fixed many warnings from GCC 4.6.1

pull/13383/head
Vadim Pisarevsky 13 years ago
parent 4985c1b632
commit 846e37ded5
  1. 16
      apps/traincascade/boost.cpp
  2. 7
      modules/calib3d/src/calibration.cpp
  3. 4
      modules/calib3d/src/quadsubpix.cpp
  4. 4
      modules/calib3d/src/triangulate.cpp
  5. 1
      modules/calib3d/test/test_cameracalibration.cpp
  6. 3
      modules/contrib/src/detection_based_tracker.cpp
  7. 4
      modules/core/src/dxt.cpp
  8. 5
      modules/core/src/stat.cpp
  9. 4
      modules/core/test/test_math.cpp
  10. 6
      modules/highgui/src/loadsave.cpp
  11. 2
      modules/highgui/src/window_gtk.cpp
  12. 1
      modules/highgui/test/test_grfmt.cpp
  13. 2
      modules/highgui/test/test_video_io.cpp
  14. 2
      modules/imgproc/src/subdivision2d.cpp
  15. 3
      modules/legacy/src/blobtrackingauto.cpp
  16. 5
      modules/legacy/src/blobtrackingcc.cpp
  17. 13
      modules/legacy/src/blobtrackingmsfg.cpp
  18. 8
      modules/legacy/src/corrimages.cpp
  19. 46
      modules/legacy/src/epilines.cpp
  20. 6
      modules/legacy/src/testseq.cpp
  21. 9
      modules/legacy/src/trifocal.cpp
  22. 4
      modules/legacy/src/vecfacetracking.cpp
  23. 6
      modules/ml/src/boost.cpp
  24. 14
      modules/ml/src/rtrees.cpp
  25. 1
      modules/ml/test/test_mltests2.cpp
  26. 3
      modules/nonfree/test/test_features2d.cpp
  27. 8
      modules/objdetect/src/datamatrix.cpp
  28. 7
      modules/objdetect/src/haar.cpp
  29. 6
      modules/objdetect/src/linemod.cpp
  30. 2
      modules/python/src2/cv2.cpp
  31. 4
      modules/video/src/motempl.cpp
  32. 2
      modules/video/test/test_optflowpyrlk.cpp
  33. 2
      samples/c/mser_sample.cpp
  34. 1
      samples/cpp/video_homography.cpp

@ -1066,10 +1066,10 @@ void CvCascadeBoostTree::split_node_data( CvDTreeNode* node )
if (data->is_buf_16u)
{
unsigned short *ldst, *rdst, *ldst0, *rdst0;
ldst0 = ldst = (unsigned short*)(buf->data.s + left->buf_idx*buf->cols +
ushort *ldst, *rdst;
ldst = (ushort*)(buf->data.s + left->buf_idx*buf->cols +
vi*scount + left->offset);
rdst0 = rdst = (unsigned short*)(ldst + nl);
rdst = (ushort*)(ldst + nl);
// split sorted
for( int i = 0; i < n1; i++ )
@ -1079,12 +1079,12 @@ void CvCascadeBoostTree::split_node_data( CvDTreeNode* node )
idx = newIdx[idx];
if (d)
{
*rdst = (unsigned short)idx;
*rdst = (ushort)idx;
rdst++;
}
else
{
*ldst = (unsigned short)idx;
*ldst = (ushort)idx;
ldst++;
}
}
@ -1092,10 +1092,10 @@ void CvCascadeBoostTree::split_node_data( CvDTreeNode* node )
}
else
{
int *ldst0, *ldst, *rdst0, *rdst;
ldst0 = ldst = buf->data.i + left->buf_idx*buf->cols +
int *ldst, *rdst;
ldst = buf->data.i + left->buf_idx*buf->cols +
vi*scount + left->offset;
rdst0 = rdst = buf->data.i + right->buf_idx*buf->cols +
rdst = buf->data.i + right->buf_idx*buf->cols +
vi*scount + right->offset;
// split sorted

