ONNX: upsample subgraph fusion added

pull/16573/head
ashishiva3@gmail.com 5 years ago
parent 1602a38fa9
commit 8559237d4e
  1. 12
      modules/dnn/src/graph_simplifier.cpp
  2. 4
      modules/dnn/src/graph_simplifier.hpp
  3. 197
      modules/dnn/src/onnx/onnx_graph_simplifier.cpp
  4. 13
      modules/dnn/src/onnx/onnx_graph_simplifier.hpp
  5. 77
      modules/dnn/src/onnx/onnx_importer.cpp
  6. 10
      modules/dnn/src/tensorflow/tf_graph_simplifier.cpp
  7. 7
      modules/dnn/test/test_onnx_importer.cpp

@ -69,8 +69,12 @@ int Subgraph::getInputNodeId(const Ptr<ImportGraphWrapper>& net,
const int numNodes = net->getNumNodes();
for (int i = 0; i < numNodes; ++i)
{
if (net->getNodeName(i) == name)
return i;
const int numOutputs = net->getNumOutputs(i);
for (int j = 0; j < numOutputs; j++)
{
if (net->getOutputName(i, j) == name)
return i;
}
}
CV_Error(Error::StsParseError, "Input node with name " + name + " not found");
}
@ -111,12 +115,12 @@ bool Subgraph::match(const Ptr<ImportGraphWrapper>& net, int nodeId,
continue;
nodeId = getInputNodeId(net, node, j);
const Ptr<ImportNodeWrapper> inpNode = net->getNode(nodeId);
if (inpNode->getType() != "Const")
if (inpNode->getType() != "Const" && inpNode->getType() != "Constant")
{
nodesToMatch.push(nodeId);
targetNodes.push(inputNodes[j]);
}
else if (nodes[inputNodes[j]] != "Const")
else if (nodes[inputNodes[j]] != "Const" && nodes[inputNodes[j]] != "Constant")
return false;
}
matchedNodesIds.push_back(nodeToMatch);

@ -39,7 +39,9 @@ public:
virtual int getNumNodes() const = 0;
virtual std::string getNodeName(int idx) const = 0;
virtual int getNumOutputs(int nodeId) const = 0;
virtual std::string getOutputName(int nodeId, int outId) const = 0;
virtual void removeNode(int idx) = 0;
};

