output.size() / vector_type::size())) {
const index_type bias_idx = (i / inner_size) % static_cast<size_type>(bias.size());
} /* namespace raw */
vector_type vec;
v_load(vec, inplace_output_vPtr[i]);
for(int j = 0; j < vec.size(); j++) {
using device::pow;
vec.data[j] = pow(vec.data[j] + bias[bias_idx], power);
}
v_store(inplace_output_vPtr[i], vec);
}
}
template <class T, std::size_t N>
__global__ void biasN_tanh_inplace_vec(Span<T> inplace_output, size_type inner_size, View<T> bias) {
using vector_type = get_vector_type_t<T, N>;
auto inplace_output_vPtr = vector_type::get_pointer(inplace_output.data());
inner_size /= vector_type::size();
for (auto i : grid_stride_range(inplace_output.size() / vector_type::size())) {
const index_type bias_idx = (i / inner_size) % static_cast<size_type>(bias.size());
vector_type vec;
v_load(vec, inplace_output_vPtr[i]);
for(int j = 0; j < vec.size(); j++) {
using device::tanh;
vec.data[j] = tanh(vec.data[j] + bias[bias_idx]);
}
v_store(inplace_output_vPtr[i], vec);
}
}
template <class T, std::size_t N>
__global__ void biasN_sigmoid_inplace_vec(Span<T> inplace_output, size_type inner_size, View<T> bias) {
using vector_type = get_vector_type_t<T, N>;
auto inplace_output_vPtr = vector_type::get_pointer(inplace_output.data());
inner_size /= vector_type::size();
for (auto i : grid_stride_range(inplace_output.size() / vector_type::size())) {
const index_type bias_idx = (i / inner_size) % static_cast<size_type>(bias.size());
vector_type vec;
v_load(vec, inplace_output_vPtr[i]);
for(int j = 0; j < vec.size(); j++) {
using device::sigmoid;
vec.data[j] = sigmoid(vec.data[j] + bias[bias_idx]);
}
v_store(inplace_output_vPtr[i], vec);
}
}
template <class T, std::size_t N>
__global__ void biasN_swish_inplace_vec(Span<T> inplace_output, size_type inner_size, View<T> bias) {
using vector_type = get_vector_type_t<T, N>;
auto inplace_output_vPtr = vector_type::get_pointer(inplace_output.data());
inner_size /= vector_type::size();
for (auto i : grid_stride_range(inplace_output.size() / vector_type::size())) {
const index_type bias_idx = (i / inner_size) % static_cast<size_type>(bias.size());
vector_type vec;
v_load(vec, inplace_output_vPtr[i]);
for(int j = 0; j < vec.size(); j++) {
using device::sigmoid;
vec.data[j] += bias[bias_idx];
vec.data[j] = vec.data[j] * sigmoid(vec.data[j]);
}
v_store(inplace_output_vPtr[i], vec);
}
}
template <class T, std::size_t N>
__global__ void biasN_mish_inplace_vec(Span<T> inplace_output, size_type inner_size, View<T> bias) {
using vector_type = get_vector_type_t<T, N>;
auto inplace_output_vPtr = vector_type::get_pointer(inplace_output.data());
inner_size /= vector_type::size();
for (auto i : grid_stride_range(inplace_output.size() / vector_type::size())) {
const index_type bias_idx = (i / inner_size) % static_cast<size_type>(bias.size());
vector_type vec;
v_load(vec, inplace_output_vPtr[i]);
for(int j = 0; j < vec.size(); j++) {
using device::tanh;
using device::log1pexp;
vec.data[j] += bias[bias_idx];
vec.data[j] = vec.data[j] * tanh(log1pexp(vec.data[j]));
}
v_store(inplace_output_vPtr[i], vec);
}
}
}
template <class T, std::size_t N> static
void launch_biasN_relu_inplace_vec_kernel(const Stream& stream, Span<T> inplace_output, std::size_t inner_size, View<T> bias, T slope) {
template <class T, template <class> class Activation, std::size_t N, class ...ActivationArgs> static
void launch_vectorized_biasN_generic_op_inplace(const Stream& stream, Span<T> inplace_output, std::size_t inner_size, View<T> bias, ActivationArgs ...activationArgs) {
CV_Assert(inplace_output.size() % inner_size == 0);
CV_Assert(inplace_output.size() % bias.size() == 0);
CV_Assert(is_fully_aligned<T>(inplace_output, N));
CV_Assert(inner_size % N == 0);
auto kernel = raw::biasN_relu_inplace_vec<T, N>;
auto kernel = raw::biasN_generic_op_inplace_vec<T, Activation<T>, N, ActivationArgs...>;
auto policy = make_policy(kernel, inplace_output.size() / N, 0, stream);
launch_kernel(kernel, policy, inplace_output, inner_size, bias, slope);
launch_kernel(kernel, policy, inplace_output, inner_size, bias, activationArgs...);
}
template <class T>
void biasN_relu_inplace(const Stream& stream, Span<T> inplace_output, std::size_t inner_size, View<T> bias, T slope) {
template <class T, template <class> class Activation, class ...ActivationArgs> static
void biasN_generic_op_inplace(const Stream& stream, Span<T> inplace_output, std::size_t inner_size, View<T> bias, ActivationArgs ...activationArgs) {
if (is_fully_aligned<T>(inplace_output, 4) && inner_size % 4 == 0) {
launch_biasN_relu_inplace_vec_kernel<T, 4>(stream, inplace_output, inner_size, bias, slope);
launch_vectorized_biasN_generic_op_inplace<T, Activation, 4>(stream, inplace_output, inner_size, bias, activationArgs...);
} else if (is_fully_aligned<T>(inplace_output, 2) && inner_size % 2 == 0) {
