remove constant memory use in compute_data_cost

pull/2983/head
Aaron Denney 11 years ago
parent 52516085d9
commit 85601e03dd
  1. 43
      modules/cudastereo/src/cuda/stereocsbp.cu

@ -362,7 +362,7 @@ namespace cv { namespace cuda { namespace device
/////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////
template <typename T, int channels> template <typename T, int channels>
__global__ void compute_data_cost(const uchar *cleft, const uchar *cright, size_t cimg_step, const T* selected_disp_pyr, T* data_cost_, int h, int w, int level, int nr_plane, float data_weight, float max_data_term, int min_disp) __global__ void compute_data_cost(const uchar *cleft, const uchar *cright, size_t cimg_step, const T* selected_disp_pyr, T* data_cost_, int h, int w, int level, int nr_plane, float data_weight, float max_data_term, int min_disp, size_t msg_step, size_t disp_step1, size_t disp_step2)
{ {
int x = blockIdx.x * blockDim.x + threadIdx.x; int x = blockIdx.x * blockDim.x + threadIdx.x;
int y = blockIdx.y * blockDim.y + threadIdx.y; int y = blockIdx.y * blockDim.y + threadIdx.y;
@ -375,8 +375,8 @@ namespace cv { namespace cuda { namespace device
int x0 = x << level; int x0 = x << level;
int xt = (x + 1) << level; int xt = (x + 1) << level;
const T* selected_disparity = selected_disp_pyr + y/2 * cmsg_step + x/2; const T* selected_disparity = selected_disp_pyr + y/2 * msg_step + x/2;
T* data_cost = data_cost_ + y * cmsg_step + x; T* data_cost = data_cost_ + y * msg_step + x;
for(int d = 0; d < nr_plane; d++) for(int d = 0; d < nr_plane; d++)
{ {
@ -385,7 +385,7 @@ namespace cv { namespace cuda { namespace device
{ {
for(int xi = x0; xi < xt; xi++) for(int xi = x0; xi < xt; xi++)
{ {
int sel_disp = selected_disparity[d * cdisp_step2]; int sel_disp = selected_disparity[d * disp_step2];
int xr = xi - sel_disp; int xr = xi - sel_disp;
if (xr < 0 || sel_disp < min_disp) if (xr < 0 || sel_disp < min_disp)
@ -399,13 +399,13 @@ namespace cv { namespace cuda { namespace device
} }
} }
} }
data_cost[cdisp_step1 * d] = saturate_cast<T>(val); data_cost[disp_step1 * d] = saturate_cast<T>(val);
} }
} }
} }
template <typename T, int winsz, int channels> template <typename T, int winsz, int channels>
__global__ void compute_data_cost_reduce(const uchar *cleft, const uchar *cright, size_t cimg_step, const T* selected_disp_pyr, T* data_cost_, int level, int rows, int cols, int h, int nr_plane, float data_weight, float max_data_term, int min_disp) __global__ void compute_data_cost_reduce(const uchar *cleft, const uchar *cright, size_t cimg_step, const T* selected_disp_pyr, T* data_cost_, int level, int rows, int cols, int h, int nr_plane, float data_weight, float max_data_term, int min_disp, size_t msg_step, size_t disp_step1, size_t disp_step2)
{ {
int x_out = blockIdx.x; int x_out = blockIdx.x;
int y_out = blockIdx.y % h; int y_out = blockIdx.y % h;
@ -413,12 +413,12 @@ namespace cv { namespace cuda { namespace device
int tid = threadIdx.x; int tid = threadIdx.x;
const T* selected_disparity = selected_disp_pyr + y_out/2 * cmsg_step + x_out/2; const T* selected_disparity = selected_disp_pyr + y_out/2 * msg_step + x_out/2;
T* data_cost = data_cost_ + y_out * cmsg_step + x_out; T* data_cost = data_cost_ + y_out * msg_step + x_out;
if (d < nr_plane) if (d < nr_plane)
{ {
int sel_disp = selected_disparity[d * cdisp_step2]; int sel_disp = selected_disparity[d * disp_step2];
int x0 = x_out << level; int x0 = x_out << level;