@ -76,12 +76,21 @@ public:
return numInputs + net.node_size();
}
virtual std::string getNodeName(int idx) const CV_OVERRIDE
virtual int getNumOutputs(int nodeId) const CV_OVERRIDE
{
if (idx < numInputs)
return net.input(idx).name();
if (nodeId < numInputs)
return 1;
else
return net.node(idx - numInputs).output(0);
return net.node(nodeId - numInputs).output_size();
}
virtual std::string getOutputName(int nodeId, int outId) const CV_OVERRIDE
{
CV_Assert(outId < getNumOutputs(nodeId));
if (nodeId < numInputs)
return net.input(nodeId).name();
else
return net.node(nodeId - numInputs).output(outId);
}
virtual void removeNode(int idx) CV_OVERRIDE
@ -145,13 +154,193 @@ private:
int axis;
};
class ExtractScalesSubgraph : public Subgraph
{
public:
ExtractScalesSubgraph()
{
input = addNodeToMatch("");
int indexH = addNodeToMatch("Constant");
int shape1 = addNodeToMatch("Shape", input);
int gather1 = addNodeToMatch("Gather", shape1, indexH);
int castG1 = addNodeToMatch("Cast", gather1);
scaleHNode = addNodeToMatch("Constant");
int mul1 = addNodeToMatch("Mul", castG1, scaleHNode);
int castM1 = addNodeToMatch("Cast", mul1);
int floor1 = addNodeToMatch("Floor", castM1);
int indexW = addNodeToMatch("Constant");
int shape2 = addNodeToMatch("Shape", input);
int gather2 = addNodeToMatch("Gather", shape2, indexW);
int castG2 = addNodeToMatch("Cast", gather2);
scaleWNode = addNodeToMatch("Constant");
int mul2 = addNodeToMatch("Mul", castG2, scaleWNode);
int castM2 = addNodeToMatch("Cast", mul2);
int floor2 = addNodeToMatch("Floor", castM2);
int unsqueeze1 = addNodeToMatch("Unsqueeze", floor1);
int unsqueeze2 = addNodeToMatch("Unsqueeze", floor2);
concatId = addNodeToMatch("Concat", unsqueeze1, unsqueeze2);
}
void finalize(const Ptr<ImportGraphWrapper>& net,
const Ptr<ImportNodeWrapper>& fusedNode,
std::vector<Ptr<ImportNodeWrapper> >& inputs) CV_OVERRIDE
{
opencv_onnx::NodeProto* constant_node = inputs[1].dynamicCast<ONNXNodeWrapper>()->node;
opencv_onnx::TensorProto tensor_proto = constant_node->attribute(0).t();
float scaleW = getMatFromTensor(tensor_proto).at<float>(0);
constant_node = inputs[2].dynamicCast<ONNXNodeWrapper>()->node;
tensor_proto = constant_node->attribute(0).t();
float scaleH = getMatFromTensor(tensor_proto).at<float>(0);
opencv_onnx::NodeProto* node = fusedNode.dynamicCast<ONNXNodeWrapper>()->node;
opencv_onnx::AttributeProto* attrH = node->add_attribute();
attrH->set_name("height_scale");
attrH->set_i(scaleH);
opencv_onnx::AttributeProto* attrW = node->add_attribute();
attrW->set_name("width_scale");
attrW->set_i(scaleW);
node->mutable_input()->DeleteSubrange(1, 2); // Remove two last inputs
}
protected:
int input, concatId;
int scaleHNode, scaleWNode;
};
class UpsampleSubgraph : public ExtractScalesSubgraph
{
public:
UpsampleSubgraph() : ExtractScalesSubgraph()
{
int shape = addNodeToMatch("Shape", input);
int slice = addNodeToMatch("Slice", shape);
int castConcat = addNodeToMatch("Cast", concatId);
int castSlice = addNodeToMatch("Cast", slice);
int divide = addNodeToMatch("Div", castConcat, castSlice);
int constant = addNodeToMatch("Constant");
int concat = addNodeToMatch("Concat", constant, divide);
addNodeToMatch("Upsample", input, concat);
setFusedNode("Upsample", input, scaleWNode, scaleHNode);
}
};
class ResizeSubgraph1 : public ExtractScalesSubgraph
{
public:
ResizeSubgraph1() : ExtractScalesSubgraph()
{
int shape = addNodeToMatch("Shape", input);