launch_biasN_relu_inplace_vec_kernel<T, 2>(stream, inplace_output, inner_size, bias, slope);
launch_vectorized_biasN_generic_op_inplace<T, Activation, 2>(stream, inplace_output, inner_size, bias, activationArgs...);
} else {
launch_biasN_relu_inplace_vec_kernel<T, 1>(stream, inplace_output, inner_size, bias, slope);
launch_vectorized_biasN_generic_op_inplace<T, Activation, 1>(stream, inplace_output, inner_size, bias, activationArgs...);
}
}
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
template void biasN_relu_inplace<__half>(const Stream&, Span<__half>, std::size_t, View<__half>, __half);
#endif
template void biasN_relu_inplace<float>(const Stream&, Span<float>, std::size_t, View<float>, float);
template <class T, std::size_t N> static
void launch_biasN_clipped_relu_inplace_vec_kernel(const Stream& stream, Span<T> inplace_output, std::size_t inner_size, View<T> bias, T floor, T ceil) {
CV_Assert(is_fully_aligned<T>(inplace_output, N));
CV_Assert(inner_size % N == 0);
auto kernel = raw::biasN_clipped_relu_inplace_vec<T, N>;
auto policy = make_policy(kernel, inplace_output.size() / N, 0, stream);
launch_kernel(kernel, policy, inplace_output, inner_size, bias, floor, ceil);
template <class T>
void biasN_relu_inplace(const Stream& stream, Span<T> inplace_output, std::size_t inner_size, View<T> bias, T slope) {
biasN_generic_op_inplace<T, relu_functor>(stream, inplace_output, inner_size, bias, slope);
}
template <class T>
void biasN_clipped_relu_inplace(const Stream& stream, Span<T> inplace_output, std::size_t inner_size, View<T> bias, T floor, T ceil) {
if (is_fully_aligned<T>(inplace_output, 4) && inner_size % 4 == 0) {
launch_biasN_clipped_relu_inplace_vec_kernel<T, 4>(stream, inplace_output, inner_size, bias, floor, ceil);
} else if (is_fully_aligned<T>(inplace_output, 2) && inner_size % 2 == 0) {
launch_biasN_clipped_relu_inplace_vec_kernel<T, 2>(stream, inplace_output, inner_size, bias, floor, ceil);
} else {
launch_biasN_clipped_relu_inplace_vec_kernel<T, 1>(stream, inplace_output, inner_size, bias, floor, ceil);
}
}
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
template void biasN_clipped_relu_inplace<__half>(const Stream&, Span<__half>, std::size_t, View<__half>, __half, __half);
#endif
template void biasN_clipped_relu_inplace<float>(const Stream&, Span<float>, std::size_t, View<float>, float, float);
template <class T, std::size_t N> static
void launch_biasN_power_inplace_vec_kernel(const Stream& stream, Span<T> inplace_output, std::size_t inner_size, View<T> bias, T power) {
CV_Assert(is_fully_aligned<T>(inplace_output, N));
CV_Assert(inner_size % N == 0);
auto kernel = raw::biasN_power_inplace_vec<T, N>;
auto policy = make_policy(kernel, inplace_output.size() / N, 0, stream);
launch_kernel(kernel, policy, inplace_output, inner_size, bias, power);
CV_Assert(static_cast<double>(floor) <= static_cast<double>(ceil));
biasN_generic_op_inplace<T, clipped_relu_functor>(stream, inplace_output, inner_size, bias, floor, ceil);
}
template <class T>
void biasN_power_inplace(const Stream& stream, Span<T> inplace_output, std::size_t inner_size, View<T> bias, T power) {
if (is_fully_aligned<T>(inplace_output, 4) && inner_size % 4 == 0) {
launch_biasN_power_inplace_vec_kernel<T, 4>(stream, inplace_output, inner_size, bias, power);
} else if (is_fully_aligned<T>(inplace_output, 2) && inner_size % 2 == 0) {
launch_biasN_power_inplace_vec_kernel<T, 2>(stream, inplace_output, inner_size, bias, power);
} else {
launch_biasN_power_inplace_vec_kernel<T, 1>(stream, inplace_output, inner_size, bias, power);
}
}
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
template void biasN_power_inplace<__half>(const Stream&, Span<__half>, std::size_t, View<__half>, __half);
#endif
template void biasN_power_inplace<float>(const Stream&, Span<float>, std::size_t, View<float>, float);
template <class T, std::size_t N> static
void launch_biasN_tanh_inplace_vec_kernel(const Stream& stream, Span<T> inplace_output, std::size_t inner_size, View<T> bias) {
CV_Assert(is_fully_aligned<T>(inplace_output, N));
CV_Assert(inner_size % N == 0);
auto kernel = raw::biasN_tanh_inplace_vec<T, N>;
auto policy = make_policy(kernel, inplace_output.size() / N, 0, stream);
launch_kernel(kernel, policy, inplace_output, inner_size, bias);
void biasN_power_inplace(const Stream& stream, Span<T> inplace_output, std::size_t inner_size, View<T> bias, T power, T scale, T shift) {
biasN_generic_op_inplace<T, power_functor>(stream, inplace_output, inner_size, bias, power, scale, shift);
}
template <class T>
void biasN_tanh_inplace(const Stream& stream, Span<T> inplace_output, std::size_t inner_size, View<T> bias) {
if (is_fully_aligned<T>(inplace_output, 4) && inner_size % 4 == 0) {
launch_biasN_tanh_inplace_vec_kernel<T, 4>(stream, inplace_output, inner_size, bias);
} else if (is_fully_aligned<T>(inplace_output, 2) && inner_size % 2 == 0) {