int y0 = y_out << level; int y0 = y_out << level;
@ -450,13 +450,13 @@ namespace cv { namespace cuda { namespace device
reduce<winsz>(smem + winsz * threadIdx.z, val, tid, plus<float>()); reduce<winsz>(smem + winsz * threadIdx.z, val, tid, plus<float>());
if (tid == 0) if (tid == 0)
data_cost[cdisp_step1 * d] = saturate_cast<T>(val); data_cost[disp_step1 * d] = saturate_cast<T>(val);
} }
} }
template <typename T> template <typename T>
void compute_data_cost_caller_(const uchar *cleft, const uchar *cright, size_t cimg_step, const T* disp_selected_pyr, T* data_cost, int /*rows*/, int /*cols*/, void compute_data_cost_caller_(const uchar *cleft, const uchar *cright, size_t cimg_step, const T* disp_selected_pyr, T* data_cost, int /*rows*/, int /*cols*/,
int h, int w, int level, int nr_plane, int channels, float data_weight, float max_data_term, int min_disp, cudaStream_t stream) int h, int w, int level, int nr_plane, int channels, float data_weight, float max_data_term, int min_disp, size_t msg_step, size_t disp_step1, size_t disp_step2, cudaStream_t stream)
{ {
dim3 threads(32, 8, 1); dim3 threads(32, 8, 1);
dim3 grid(1, 1, 1); dim3 grid(1, 1, 1);
@ -466,16 +466,16 @@ namespace cv { namespace cuda { namespace device
switch(channels) switch(channels)
{ {
case 1: compute_data_cost<T, 1><<<grid, threads, 0, stream>>>(cleft, cright, cimg_step, disp_selected_pyr, data_cost, h, w, level, nr_plane, data_weight, max_data_term, min_disp); break; case 1: compute_data_cost<T, 1><<<grid, threads, 0, stream>>>(cleft, cright, cimg_step, disp_selected_pyr, data_cost, h, w, level, nr_plane, data_weight, max_data_term, min_disp, msg_step, disp_step1, disp_step2); break;
case 3: compute_data_cost<T, 3><<<grid, threads, 0, stream>>>(cleft, cright, cimg_step, disp_selected_pyr, data_cost, h, w, level, nr_plane, data_weight, max_data_term, min_disp); break; case 3: compute_data_cost<T, 3><<<grid, threads, 0, stream>>>(cleft, cright, cimg_step, disp_selected_pyr, data_cost, h, w, level, nr_plane, data_weight, max_data_term, min_disp, msg_step, disp_step1, disp_step2); break;
case 4: compute_data_cost<T, 4><<<grid, threads, 0, stream>>>(cleft, cright, cimg_step, disp_selected_pyr, data_cost, h, w, level, nr_plane, data_weight, max_data_term, min_disp); break; case 4: compute_data_cost<T, 4><<<grid, threads, 0, stream>>>(cleft, cright, cimg_step, disp_selected_pyr, data_cost, h, w, level, nr_plane, data_weight, max_data_term, min_disp, msg_step, disp_step1, disp_step2); break;
default: CV_Error(cv::Error::BadNumChannels, "Unsupported channels count"); default: CV_Error(cv::Error::BadNumChannels, "Unsupported channels count");
} }
} }
template <typename T, int winsz> template <typename T, int winsz>
void compute_data_cost_reduce_caller_(const uchar *cleft, const uchar *cright, size_t cimg_step, const T* disp_selected_pyr, T* data_cost, int rows, int cols, void compute_data_cost_reduce_caller_(const uchar *cleft, const uchar *cright, size_t cimg_step, const T* disp_selected_pyr, T* data_cost, int rows, int cols,
int h, int w, int level, int nr_plane, int channels, float data_weight, float max_data_term, int min_disp, cudaStream_t stream) int h, int w, int level, int nr_plane, int channels, float data_weight, float max_data_term, int min_disp, size_t msg_step, size_t disp_step1, size_t disp_step2, cudaStream_t stream)
{ {
const int threadsNum = 256; const int threadsNum = 256;
const size_t smem_size = threadsNum * sizeof(float); const size_t smem_size = threadsNum * sizeof(float);