@ -1363,7 +1363,7 @@ CV_IMPL void cvInitIntrinsicParams2D( const CvMat* objectPoints,
{
Ptr<CvMat> matA, _b, _allH, _allK;
int i, j, pos, nimages, total, ni = 0;
int i, j, pos, nimages, ni = 0;
double a[9] = { 0, 0, 0, 0, 0, 0, 0, 0, 1 };
double H[9], f[2];
CvMat _a = cvMat( 3, 3, CV_64F, a );
@ -1389,8 +1389,6 @@ CV_IMPL void cvInitIntrinsicParams2D( const CvMat* objectPoints,
a[5] = (imageSize.height - 1)*0.5;
_allH = cvCreateMat( nimages, 9, CV_64F );
total = cvRound(cvSum(npoints).val[0]);
// extract vanishing points in order to obtain initial value for the focal length
for( i = 0, pos = 0; i < nimages; i++, pos += ni )
{
@ -2136,7 +2134,7 @@ double cvStereoCalibrate( const CvMat* _objectPoints, const CvMat* _imagePoints1
for( k = 0; k < 2; k++ )
{
double maxErr, l2err;
double l2err;
imgpt_i[k] = cvMat(1, ni, CV_64FC2, imagePoints[k]->data.db + ofs*2);
if( JtJ || JtErr )
@ -2148,7 +2146,6 @@ double cvStereoCalibrate( const CvMat* _objectPoints, const CvMat* _imagePoints1
cvSub( &tmpimagePoints, &imgpt_i[k], &tmpimagePoints );
l2err = cvNorm( &tmpimagePoints, 0, CV_L2 );
maxErr = cvNorm( &tmpimagePoints, 0, CV_C );
if( JtJ || JtErr )
{

@ -130,8 +130,6 @@ void findCorner(const vector<Point>& contour, Point2f point, Point2f& corner)
double min_dist = std::numeric_limits<double>::max();
int min_idx = -1;
Rect brect = boundingRect(Mat(contour));
// find corner idx
for(size_t i = 0; i < contour.size(); i++)
{
@ -155,8 +153,6 @@ void findCorner(const vector<Point2f>& contour, Point2f point, Point2f& corner)
double min_dist = std::numeric_limits<double>::max();
int min_idx = -1;
Rect brect = boundingRect(Mat(contour));
// find corner idx
for(size_t i = 0; i < contour.size(); i++)
{

@ -134,6 +134,8 @@ cvTriangulatePoints(CvMat* projMatr1, CvMat* projMatr2, CvMat* projPoints1, CvMa
}
}
#if 0
double err = 0;
/* Points was reconstructed. Try to reproject points */
/* We can compute reprojection error if need */
{
@ -172,9 +174,11 @@ cvTriangulatePoints(CvMat* projMatr1, CvMat* projMatr2, CvMat* projPoints1, CvMa
float deltaX,deltaY;
deltaX = (float)fabs(x-xr);
deltaY = (float)fabs(y-yr);
err += deltaX*deltaX + deltaY*deltaY;
}
}
}
#endif
}

@ -1071,7 +1071,6 @@ void CV_ProjectPointsTest::run(int)
validImgPoint.y = static_cast<float>((double)cameraMatrix(1,1)*(y*cdist + (double)distCoeffs(0,2)*a3 + distCoeffs(0,3)*a1)
+ (double)cameraMatrix(1,2));
Point2f ssdfp = *it;
if( fabs(it->x - validImgPoint.x) > imgPointErr ||
fabs(it->y - validImgPoint.y) > imgPointErr )
{

@ -483,12 +483,9 @@ void DetectionBasedTracker::process(const Mat& imageGray)
Mat imageDetect=imageGray;
Size sz=imageDetect.size();
int D=parameters.minObjectSize;
if (D < 1)
D=1;
Size objectSize=Size(D,D);
vector<Rect> rectsWhereRegions;
bool shouldHandleResult=separateDetectionWork->communicateWithDetectingThread(imageGray, rectsWhereRegions);