launch_biasN_tanh_inplace_vec_kernel<T, 2>(stream, inplace_output, inner_size, bias);
} else {
launch_biasN_tanh_inplace_vec_kernel<T, 1>(stream, inplace_output, inner_size, bias);
}
}
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
template void biasN_tanh_inplace<__half>(const Stream&, Span<__half>, std::size_t, View<__half>);
#endif
template void biasN_tanh_inplace<float>(const Stream&, Span<float>, std::size_t, View<float>);
template <class T, std::size_t N> static
void launch_biasN_sigmoid_inplace_vec_kernel(const Stream& stream, Span<T> inplace_output, std::size_t inner_size, View<T> bias) {
CV_Assert(is_fully_aligned<T>(inplace_output, N));
CV_Assert(inner_size % N == 0);
auto kernel = raw::biasN_sigmoid_inplace_vec<T, N>;
auto policy = make_policy(kernel, inplace_output.size() / N, 0, stream);
launch_kernel(kernel, policy, inplace_output, inner_size, bias);
biasN_generic_op_inplace<T, tanh_functor>(stream, inplace_output, inner_size, bias);
}
template <class T>
void biasN_sigmoid_inplace(const Stream& stream, Span<T> inplace_output, std::size_t inner_size, View<T> bias) {
if (is_fully_aligned<T>(inplace_output, 4) && inner_size % 4 == 0) {
launch_biasN_sigmoid_inplace_vec_kernel<T, 4>(stream, inplace_output, inner_size, bias);
} else if (is_fully_aligned<T>(inplace_output, 2) && inner_size % 2 == 0) {
launch_biasN_sigmoid_inplace_vec_kernel<T, 2>(stream, inplace_output, inner_size, bias);
} else {
launch_biasN_sigmoid_inplace_vec_kernel<T, 1>(stream, inplace_output, inner_size, bias);
}
}
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
template void biasN_sigmoid_inplace<__half>(const Stream&, Span<__half>, std::size_t, View<__half>);
#endif
template void biasN_sigmoid_inplace<float>(const Stream&, Span<float>, std::size_t, View<float>);
template <class T, std::size_t N> static
void launch_biasN_swish_inplace_vec_kernel(const Stream& stream, Span<T> inplace_output, std::size_t inner_size, View<T> bias) {
CV_Assert(is_fully_aligned<T>(inplace_output, N));
CV_Assert(inner_size % N == 0);
auto kernel = raw::biasN_swish_inplace_vec<T, N>;
auto policy = make_policy(kernel, inplace_output.size() / N, 0, stream);
launch_kernel(kernel, policy, inplace_output, inner_size, bias);
biasN_generic_op_inplace<T, sigmoid_functor>(stream, inplace_output, inner_size, bias);
}
template <class T>
void biasN_swish_inplace(const Stream& stream, Span<T> inplace_output, std::size_t inner_size, View<T> bias) {
if (is_fully_aligned<T>(inplace_output, 4) && inner_size % 4 == 0) {
launch_biasN_swish_inplace_vec_kernel<T, 4>(stream, inplace_output, inner_size, bias);
} else if (is_fully_aligned<T>(inplace_output, 2) && inner_size % 2 == 0) {
launch_biasN_swish_inplace_vec_kernel<T, 2>(stream, inplace_output, inner_size, bias);
} else {
launch_biasN_swish_inplace_vec_kernel<T, 1>(stream, inplace_output, inner_size, bias);
}
}
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
template void biasN_swish_inplace<__half>(const Stream&, Span<__half>, std::size_t, View<__half>);
#endif
template void biasN_swish_inplace<float>(const Stream&, Span<float>, std::size_t, View<float>);
template <class T, std::size_t N> static
void launch_biasN_mish_inplace_vec_kernel(const Stream& stream, Span<T> inplace_output, std::size_t inner_size, View<T> bias) {
CV_Assert(is_fully_aligned<T>(inplace_output, N));
CV_Assert(inner_size % N == 0);
auto kernel = raw::biasN_mish_inplace_vec<T, N>;
auto policy = make_policy(kernel, inplace_output.size() / N, 0, stream);
launch_kernel(kernel, policy, inplace_output, inner_size, bias);
biasN_generic_op_inplace<T, swish_functor>(stream, inplace_output, inner_size, bias);
}
template <class T>
void biasN_mish_inplace(const Stream& stream, Span<T> inplace_output, std::size_t inner_size, View<T> bias) {
if (is_fully_aligned<T>(inplace_output, 4) && inner_size % 4 == 0) {
launch_biasN_mish_inplace_vec_kernel<T, 4>(stream, inplace_output, inner_size, bias);
} else if (is_fully_aligned<T>(inplace_output, 2) && inner_size % 2 == 0) {
launch_biasN_mish_inplace_vec_kernel<T, 2>(stream, inplace_output, inner_size, bias);
} else {
launch_biasN_mish_inplace_vec_kernel<T, 1>(stream, inplace_output, inner_size, bias);
}
biasN_generic_op_inplace<T, mish_functor>(stream, inplace_output, inner_size, bias);
}
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
template void biasN_relu_inplace<__half>(const Stream&, Span<__half>, std::size_t, View<__half>, __half);
template void biasN_clipped_relu_inplace<__half>(const Stream&, Span<__half>, std::size_t, View<__half>, __half, __half);
template void biasN_power_inplace<__half>(const Stream&, Span<__half>, std::size_t, View<__half>, __half, __half, __half);
template void biasN_tanh_inplace<__half>(const Stream&, Span<__half>, std::size_t, View<__half>);
template void biasN_sigmoid_inplace<__half>(const Stream&, Span<__half>, std::size_t, View<__half>);