@ -486,9 +486,9 @@ namespace cv { namespace cuda { namespace device
switch (channels) switch (channels)
{ {
case 1: compute_data_cost_reduce<T, winsz, 1><<<grid, threads, smem_size, stream>>>(cleft, cright, cimg_step, disp_selected_pyr, data_cost, level, rows, cols, h, nr_plane, data_weight, max_data_term, min_disp); break; case 1: compute_data_cost_reduce<T, winsz, 1><<<grid, threads, smem_size, stream>>>(cleft, cright, cimg_step, disp_selected_pyr, data_cost, level, rows, cols, h, nr_plane, data_weight, max_data_term, min_disp, msg_step, disp_step1, disp_step2); break;
case 3: compute_data_cost_reduce<T, winsz, 3><<<grid, threads, smem_size, stream>>>(cleft, cright, cimg_step, disp_selected_pyr, data_cost, level, rows, cols, h, nr_plane, data_weight, max_data_term, min_disp); break; case 3: compute_data_cost_reduce<T, winsz, 3><<<grid, threads, smem_size, stream>>>(cleft, cright, cimg_step, disp_selected_pyr, data_cost, level, rows, cols, h, nr_plane, data_weight, max_data_term, min_disp, msg_step, disp_step1, disp_step2); break;
case 4: compute_data_cost_reduce<T, winsz, 4><<<grid, threads, smem_size, stream>>>(cleft, cright, cimg_step, disp_selected_pyr, data_cost, level, rows, cols, h, nr_plane, data_weight, max_data_term, min_disp); break; case 4: compute_data_cost_reduce<T, winsz, 4><<<grid, threads, smem_size, stream>>>(cleft, cright, cimg_step, disp_selected_pyr, data_cost, level, rows, cols, h, nr_plane, data_weight, max_data_term, min_disp, msg_step, disp_step1, disp_step2); break;
default: CV_Error(cv::Error::BadNumChannels, "Unsupported channels count"); default: CV_Error(cv::Error::BadNumChannels, "Unsupported channels count");
} }
} }
@ -499,7 +499,7 @@ namespace cv { namespace cuda { namespace device
int min_disp, cudaStream_t stream) int min_disp, cudaStream_t stream)
{ {
typedef void (*ComputeDataCostCaller)(const uchar *cleft, const uchar *cright, size_t cimg_step, const T* disp_selected_pyr, T* data_cost, int rows, int cols, typedef void (*ComputeDataCostCaller)(const uchar *cleft, const uchar *cright, size_t cimg_step, const T* disp_selected_pyr, T* data_cost, int rows, int cols,
int h, int w, int level, int nr_plane, int channels, float data_weight, float max_data_term, int min_disp, cudaStream_t stream); int h, int w, int level, int nr_plane, int channels, float data_weight, float max_data_term, int min_disp, size_t msg_step, size_t disp_step1, size_t disp_step2, cudaStream_t stream);
static const ComputeDataCostCaller callers[] = static const ComputeDataCostCaller callers[] =
{ {
@ -510,11 +510,8 @@ namespace cv { namespace cuda { namespace device
size_t disp_step1 = msg_step * h; size_t disp_step1 = msg_step * h;
size_t disp_step2 = msg_step * h2; size_t disp_step2 = msg_step * h2;
cudaSafeCall( cudaMemcpyToSymbol(cdisp_step1, &disp_step1, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(cdisp_step2, &disp_step2, sizeof(size_t)) );
cudaSafeCall( cudaMemcpyToSymbol(cmsg_step, &msg_step, sizeof(size_t)) );
callers[level](cleft, cright, cimg_step, disp_selected_pyr, data_cost, rows, cols, h, w, level, nr_plane, channels, data_weight, max_data_term, min_disp, stream); callers[level](cleft, cright, cimg_step, disp_selected_pyr, data_cost, rows, cols, h, w, level, nr_plane, channels, data_weight, max_data_term, min_disp, msg_step, disp_step1, disp_step2, stream);
cudaSafeCall( cudaGetLastError() ); cudaSafeCall( cudaGetLastError() );
if (stream == 0) if (stream == 0)

Loading…
Cancel
Save