|
|
|
@ -66,7 +66,7 @@ PCA& PCA::operator()(InputArray _data, InputArray __mean, int flags, int maxComp |
|
|
|
|
{ |
|
|
|
|
Mat data = _data.getMat(), _mean = __mean.getMat(); |
|
|
|
|
int covar_flags = CV_COVAR_SCALE; |
|
|
|
|
int i, len, in_count; |
|
|
|
|
int len, in_count; |
|
|
|
|
Size mean_sz; |
|
|
|
|
|
|
|
|
|
CV_Assert( data.channels() == 1 ); |
|
|
|
@ -131,6 +131,7 @@ PCA& PCA::operator()(InputArray _data, InputArray __mean, int flags, int maxComp |
|
|
|
|
eigenvectors = evects1; |
|
|
|
|
|
|
|
|
|
// normalize eigenvectors
|
|
|
|
|
int i; |
|
|
|
|
for( i = 0; i < out_count; i++ ) |
|
|
|
|
{ |
|
|
|
|
Mat vec = eigenvectors.row(i); |
|
|
|
@ -202,7 +203,7 @@ PCA& PCA::operator()(InputArray _data, InputArray __mean, int flags, double reta |
|
|
|
|
{ |
|
|
|
|
Mat data = _data.getMat(), _mean = __mean.getMat(); |
|
|
|
|
int covar_flags = CV_COVAR_SCALE; |
|
|
|
|
int i, len, in_count; |
|
|
|
|
int len, in_count; |
|
|
|
|
Size mean_sz; |
|
|
|
|
|
|
|
|
|
CV_Assert( data.channels() == 1 ); |
|
|
|
@ -266,6 +267,7 @@ PCA& PCA::operator()(InputArray _data, InputArray __mean, int flags, double reta |
|
|
|
|
eigenvectors = evects1; |
|
|
|
|
|
|
|
|
|
// normalize all eigenvectors
|
|
|
|
|
int i; |
|
|
|
|
for( i = 0; i < eigenvectors.rows; i++ ) |
|
|
|
|
{ |
|
|
|
|
Mat vec = eigenvectors.row(i); |
|
|
|
|