template void biasN_swish_inplace<__half>(const Stream&, Span<__half>, std::size_t, View<__half>);
template void biasN_mish_inplace<__half>(const Stream&, Span<__half>, std::size_t, View<__half>);
#endif
template void biasN_relu_inplace<float>(const Stream&, Span<float>, std::size_t, View<float>, float);
template void biasN_clipped_relu_inplace<float>(const Stream&, Span<float>, std::size_t, View<float>, float, float);
template void biasN_power_inplace<float>(const Stream&, Span<float>, std::size_t, View<float>, float, float, float);
template void biasN_tanh_inplace<float>(const Stream&, Span<float>, std::size_t, View<float>);
template void biasN_sigmoid_inplace<float>(const Stream&, Span<float>, std::size_t, View<float>);
template void biasN_swish_inplace<float>(const Stream&, Span<float>, std::size_t, View<float>);
template void biasN_mish_inplace<float>(const Stream&, Span<float>, std::size_t, View<float>);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */

@ -5,7 +5,7 @@
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include "math.hpp"
#include "functors.hpp"
#include "grid_stride_range.hpp"
#include "execution.hpp"
#include "vector_traits.hpp"
@ -20,263 +20,91 @@ using namespace cv::dnn::cuda4dnn::csl::device;
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
namespace raw {
template <class T, std::size_t N>
__global__ void eltwise_max_2_vec(Span<T> output, View<T> x, View<T> y) {
using vector_type = get_vector_type_t<T, N>;
namespace raw {
template <class T, class Functor, std::size_t N, class ...FunctorArgs>
__global__ void eltwise_op_vec(Span<T> output, View<T> x, View<T> y, FunctorArgs ...functorArgs) {
using vector_type = get_vector_type_t<T, N>;
auto output_vPtr = vector_type::get_pointer(output.data());
auto x_vPtr = vector_type::get_pointer(x.data());
auto y_vPtr = vector_type::get_pointer(y.data());
auto output_vPtr = vector_type::get_pointer(output.data());
auto x_vPtr = vector_type::get_pointer(x.data());
auto y_vPtr = vector_type::get_pointer(y.data());
for (auto i : grid_stride_range(output.size() / vector_type::size())) {
vector_type vec_x, vec_y;
v_load(vec_x, x_vPtr[i]);
v_load(vec_y, y_vPtr[i]);
Functor functor(functorArgs...);
for (int j = 0; j < vector_type::size(); j++) {
using device::max;
vec_x.data[j] = max(vec_x.data[j], vec_y.data[j]);
}
v_store(output_vPtr[i], vec_x);
}
}
template <class T, std::size_t N>
__global__ void eltwise_sum_2_vec(Span<T> output, View<T> x, View<T> y) {
using vector_type = get_vector_type_t<T, N>;
auto output_vPtr = vector_type::get_pointer(output.data());
auto x_vPtr = vector_type::get_pointer(x.data());
auto y_vPtr = vector_type::get_pointer(y.data());
for (auto i : grid_stride_range(output.size() / vector_type::size())) {
vector_type vec_x, vec_y;
v_load(vec_x, x_vPtr[i]);
v_load(vec_y, y_vPtr[i]);
for (int j = 0; j < vector_type::size(); j++)
vec_x.data[j] = vec_x.data[j] + vec_y.data[j];
v_store(output_vPtr[i], vec_x);
}
}
template <class T, std::size_t N>
__global__ void eltwise_sum_coeff_2_vec(Span<T> output, T coeff_x, View<T> x, T coeff_y, View<T> y) {
using vector_type = get_vector_type_t<T, N>;
auto output_vPtr = vector_type::get_pointer(output.data());
auto x_vPtr = vector_type::get_pointer(x.data());
auto y_vPtr = vector_type::get_pointer(y.data());
for (auto i : grid_stride_range(output.size() / vector_type::size())) {
vector_type vec_x, vec_y;
v_load(vec_x, x_vPtr[i]);
v_load(vec_y, y_vPtr[i]);
for (int j = 0; j < vector_type::size(); j++)
vec_x.data[j] = coeff_x * vec_x.data[j] + coeff_y * vec_y.data[j];
v_store(output_vPtr[i], vec_x);
}
}
template <class T, std::size_t N>
__global__ void eltwise_prod_2_vec(Span<T> output, View<T> x, View<T> y) {
using vector_type = get_vector_type_t<T, N>;
auto output_vPtr = vector_type::get_pointer(output.data());
auto x_vPtr = vector_type::get_pointer(x.data());
auto y_vPtr = vector_type::get_pointer(y.data());
for (auto i : grid_stride_range(output.size() / vector_type::size())) {
vector_type vec_x, vec_y;
v_load(vec_x, x_vPtr[i]);
v_load(vec_y, y_vPtr[i]);
for (int j = 0; j < vector_type::size(); j++)
vec_x.data[j] = vec_x.data[j] * vec_y.data[j];
v_store(output_vPtr[i], vec_x);
}
}
template <class T, std::size_t N>
__global__ void eltwise_div_2_vec(Span<T> output, View<T> x, View<T> y) {
using vector_type = get_vector_type_t<T, N>;
auto output_vPtr = vector_type::get_pointer(output.data());
auto x_vPtr = vector_type::get_pointer(x.data());
auto y_vPtr = vector_type::get_pointer(y.data());
for (auto i : grid_stride_range(output.size() / vector_type::size())) {
vector_type vec_x, vec_y;
v_load(vec_x, x_vPtr[i]);
v_load(vec_y, y_vPtr[i]);
for (int j = 0; j < vector_type::size(); j++)
vec_x.data[j] = vec_x.data[j] / vec_y.data[j];
v_store(output_vPtr[i], vec_x);
}
}
}
template <class T, std::size_t N>
void launch_vectorized_eltwise_max_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
CV_Assert(is_fully_aligned<T>(output, N));