@ -1475,9 +1475,9 @@ void cv::dft( InputArray _src0, OutputArray _dst, int flags, int nonzero_rows )
int elem_size = (int)src.elemSize1(), complex_elem_size = elem_size*2;
int factors[34];
bool inplace_transform = false;
int ipp_norm_flag = 0;
#ifdef HAVE_IPP
void *spec_r = 0, *spec_c = 0;
int ipp_norm_flag = !(flags & DFT_SCALE) ? 8 : inv ? 2 : 1;
#endif
CV_Assert( type == CV_32FC1 || type == CV_32FC2 || type == CV_64FC1 || type == CV_64FC2 );
@ -1506,8 +1506,6 @@ void cv::dft( InputArray _src0, OutputArray _dst, int flags, int nonzero_rows )
(src.cols > 1 && inv && real_transform)) )
stage = 1;
ipp_norm_flag = !(flags & DFT_SCALE) ? 8 : inv ? 2 : 1;
for(;;)
{
double scale = 1;

@ -1592,11 +1592,6 @@ struct BatchDistInvoker
{
AutoBuffer<int> buf(src2->rows);
int* bufptr = buf;
Cv32suf val0;
if( dist->type() == CV_32S )
val0.i = INT_MAX;
else
val0.f = FLT_MAX;
for( int i = range.begin(); i < range.end(); i++ )
{

@ -1932,10 +1932,9 @@ void Core_SVDTest::prepare_to_validation( int /*test_case_idx*/ )
{
Mat& input = test_mat[INPUT][0];
int depth = input.depth();
int m = input.rows, n = input.cols, min_size = MIN(m, n);
int i, m = input.rows, n = input.cols, min_size = MIN(m, n);
Mat *src, *dst, *w;
double prev = 0, threshold = depth == CV_32F ? FLT_EPSILON : DBL_EPSILON;
int i, step;
if( have_u )
{
@ -1954,7 +1953,6 @@ void Core_SVDTest::prepare_to_validation( int /*test_case_idx*/ )
}
w = &test_mat[TEMP][0];
step = w->rows == 1 ? 1 : (int)w->step1();
for( i = 0; i < min_size; i++ )
{
double normval = 0, aii;

@ -399,8 +399,7 @@ Mat imdecode( InputArray _buf, int flags )
bool imencode( const string& ext, InputArray _image,
vector<uchar>& buf, const vector<int>& params )
{
Mat temp, image = _image.getMat();
const Mat* pimage = &image;
Mat image = _image.getMat();
int channels = image.channels();
CV_Assert( channels == 1 || channels == 3 || channels == 4 );
@ -412,8 +411,9 @@ bool imencode( const string& ext, InputArray _image,
if( !encoder->isFormatSupported(image.depth()) )
{
CV_Assert( encoder->isFormatSupported(CV_8U) );
Mat temp;
image.convertTo(temp, CV_8U);
pimage = &temp;
image = temp;
}
bool code;

@ -156,7 +156,6 @@ cvImageWidgetNew (int flags)
static void
cvImageWidget_realize (GtkWidget *widget)
{
CvImageWidget *image_widget;
GdkWindowAttr attributes;
gint attributes_mask;
@ -165,7 +164,6 @@ cvImageWidget_realize (GtkWidget *widget)
g_return_if_fail (CV_IS_IMAGE_WIDGET (widget));
GTK_WIDGET_SET_FLAGS (widget, GTK_REALIZED);
image_widget = CV_IMAGE_WIDGET (widget);
attributes.x = widget->allocation.x;
attributes.y = widget->allocation.y;

@ -88,7 +88,6 @@ public:
{
const int img_r = 640;
const int img_c = 480;
Size frame_s = Size(img_c, img_r);
for (int k = 1; k <= 5; ++k)
{

@ -230,7 +230,6 @@ void CV_HighGuiTest::VideoTest(const string& dir, int fourcc)
CvVideoWriter* writer = 0;
int counter = 0;
for(;;)
{
IplImage * img = cvQueryFrame( cap );
@ -267,7 +266,6 @@ void CV_HighGuiTest::VideoTest(const string& dir, int fourcc)
const double thresDbell = 20;
counter = 0;
for(;;)
{
IplImage* ipl = cvQueryFrame( cap );