int slice = addNodeToMatch("Slice", shape, addNodeToMatch("Constant"), addNodeToMatch("Constant"), addNodeToMatch("Constant"));
int castConcat = addNodeToMatch("Cast", concatId);
int concat = addNodeToMatch("Concat", slice, castConcat);
int constant = addNodeToMatch("Constant");
addNodeToMatch("Resize", input, constant, constant, concat);
setFusedNode("Upsample", input, scaleWNode, scaleHNode);
}
};
class ResizeSubgraph2 : public ExtractScalesSubgraph
{
public:
ResizeSubgraph2() : ExtractScalesSubgraph()
{
int constantConcat = addNodeToMatch("Constant");
int castConcat = addNodeToMatch("Cast", concatId);
int concat = addNodeToMatch("Concat", constantConcat, castConcat);
int constant = addNodeToMatch("Constant");
addNodeToMatch("Resize", input, constant, constant, concat);
setFusedNode("Upsample", input, scaleWNode, scaleHNode);
}
};
void simplifySubgraphs(opencv_onnx::GraphProto& net)
{
std::vector<Ptr<Subgraph> > subgraphs;
subgraphs.push_back(makePtr<UpsampleSubgraph>());
subgraphs.push_back(makePtr<ResizeSubgraph1>());
subgraphs.push_back(makePtr<ResizeSubgraph2>());
subgraphs.push_back(makePtr<SoftMaxSubgraph>());
simplifySubgraphs(Ptr<ImportGraphWrapper>(new ONNXGraphWrapper(net)), subgraphs);
}
Mat getMatFromTensor(opencv_onnx::TensorProto& tensor_proto)
{
if (tensor_proto.raw_data().empty() && tensor_proto.float_data().empty() &&
tensor_proto.double_data().empty() && tensor_proto.int64_data().empty())
return Mat();
opencv_onnx::TensorProto_DataType datatype = tensor_proto.data_type();
Mat blob;
std::vector<int> sizes;
for (int i = 0; i < tensor_proto.dims_size(); i++) {
sizes.push_back(tensor_proto.dims(i));
}
if (sizes.empty())
sizes.assign(1, 1);
if (datatype == opencv_onnx::TensorProto_DataType_FLOAT) {
if (!tensor_proto.float_data().empty()) {
const ::google::protobuf::RepeatedField<float> field = tensor_proto.float_data();
Mat(sizes, CV_32FC1, (void*)field.data()).copyTo(blob);
}
else {
char* val = const_cast<char*>(tensor_proto.raw_data().c_str());
Mat(sizes, CV_32FC1, val).copyTo(blob);
}
}
else if (datatype == opencv_onnx::TensorProto_DataType_DOUBLE)
{
const ::google::protobuf::RepeatedField<double> field = tensor_proto.double_data();
CV_Assert(!field.empty());
Mat(sizes, CV_64FC1, (void*)field.data()).convertTo(blob, CV_32FC1);
}
else if (datatype == opencv_onnx::TensorProto_DataType_INT64)
{
blob.create(sizes, CV_32SC1);
int32_t* dst = reinterpret_cast<int32_t*>(blob.data);
if (!tensor_proto.int64_data().empty()) {
::google::protobuf::RepeatedField< ::google::protobuf::int64> src = tensor_proto.int64_data();
convertInt64ToInt32(src, dst, blob.total());
}
else
{
const char* val = tensor_proto.raw_data().c_str();
#if CV_STRONG_ALIGNMENT
// Aligned pointer is required: https://github.com/opencv/opencv/issues/16373
// this doesn't work: typedef int64_t CV_DECL_ALIGNED(1) unaligned_int64_t;
AutoBuffer<int64_t, 16> aligned_val;
if (!isAligned<sizeof(int64_t)>(val))
{
size_t sz = tensor_proto.raw_data().size();
aligned_val.allocate(divUp(sz, sizeof(int64_t)));
memcpy(aligned_val.data(), val, sz);
val = (const char*)aligned_val.data();
}
#endif
const int64_t* src = reinterpret_cast<const int64_t*>(val);
convertInt64ToInt32(src, dst, blob.total());
}
}
else
CV_Error(Error::StsUnsupportedFormat, "Unsupported data type: " +
opencv_onnx::TensorProto_DataType_Name(datatype));
if (tensor_proto.dims_size() == 0)
blob.dims = 1; // To force 1-dimensional cv::Mat for scalars.
return blob;
}
CV__DNN_EXPERIMENTAL_NS_END
}} // namespace cv::dnn