CV_Assert(is_fully_aligned<T>(x, N));
CV_Assert(is_fully_aligned<T>(y, N));
auto kernel = raw::eltwise_max_2_vec<T, N>;
auto policy = make_policy(kernel, output.size() / N, 0, stream);
launch_kernel(kernel, policy, output, x, y);
}
template <class T>
void eltwise_max_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
CV_Assert(x.size() == y.size());
CV_Assert(x.size() == output.size());
if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(x, 4) && is_fully_aligned<T>(y, 4)) {
launch_vectorized_eltwise_max_2<T, 4>(stream, output, x, y);
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(x, 2) && is_fully_aligned<T>(y, 2)) {
launch_vectorized_eltwise_max_2<T, 2>(stream, output, x, y);
} else {
launch_vectorized_eltwise_max_2<T, 1>(stream, output, x, y);
}
}
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
template void eltwise_max_2(const Stream& stream, Span<__half> output, View<__half> x, View<__half> y);
#endif
template void eltwise_max_2(const Stream& stream, Span<float> output, View<float> x, View<float> y);
template <class T, std::size_t N>
void launch_vectorized_eltwise_sum_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
CV_Assert(is_fully_aligned<T>(output, N));
CV_Assert(is_fully_aligned<T>(x, N));
CV_Assert(is_fully_aligned<T>(y, N));
auto kernel = raw::eltwise_sum_2_vec<T, N>;
auto policy = make_policy(kernel, output.size() / N, 0, stream);
launch_kernel(kernel, policy, output, x, y);
}
template <class T>
void eltwise_sum_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
CV_Assert(x.size() == y.size());
CV_Assert(x.size() == output.size());
if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(x, 4) && is_fully_aligned<T>(y, 4)) {
launch_vectorized_eltwise_sum_2<T, 4>(stream, output, x, y);
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(x, 2) && is_fully_aligned<T>(y, 2)) {
launch_vectorized_eltwise_sum_2<T, 2>(stream, output, x, y);
} else {
launch_vectorized_eltwise_sum_2<T, 1>(stream, output, x, y);
for (auto i : grid_stride_range(output.size() / vector_type::size())) {
vector_type vec_x, vec_y;
v_load(vec_x, x_vPtr[i]);
v_load(vec_y, y_vPtr[i]);
for (int j = 0; j < vector_type::size(); j++)
vec_x.data[j] = functor(vec_x.data[j], vec_y.data[j]);
v_store(output_vPtr[i], vec_x);
}
}
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
template void eltwise_sum_2(const Stream& stream, Span<__half> output, View<__half> x, View<__half> y);
#endif
template void eltwise_sum_2(const Stream& stream, Span<float> output, View<float> x, View<float> y);
template <class T, std::size_t N>
void launch_vectorized_eltwise_sum_coeff_2(const Stream& stream, Span<T> output, T coeff_x, View<T> x, T coeff_y, View<T> y) {
CV_Assert(is_fully_aligned<T>(output, N));
CV_Assert(is_fully_aligned<T>(x, N));
CV_Assert(is_fully_aligned<T>(y, N));
auto kernel = raw::eltwise_sum_coeff_2_vec<T, N>;
auto policy = make_policy(kernel, output.size() / N, 0, stream);
launch_kernel(kernel, policy, output, coeff_x, x, coeff_y, y);
}
template <class T>
void eltwise_sum_coeff_2(const Stream& stream, Span<T> output, T coeff_x, View<T> x, T coeff_y, View<T> y) {
CV_Assert(x.size() == y.size());
CV_Assert(x.size() == output.size());
if (static_cast<float>(coeff_x) == 1.0f && static_cast<float>(coeff_y) == 1.0f) {
eltwise_sum_2(stream, output, x, y);
return;
}
if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(x, 4) && is_fully_aligned<T>(y, 4)) {
launch_vectorized_eltwise_sum_coeff_2<T, 4>(stream, output, coeff_x, x, coeff_y, y);
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(x, 2) && is_fully_aligned<T>(y, 2)) {
launch_vectorized_eltwise_sum_coeff_2<T, 2>(stream, output, coeff_x, x, coeff_y, y);
} else {
launch_vectorized_eltwise_sum_coeff_2<T, 1>(stream, output, coeff_x, x, coeff_y, y);
}
}
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
template void eltwise_sum_coeff_2(const Stream&, Span<__half>, __half, View<__half>, __half, View<__half>);
#endif
template void eltwise_sum_coeff_2(const Stream&, Span<float>, float, View<float>, float, View<float>);
template <class T, std::size_t N>
void launch_vectorized_eltwise_prod_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
CV_Assert(is_fully_aligned<T>(output, N));
CV_Assert(is_fully_aligned<T>(x, N));
CV_Assert(is_fully_aligned<T>(y, N));
auto kernel = raw::eltwise_prod_2_vec<T, N>;
auto policy = make_policy(kernel, output.size() / N, 0, stream);
launch_kernel(kernel, policy, output, x, y);
}
template <class T>
void eltwise_prod_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
CV_Assert(x.size() == y.size());
CV_Assert(x.size() == output.size());
if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(x, 4) && is_fully_aligned<T>(y, 4)) {
launch_vectorized_eltwise_prod_2<T, 4>(stream, output, x, y);
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(x, 2) && is_fully_aligned<T>(y, 2)) {