@ -344,7 +344,6 @@ icvIsPtInCircle3( CvPoint2D32f pt, CvPoint2D32f a, CvPoint2D32f b, CvPoint2D32f
CV_IMPL CvSubdiv2DPoint *
cvSubdivDelaunay2DInsert( CvSubdiv2D * subdiv, CvPoint2D32f pt )
{
CvSubdiv2DPoint *point = 0;
CvSubdiv2DPointLocation location = CV_PTLOC_ERROR;
CvSubdiv2DPoint *curr_point = 0, *first_point = 0;
@ -368,7 +367,6 @@ cvSubdivDelaunay2DInsert( CvSubdiv2D * subdiv, CvPoint2D32f pt )
CV_Error( CV_StsOutOfRange, "" );
case CV_PTLOC_VERTEX:
point = curr_point;
break;
case CV_PTLOC_ON_EDGE:

@ -233,7 +233,8 @@ void CvBlobTrackerAuto1::Process(IplImage* pImg, IplImage* pMask)
double Time;
TickCount = cvGetTickCount()-TickCount;
Time = TickCount/FREQ;
if(out){fprintf(out,"- %sFrame: %d ALL_TIME - %f\n",stime,Count,Time/1000);fclose(out);}
TimeSum += Time;
if(out){fprintf(out,"- %sFrame: %d ALL_TIME - %f\n",stime,Count,TimeSum/1000);fclose(out);}
TimeSum = 0;
TickCount = cvGetTickCount();

@ -520,13 +520,10 @@ private:
//DefBlobTracker* pBT = (DefBlobTracker*)pB;
CvBlob* pBBest = NULL;
double DistBest = -1;
int j,BlobID;
if(pB==NULL) return NULL;
BlobID = pB->ID;
for(j=m_BlobListNew.GetBlobNum(); j>0; --j)
for(int j=m_BlobListNew.GetBlobNum(); j>0; --j)
{ /* Find best CC: */
double Dist = -1;
CvBlob* pBNew = m_BlobListNew.GetBlob(j-1);

@ -276,14 +276,11 @@ private:
return cvSum(pHT->m_pHist).val[0] / sqrt(pHC->m_HistVolume*pHM->m_HistVolume);
#else
// Do computations manually and let autovectorizer do the job:
DefHistType *hm, *hc, *ht;
double sum;
int size;
hm=(DefHistType *)(pHM->m_pHist->data.ptr);
hc=(DefHistType *)(pHC->m_pHist->data.ptr);
ht=(DefHistType *)(pHT->m_pHist->data.ptr);
size = pHM->m_pHist->width*pHM->m_pHist->height;
sum = 0.;
DefHistType* hm=(DefHistType *)(pHM->m_pHist->data.ptr);
DefHistType* hc=(DefHistType *)(pHC->m_pHist->data.ptr);
//ht=(DefHistType *)(pHT->m_pHist->data.ptr);
int size = pHM->m_pHist->width*pHM->m_pHist->height;
double sum = 0.;
for(int i = 0; i < size; i++ )
{
sum += sqrt(hm[i]*hc[i]);

@ -696,8 +696,7 @@ int icvRemoveDoublePoins( CvMat *oldPoints,/* Points on prev image */
pt.x = (float)cvmGet(oldPoints,0,i);
pt.y = (float)cvmGet(oldPoints,1,i);
CvSubdiv2DPoint* point;
point = cvSubdivDelaunay2DInsert( subdiv, pt );
cvSubdivDelaunay2DInsert( subdiv, pt );
}
}
@ -908,9 +907,8 @@ void icvAddNewImageToPrevious____(
/* Remove all new double points */
int origNum;
/* Find point of old image */
origNum = icvRemoveDoublePoins( oldPoints,/* Points on prev image */
icvRemoveDoublePoins( oldPoints,/* Points on prev image */
newFPoints2D1,/* New points */
oldPntStatus,/* Status for old points */
newFPointsStatusTmp,
@ -918,7 +916,7 @@ void icvAddNewImageToPrevious____(
20);/* Status for new points */
/* Find double points on new image */
origNum = icvRemoveDoublePoins( newPoints,/* Points on prev image */
icvRemoveDoublePoins( newPoints,/* Points on prev image */
newFPoints2D2,/* New points */
newPntStatus,/* Status for old points */
newFPointsStatusTmp,

