|
|
|
@ -151,17 +151,17 @@ void FREAK::buildPattern() |
|
|
|
|
PatternPoint* patternLookupPtr = &patternLookup[0]; |
|
|
|
|
for( size_t i = 0; i < 8; ++i ) { |
|
|
|
|
for( int k = 0 ; k < n[i]; ++k ) { |
|
|
|
|
beta = M_PI/n[i] * (i%2); // orientation offset so that groups of points on each circles are staggered
|
|
|
|
|
alpha = double(k)* 2*M_PI/double(n[i])+beta+theta; |
|
|
|
|
beta = CV_PI/n[i] * (i%2); // orientation offset so that groups of points on each circles are staggered
|
|
|
|
|
alpha = double(k)* 2*CV_PI/double(n[i])+beta+theta; |
|
|
|
|
|
|
|
|
|
// add the point to the look-up table
|
|
|
|
|
PatternPoint& point = patternLookupPtr[ scaleIdx*FREAK_NB_ORIENTATION*FREAK_NB_POINTS+orientationIdx*FREAK_NB_POINTS+pointIdx ]; |
|
|
|
|
point.x = radius[i] * cos(alpha) * scalingFactor * patternScale; |
|
|
|
|
point.y = radius[i] * sin(alpha) * scalingFactor * patternScale; |
|
|
|
|
point.sigma = sigma[i] * scalingFactor * patternScale; |
|
|
|
|
point.x = static_cast<float>(radius[i] * cos(alpha) * scalingFactor * patternScale); |
|
|
|
|
point.y = static_cast<float>(radius[i] * sin(alpha) * scalingFactor * patternScale); |
|
|
|
|
point.sigma = static_cast<float>(sigma[i] * scalingFactor * patternScale); |
|
|
|
|
|
|
|
|
|
// adapt the sizeList if necessary
|
|
|
|
|
const int sizeMax = ceil((radius[i]+sigma[i])*scalingFactor*patternScale) + 1; |
|
|
|
|
const int sizeMax = static_cast<int>(ceil((radius[i]+sigma[i])*scalingFactor*patternScale)) + 1; |
|
|
|
|
if( patternSizes[scaleIdx] < sizeMax ) |
|
|
|
|
patternSizes[scaleIdx] = sizeMax; |
|
|
|
|
|
|
|
|
@ -246,7 +246,7 @@ void FREAK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat |
|
|
|
|
std::vector<int> kpScaleIdx(keypoints.size()); // used to save pattern scale index corresponding to each keypoints
|
|
|
|
|
const std::vector<int>::iterator ScaleIdxBegin = kpScaleIdx.begin(); // used in std::vector erase function
|
|
|
|
|
const std::vector<cv::KeyPoint>::iterator kpBegin = keypoints.begin(); // used in std::vector erase function
|
|
|
|
|
const float sizeCst = FREAK_NB_SCALES/(FREAK_LOG2* nOctaves ); |
|
|
|
|
const float sizeCst = static_cast<float>(FREAK_NB_SCALES/(FREAK_LOG2* nOctaves)); |
|
|
|
|
uchar pointsValue[FREAK_NB_POINTS]; |
|
|
|
|
int thetaIdx = 0; |
|
|
|
|
int direction0; |
|
|
|
@ -317,7 +317,7 @@ void FREAK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat |
|
|
|
|
direction1 += delta*(orientationPairs[m].weight_dy)/2048; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
keypoints[k].angle = atan2((float)direction1,(float)direction0)*(180.0/M_PI);//estimate orientation
|
|
|
|
|
keypoints[k].angle = static_cast<float>(atan2((float)direction1,(float)direction0)*(180.0/CV_PI));//estimate orientation
|
|
|
|
|
thetaIdx = int(FREAK_NB_ORIENTATION*keypoints[k].angle*(1/360.0)+0.5); |
|
|
|
|
if( thetaIdx < 0 ) |
|
|
|
|
thetaIdx += FREAK_NB_ORIENTATION; |
|
|
|
@ -388,7 +388,7 @@ void FREAK::computeImpl( const Mat& image, std::vector<KeyPoint>& keypoints, Mat |
|
|
|
|
direction1 += delta*(orientationPairs[m].weight_dy)/2048; |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
keypoints[k].angle = atan2((float)direction1,(float)direction0)*(180.0/M_PI); //estimate orientation
|
|
|
|
|
keypoints[k].angle = static_cast<float>(atan2((float)direction1,(float)direction0)*(180.0/CV_PI)); //estimate orientation
|
|
|
|
|
thetaIdx = int(FREAK_NB_ORIENTATION*keypoints[k].angle*(1/360.0)+0.5); |
|
|
|
|
|
|
|
|
|
if( thetaIdx < 0 ) |
|
|
|
@ -438,8 +438,8 @@ uchar FREAK::meanIntensity( const cv::Mat& image, const cv::Mat& integral, |
|
|
|
|
int ret_val; |
|
|
|
|
if( radius < 0.5 ) { |
|
|
|
|
// interpolation multipliers:
|
|
|
|
|
const int r_x = (xf-x)*1024; |
|
|
|
|
const int r_y = (yf-y)*1024; |
|
|
|
|
const int r_x = static_cast<int>((xf-x)*1024); |
|
|
|
|
const int r_y = static_cast<int>((yf-y)*1024); |
|
|
|
|
const int r_x_1 = (1024-r_x); |
|
|
|
|
const int r_y_1 = (1024-r_y); |
|
|
|
|
uchar* ptr = image.data+x+y*imagecols; |
|
|
|
@ -451,7 +451,7 @@ uchar FREAK::meanIntensity( const cv::Mat& image, const cv::Mat& integral, |
|
|
|
|
ret_val += (r_x*r_y*int(*ptr)); |
|
|
|
|
ptr--; |
|
|
|
|
ret_val += (r_x_1*r_y*int(*ptr)); |
|
|
|
|
return (ret_val+512)/1024; |
|
|
|
|
return static_cast<uchar>((ret_val+512)/1024); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// expected case:
|
|
|
|
@ -468,7 +468,7 @@ uchar FREAK::meanIntensity( const cv::Mat& image, const cv::Mat& integral, |
|
|
|
|
ret_val -= integral.at<int>(y_top,x_right); |
|
|
|
|
ret_val = ret_val/( (x_right-x_left)* (y_bottom-y_top) ); |
|
|
|
|
//~ std::cout<<integral.step[1]<<std::endl;
|
|
|
|
|
return ret_val; |
|
|
|
|
return static_cast<uchar>(ret_val); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// pair selection algorithm from a set of training images and corresponding keypoints
|
|
|
|
|