launch_vectorized_eltwise_prod_2<T, 2>(stream, output, x, y);
} else {
launch_vectorized_eltwise_prod_2<T, 1>(stream, output, x, y);
}
}
template <class T, template <class> class EltwiseOp, std::size_t N, class ...EltwiseOpArgs> static
void launch_vectorized_eltwise_op(const Stream& stream, Span<T> output, View<T> x, View<T> y, EltwiseOpArgs ...eltwiseOpArgs) {
CV_Assert(x.size() == y.size());
CV_Assert(x.size() == output.size());
CV_Assert(is_fully_aligned<T>(output, N));
CV_Assert(is_fully_aligned<T>(x, N));
CV_Assert(is_fully_aligned<T>(y, N));
auto kernel = raw::eltwise_op_vec<T, EltwiseOp<T>, N, EltwiseOpArgs...>;
auto policy = make_policy(kernel, output.size() / N, 0, stream);
launch_kernel(kernel, policy, output, x, y, eltwiseOpArgs...);
}
template <class T, template <class> class EltwiseOp, class ...EltwiseOpArgs> static
void eltwise_op(const Stream& stream, Span<T> output, View<T> x, View<T> y, EltwiseOpArgs ...eltwiseOpArgs) {
CV_Assert(x.size() == y.size());
CV_Assert(x.size() == output.size());
if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(x, 4) && is_fully_aligned<T>(y, 4)) {
launch_vectorized_eltwise_op<T, EltwiseOp, 4>(stream, output, x, y, eltwiseOpArgs...);
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(x, 2) && is_fully_aligned<T>(y, 2)) {
launch_vectorized_eltwise_op<T, EltwiseOp, 2>(stream, output, x, y, eltwiseOpArgs...);
} else {
launch_vectorized_eltwise_op<T, EltwiseOp, 1>(stream, output, x, y, eltwiseOpArgs...);
}
}
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
template void eltwise_prod_2(const Stream& stream, Span<__half> output, View<__half> x, View<__half> y);
#endif
template void eltwise_prod_2(const Stream& stream, Span<float> output, View<float> x, View<float> y);
template <class T>
void eltwise_max_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
eltwise_op<T, max_functor>(stream, output, x, y);
}
template <class T, std::size_t N>
void launch_vectorized_eltwise_div_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
CV_Assert(is_fully_aligned<T>(output, N));
CV_Assert(is_fully_aligned<T>(x, N));
CV_Assert(is_fully_aligned<T>(y, N));
template <class T>
void eltwise_sum_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
eltwise_op<T, sum_functor>(stream, output, x, y);
}
auto kernel = raw::eltwise_div_2_vec<T, N>;
auto policy = make_policy(kernel, output.size() / N, 0, stream);
launch_kernel(kernel, policy, output, x, y);
}
template <class T>
void eltwise_sum_coeff_2(const Stream& stream, Span<T> output, T coeff_x, View<T> x, T coeff_y, View<T> y) {
eltwise_op<T, scaled_sum_functor>(stream, output, x, y, coeff_x, coeff_y);
}
template <class T>
void eltwise_div_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
CV_Assert(x.size() == y.size());
CV_Assert(x.size() == output.size());
template <class T>
void eltwise_prod_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
eltwise_op<T, product_functor>(stream, output, x, y);
}
if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(x, 4) && is_fully_aligned<T>(y, 4)) {
launch_vectorized_eltwise_div_2<T, 4>(stream, output, x, y);
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(x, 2) && is_fully_aligned<T>(y, 2)) {
launch_vectorized_eltwise_div_2<T, 2>(stream, output, x, y);
} else {
launch_vectorized_eltwise_div_2<T, 1>(stream, output, x, y);
}
}
template <class T>
void eltwise_div_2(const Stream& stream, Span<T> output, View<T> x, View<T> y) {
eltwise_op<T, div_functor>(stream, output, x, y);
}
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
template void eltwise_div_2(const Stream& stream, Span<__half> output, View<__half> x, View<__half> y);
template void eltwise_prod_2(const Stream& stream, Span<__half> output, View<__half> x, View<__half> y);
template void eltwise_sum_coeff_2(const Stream&, Span<__half>, __half, View<__half>, __half, View<__half>);
template void eltwise_sum_2(const Stream& stream, Span<__half> output, View<__half> x, View<__half> y);
template void eltwise_max_2(const Stream& stream, Span<__half> output, View<__half> x, View<__half> y);
#endif
template void eltwise_div_2(const Stream& stream, Span<float> output, View<float> x, View<float> y);
template void eltwise_prod_2(const Stream& stream, Span<float> output, View<float> x, View<float> y);
template void eltwise_sum_coeff_2(const Stream&, Span<float>, float, View<float>, float, View<float>);
template void eltwise_sum_2(const Stream& stream, Span<float> output, View<float> x, View<float> y);
template void eltwise_max_2(const Stream& stream, Span<float> output, View<float> x, View<float> y);
}}}} /* namespace cv::dnn::cuda4dnn::kernels */

@ -63,17 +63,17 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace csl {
template <class Kernel, typename ...Args> inline
void launch_kernel(Kernel kernel, Args ...args) {
auto policy = make_policy(kernel);
kernel <<<policy.grid, policy.block>>> (std::forward<Args>(args)...);