@ -450,12 +450,6 @@ int icvComCoeffForLine( CvPoint2D64d point1,
double gamma;
double x1,y1,z1;
x1 = camPoint1.x;
y1 = camPoint1.y;
z1 = camPoint1.z;
double xA,yA,zA;
double xB,yB,zB;
double xC,yC,zC;
@ -2859,12 +2853,12 @@ int icvSelectBestRt( int numImages,
&tmpPoint2,
rotMatrs1_64d + currImagePair*9,
transVects1_64d + currImagePair*3);
double err;
/*double err;
double dx,dy,dz;
dx = tmpPoint2.x - points1[i].x;
dy = tmpPoint2.y - points1[i].y;
dz = tmpPoint2.z - points1[i].z;
err = sqrt(dx*dx + dy*dy + dz*dz);
err = sqrt(dx*dx + dy*dy + dz*dz);*/
}
@ -3458,43 +3452,37 @@ int GetCrossLines(CvPoint2D32f p1_start,CvPoint2D32f p1_end,CvPoint2D32f p2_star
int icvGetCrossPieceVector(CvPoint2D32f p1_start,CvPoint2D32f p1_end,CvPoint2D32f v2_start,CvPoint2D32f v2_end,CvPoint2D32f *cross)
{
double ex1,ey1,ex2,ey2;
double px1,py1,px2,py2;
double del;
double delA,delB,delX,delY;
double alpha,betta;
double ex1 = p1_start.x;
double ey1 = p1_start.y;
double ex2 = p1_end.x;
double ey2 = p1_end.y;
ex1 = p1_start.x;
ey1 = p1_start.y;
ex2 = p1_end.x;
ey2 = p1_end.y;
px1 = v2_start.x;
py1 = v2_start.y;
px2 = v2_end.x;
py2 = v2_end.y;
double px1 = v2_start.x;
double py1 = v2_start.y;
double px2 = v2_end.x;
double py2 = v2_end.y;
del = (ex1-ex2)*(py2-py1)+(ey2-ey1)*(px2-px1);
double del = (ex1-ex2)*(py2-py1)+(ey2-ey1)*(px2-px1);
if( del == 0)
{
return -1;
}
delA = (px1-ex1)*(py1-py2) + (ey1-py1)*(px1-px2);
delB = (ex1-px1)*(ey1-ey2) + (py1-ey1)*(ex1-ex2);
double delA = (px1-ex1)*(py1-py2) + (ey1-py1)*(px1-px2);
//double delB = (ex1-px1)*(ey1-ey2) + (py1-ey1)*(ex1-ex2);
alpha = delA / del;
betta = -delB / del;
double alpha = delA / del;
//double betta = -delB / del;
if( alpha < 0 || alpha > 1.0 )
{
return -1;
}
delX = (ex1-ex2)*(py1*(px1-px2)-px1*(py1-py2))+
double delX = (ex1-ex2)*(py1*(px1-px2)-px1*(py1-py2))+
(px1-px2)*(ex1*(ey1-ey2)-ey1*(ex1-ex2));
delY = (ey1-ey2)*(px1*(py1-py2)-py1*(px1-px2))+
double delY = (ey1-ey2)*(px1*(py1-py2)-py1*(px1-px2))+
(py1-py2)*(ey1*(ex1-ex2)-ex1*(ey1-ey2));
cross->x = (float)( delX / del);