@ -24,6 +24,19 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
void simplifySubgraphs(opencv_onnx::GraphProto& net);
template<typename T1, typename T2>
void convertInt64ToInt32(const T1& src, T2& dst, int size)
{
for (int i = 0; i < size; i++) {
if (src[i] < std::numeric_limits<int32_t>::min() || src[i] > std::numeric_limits<int32_t>::max()) {
CV_Error(Error::StsOutOfRange, "Input is out of OpenCV 32S range");
}
dst[i] = saturate_cast<int32_t>(src[i]);
}
}
Mat getMatFromTensor(opencv_onnx::TensorProto& tensor_proto);
CV__DNN_EXPERIMENTAL_NS_END
}} // namespace dnn, namespace cv

@ -95,83 +95,6 @@ void releaseONNXTensor(opencv_onnx::TensorProto& tensor_proto)
}
}
template<typename T1, typename T2>
void convertInt64ToInt32(const T1& src, T2& dst, int size)
{
for (int i = 0; i < size; i++) {
if (src[i] < std::numeric_limits<int32_t>::min() || src[i] > std::numeric_limits<int32_t>::max()) {
CV_Error(Error::StsOutOfRange, "Input is out of OpenCV 32S range");
}
dst[i] = saturate_cast<int32_t>(src[i]);
}
}
Mat getMatFromTensor(opencv_onnx::TensorProto& tensor_proto)
{
CV_Assert(!tensor_proto.raw_data().empty() || !tensor_proto.float_data().empty()
|| !tensor_proto.double_data().empty() || !tensor_proto.int64_data().empty());
opencv_onnx::TensorProto_DataType datatype = tensor_proto.data_type();
Mat blob;
std::vector<int> sizes;
for (int i = 0; i < tensor_proto.dims_size(); i++) {
sizes.push_back(tensor_proto.dims(i));
}
if (sizes.empty())
sizes.assign(1, 1);
if (datatype == opencv_onnx::TensorProto_DataType_FLOAT) {
if (!tensor_proto.float_data().empty()) {
const ::google::protobuf::RepeatedField<float> field = tensor_proto.float_data();
Mat(sizes, CV_32FC1, (void*)field.data()).copyTo(blob);
}
else {
char* val = const_cast<char*>(tensor_proto.raw_data().c_str());
Mat(sizes, CV_32FC1, val).copyTo(blob);
}
}
else if (datatype == opencv_onnx::TensorProto_DataType_DOUBLE)
{
const ::google::protobuf::RepeatedField<double> field = tensor_proto.double_data();
CV_Assert(!field.empty());
Mat(sizes, CV_64FC1, (void*)field.data()).convertTo(blob, CV_32FC1);
}
else if (datatype == opencv_onnx::TensorProto_DataType_INT64)
{
blob.create(sizes, CV_32SC1);
int32_t* dst = reinterpret_cast<int32_t*>(blob.data);
if (!tensor_proto.int64_data().empty()) {
::google::protobuf::RepeatedField< ::google::protobuf::int64> src = tensor_proto.int64_data();
convertInt64ToInt32(src, dst, blob.total());
}
else
{
const char* val = tensor_proto.raw_data().c_str();
#if CV_STRONG_ALIGNMENT
// Aligned pointer is required: https://github.com/opencv/opencv/issues/16373
// this doesn't work: typedef int64_t CV_DECL_ALIGNED(1) unaligned_int64_t;
AutoBuffer<int64_t, 16> aligned_val;
if (!isAligned<sizeof(int64_t)>(val))
{
size_t sz = tensor_proto.raw_data().size();
aligned_val.allocate(divUp(sz, sizeof(int64_t)));
memcpy(aligned_val.data(), val, sz);
val = (const char*)aligned_val.data();
}
#endif
const int64_t* src = reinterpret_cast<const int64_t*>(val);
convertInt64ToInt32(src, dst, blob.total());
}
}
else
CV_Error(Error::StsUnsupportedFormat, "Unsupported data type: " +
opencv_onnx::TensorProto_DataType_Name(datatype));
if (tensor_proto.dims_size() == 0)
blob.dims = 1; // To force 1-dimensional cv::Mat for scalars.
return blob;
}
void runLayer(LayerParams& params, const std::vector<Mat>& inputs,
std::vector<Mat>& outputs)
{

@ -69,9 +69,15 @@ public:
return net.node_size();
}
virtual std::string getNodeName(int idx) const CV_OVERRIDE
virtual int getNumOutputs(int nodeId) const CV_OVERRIDE
{
return net.node(idx).name();
return 1;
}
virtual std::string getOutputName(int nodeId, int outId) const CV_OVERRIDE
{
CV_Assert(outId == 0);
return net.node(nodeId).name();
}
virtual void removeNode(int idx) CV_OVERRIDE

@ -316,6 +316,13 @@ TEST_P(Test_ONNX_layers, Resize)
testONNXModels("resize_bilinear");
}
TEST_P(Test_ONNX_layers, ResizeUnfused)
{
testONNXModels("upsample_unfused_opset9_torch1.4");
testONNXModels("resize_nearest_unfused_opset11_torch1.4");
testONNXModels("resize_nearest_unfused_opset11_torch1.3");
}
TEST_P(Test_ONNX_layers, MultyInputs)
{
const String model = _tf("models/multy_inputs.onnx");

Loading…
Cancel
Save