kernel <<<policy.grid, policy.block>>> (args...);
}
template <class Kernel, typename ...Args> inline
void launch_kernel(Kernel kernel, dim3 grid, dim3 block, Args ...args) {
kernel <<<grid, block>>> (std::forward<Args>(args)...);
kernel <<<grid, block>>> (args...);
}
template <class Kernel, typename ...Args> inline
void launch_kernel(Kernel kernel, execution_policy policy, Args ...args) {
kernel <<<policy.grid, policy.block, policy.sharedMem, policy.stream>>> (std::forward<Args>(args)...);
kernel <<<policy.grid, policy.block, policy.sharedMem, policy.stream>>> (args...);
}
}}}} /* namespace cv::dnn::cuda4dnn::csl */

@ -0,0 +1,139 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef OPENCV_DNN_SRC_CUDA_FUNCTORS_HPP
#define OPENCV_DNN_SRC_CUDA_FUNCTORS_HPP
#include <cuda_runtime.h>
#include "math.hpp"
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
template <class T>
struct abs_functor {
__device__ T operator()(T value) {
using csl::device::abs;
return abs(value);
}
};
template <class T>
struct tanh_functor {
__device__ T operator()(T value) {
using csl::device::tanh;
return tanh(value);
}
};
template <class T>
struct swish_functor {
__device__ T operator()(T value) {
using csl::device::sigmoid;
return value * sigmoid(value);
}
};
template <class T>
struct mish_functor {
__device__ T operator()(T value) {
using csl::device::tanh;
using csl::device::log1pexp;
return value * tanh(log1pexp(value));
}
};
template <class T>
struct sigmoid_functor {
__device__ T operator()(T value) {
using csl::device::sigmoid;
return sigmoid(value);
}
};
template <class T>
struct bnll_functor {
__device__ T operator()(T value) {
using csl::device::log1pexp;
return value > T(0) ? value + log1pexp(-value) : log1pexp(value);
}
};
template <class T>
struct elu_functor {
__device__ T operator()(T value) {
using csl::device::expm1;
return value >= T(0) ? value : expm1(value);
}
};
template <class T>
struct relu_functor {
__device__ relu_functor(T slope_) : slope{slope_} { }
__device__ T operator()(T value) {
using csl::device::log1pexp;
return value >= T(0) ? value : slope * value;
}
T slope;
};
template <class T>
struct clipped_relu_functor {
__device__ clipped_relu_functor(T floor_, T ceiling_) : floor{floor_}, ceiling{ceiling_} { }
__device__ T operator()(T value) {
using csl::device::clamp;
return clamp(value, floor, ceiling);
}
T floor, ceiling;
};
template <class T>
struct power_functor {
__device__ power_functor(T exp_, T scale_, T shift_) : exp{exp_}, scale{scale_}, shift{shift_} { }
__device__ T operator()(T value) {
using csl::device::pow;
return pow(shift + scale * value, exp);
}
T exp, scale, shift;
};
template <class T>
struct max_functor {
__device__ T operator()(T x, T y) {
using csl::device::max;
return max(x, y);
}
};
template <class T>
struct sum_functor {
__device__ T operator()(T x, T y) { return x + y; }
};
template <class T>
struct scaled_sum_functor {
__device__ scaled_sum_functor(T scale_x_, T scale_y_)
: scale_x{scale_x_}, scale_y{scale_y_} { }
__device__ T operator()(T x, T y) { return scale_x * x + scale_y * y; }
T scale_x, scale_y;
};
template <class T>
struct product_functor {
__device__ T operator()(T x, T y) { return x * y; }
};
template <class T>
struct div_functor {
__device__ T operator()(T x, T y) { return x / y; }
};
}}}} /* namespace cv::dnn::cuda4dnn::kernels */
#endif /* OPENCV_DNN_SRC_CUDA_FUNCTORS_HPP */

@ -24,22 +24,6 @@ using namespace cv::dnn::cuda4dnn::csl::device;
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
namespace raw {
template <class T, std::size_t N>
__global__ void bias1_vec(Span<T> output, View<T> input, T beta) {
using vector_type = get_vector_type_t<T, N>;
auto output_vPtr = vector_type::get_pointer(output.data());
auto input_vPtr = vector_type::get_pointer(input.data());
for (auto i : grid_stride_range(output.size() / vector_type::size())) {
vector_type vec;
v_load(vec, input_vPtr[i]);
for (int j = 0; j < vec.size(); j++)
vec.data[j] = vec.data[j] + beta;
v_store(output_vPtr[i], vec);
}
}
template <class T, std::size_t N>
__global__ void biasN_vec(Span<T> output, View<T> input, size_type inner_size, View<T> bias) {
using vector_type = get_vector_type_t<T, N>;
@ -59,22 +43,6 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
}
}
template <class T, std::size_t N>
__global__ void scale1_vec(Span<T> output, View<T> input, T alpha) {
using vector_type = get_vector_type_t<T, N>;
auto output_vPtr = vector_type::get_pointer(output.data());
auto input_vPtr = vector_type::get_pointer(input.data());
for (auto i : grid_stride_range(output.size() / vector_type::size())) {
vector_type vec;
v_load(vec, input_vPtr[i]);
for (int j = 0; j < vec.size(); j++)
vec.data[j] = vec.data[j] * alpha;
v_store(output_vPtr[i], vec);
}
}
template <class T, std::size_t N>
__global__ void scaleN_vec(Span<T> output, View<T> input, size_type inner_size, View<T> weights)
{
@ -133,34 +101,6 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
}
}
template <class T, std::size_t N> static
void launch_bias1_vec_kernel(const Stream& stream, Span<T> output, View<T> input, T beta) {
CV_Assert(is_fully_aligned<T>(output, N));
CV_Assert(is_fully_aligned<T>(input, N));
auto kernel = raw::bias1_vec<T, N>;
auto policy = make_policy(kernel, output.size() / N, 0, stream);
launch_kernel(kernel, policy, output, input, beta);
}
template <class T>
void bias1(const Stream& stream, TensorSpan<T> output, TensorView<T> input, T beta) {
CV_Assert(is_shape_same(input, output));
if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(input, 4)) {
launch_bias1_vec_kernel<T, 4>(stream, output, input, beta);
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(input, 2)) {
launch_bias1_vec_kernel<T, 2>(stream, output, input, beta);
} else {
launch_bias1_vec_kernel<T, 1>(stream, output, input, beta);
}
}
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
template void bias1<__half>(const Stream&, TensorSpan<__half>, TensorView<__half>, __half);
#endif
template void bias1<float>(const Stream&, TensorSpan<float>, TensorView<float>, float);
template <class T, std::size_t N> static
void launch_biasN_vec_kernel(const Stream& stream, Span<T> output, View<T> input, std::size_t inner_size, View<T> bias){
CV_Assert(is_fully_aligned<T>(output, N));
@ -195,34 +135,6 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
#endif
template void biasN<float>(const Stream&, TensorSpan<float>, TensorView<float>, std::size_t, TensorView<float>);
template <class T, std::size_t N> static
void launch_scale1_vec_kernel(const Stream& stream, Span<T> output, View<T> input, T alpha) {
CV_Assert(is_fully_aligned<T>(output, N));
CV_Assert(is_fully_aligned<T>(input, N));
auto kernel = raw::scale1_vec<T, N>;
auto policy = make_policy(kernel, output.size() / N, 0, stream);
launch_kernel(kernel, policy, output, input, alpha);
}
template <class T>
void scale1(const Stream& stream, TensorSpan<T> output, TensorView<T> input, T alpha) {
CV_Assert(is_shape_same(input, output));
if (is_fully_aligned<T>(output, 4) && is_fully_aligned<T>(input, 4)) {
launch_scale1_vec_kernel<T, 4>(stream, output, input, alpha);
} else if (is_fully_aligned<T>(output, 2) && is_fully_aligned<T>(input, 2)) {
launch_scale1_vec_kernel<T, 2>(stream, output, input, alpha);
} else {
launch_scale1_vec_kernel<T, 1>(stream, output, input, alpha);
}
}
#if !defined(__CUDA_ARCH__) || (__CUDA_ARCH__ >= 530)
template void scale1<__half>(const Stream&, TensorSpan<__half>, TensorView<__half>, __half);
#endif
template void scale1<float>(const Stream&, TensorSpan<float>, TensorView<float>, float);
template <class T, std::size_t N> static
void launch_scaleN_vec_kernel(const Stream& stream, Span<T> output, View<T> input, std::size_t inner_size, View<T> weights) {
CV_Assert(is_fully_aligned<T>(output, N));

@ -19,7 +19,7 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
void biasN_clipped_relu_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, std::size_t inner_size, csl::View<T> bias, T floor, T ceiling);
template <class T>
void biasN_power_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, std::size_t inner_size, csl::View<T> bias, T exp);
void biasN_power_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, std::size_t inner_size, csl::View<T> bias, T exp, T scale, T shift);
template <class T>
void biasN_tanh_inplace(const csl::Stream& stream, csl::Span<T> inplace_output, std::size_t inner_size, csl::View<T> bias);

@ -12,18 +12,12 @@
namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
template <class T>
void bias1(const csl::Stream& stream, csl::TensorSpan<T> output, csl::TensorView<T> input, T alpha);
template <class T>
void biasN(const csl::Stream& stream,
csl::TensorSpan<T> output,
csl::TensorView<T> input, std::size_t inner_size,
csl::TensorView<T> bias);
template <class T>
void scale1(const csl::Stream& stream, csl::TensorSpan<T> output, csl::TensorView<T> input, T alpha);
template <class T>
void scaleN(const csl::Stream& stream,
csl::TensorSpan<T> output,

@ -286,7 +286,7 @@ namespace cv { namespace dnn { namespace cuda4dnn {
kernels::biasN_clipped_relu_inplace<T>(stream, output, inner_size, biasTensor, crelu_floor, crelu_ceil);
break;
case ConvolutionConfiguration::ActivationType::POWER:
kernels::biasN_power_inplace<T>(stream, output, inner_size, biasTensor, power_exp);
kernels::biasN_power_inplace<T>(stream, output, inner_size, biasTensor, power_exp, T(1.0), T(0.0));
break;
case ConvolutionConfiguration::ActivationType::TANH:
kernels::biasN_tanh_inplace<T>(stream, output, inner_size, biasTensor);

@ -113,7 +113,7 @@ namespace cv { namespace dnn { namespace cuda4dnn {
*/
if (weight != 1.0)
{
kernels::scale1<T>(stream, output, input, weight);
kernels::scale1_with_bias1<T>(stream, output, input, weight, 1.0);
}
else if (!weightsTensor.empty())
{

Loading…
Cancel
Save