@ -1159,10 +1159,9 @@ int cvTestSeqGetObjectPos(CvTestSeq* pTestSeq, int ObjIndex, CvPoint2D32f* pPos)
if(p && p->pPos && p->PosNum>0)
{
CvTSTrans* pTrans;
float t;
int frame = pTS->CurFrame - p->FrameBegin - 1;
if(frame < 0 || frame >= p->FrameNum) return 0;
t = (p->FrameNum>1)?((float)frame / (p->FrameNum-1)):0;
//float t = (p->FrameNum>1)?((float)frame / (p->FrameNum-1)):0;
pTrans = p->pTrans + frame%p->TransNum;
pPos[0] = p->pPos[frame%p->PosNum];
@ -1210,12 +1209,11 @@ int cvTestSeqGetObjectSize(CvTestSeq* pTestSeq, int ObjIndex, CvPoint2D32f* pSiz
if(p && p->pSize && p->SizeNum>0)
{
CvTSTrans* pTrans;
float t;
int frame = pTS->CurFrame - p->FrameBegin - 1;
if(frame < 0 || frame >= p->FrameNum) return 0;
t = (p->FrameNum>1)?((float)frame / (p->FrameNum-1)):0;
//float t = (p->FrameNum>1)?((float)frame / (p->FrameNum-1)):0;
pTrans = p->pTrans + frame%p->TransNum;
pSize[0] = p->pSize[frame%p->SizeNum];

@ -2169,7 +2169,7 @@ void icvReconstructPointsFor3View( CvMat* projMatr1,CvMat* projMatr2,CvMat* proj
/* Points was reconstructed. Try to reproject points */
/* We can compute reprojection error if need */
{
/*{
int i;
CvMat point3D;
double point3D_dat[4];
@ -2188,7 +2188,7 @@ void icvReconstructPointsFor3View( CvMat* projMatr1,CvMat* projMatr2,CvMat* proj
point3D_dat[2] = cvmGet(points4D,2,i)/W;
point3D_dat[3] = 1;
/* !!! Project this point for each camera */
// !!! Project this point for each camera
for( int currCamera = 0; currCamera < 3; currCamera++ )
{
cvmMul(projMatrs[currCamera], &point3D, &point2D);
@ -2207,7 +2207,7 @@ void icvReconstructPointsFor3View( CvMat* projMatr1,CvMat* projMatr2,CvMat* proj
deltaY = (float)fabs(y-yr);
}
}
}
}*/
__END__;
return;
@ -2537,8 +2537,7 @@ void FindTransformForProjectMatrices(CvMat* projMatr1,CvMat* projMatr2,CvMat* ro
double resVect_dat[12];
resVect = cvMat(12,1,CV_64F,resVect_dat);
int sing;
sing = cvSolve(&matrA,&vectB,&resVect);
cvSolve(&matrA,&vectB,&resVect);
/* Fill rotation matrix */
for( i = 0; i < 12; i++ )

@ -433,14 +433,14 @@ cvInitFaceTracker(CvFaceTracker* pFaceTracker, const IplImage* imgGray, CvRect*
(nRects < NUM_FACE_ELEMENTS))
return NULL;
int new_face = FALSE;
//int new_face = FALSE;
CvFaceTracker* pFace = pFaceTracker;
if (NULL == pFace)
{
pFace = new CvFaceTracker;
if (NULL == pFace)
return NULL;
new_face = TRUE;
//new_face = TRUE;
}
pFace->Init(pRects, (IplImage*)imgGray);
return pFace;

@ -1249,13 +1249,11 @@ CvBoost::update_weights( CvBoostTree* tree )
// recent weak classifier we know the responses. For other samples we need to compute them
if( have_subsample )
{
float* values0, *values = (float*)cur_buf_pos;
float* values = (float*)cur_buf_pos;
cur_buf_pos = (uchar*)(values + data->buf->step);
uchar* missing0, *missing = cur_buf_pos;
uchar* missing = cur_buf_pos;
cur_buf_pos = missing + data->buf->step;
CvMat _sample, _mask;
values0 = values;
missing0 = missing;
// invert the subsample mask
cvXorS( subsample_mask, cvScalar(1.), subsample_mask );

@ -697,28 +697,18 @@ float CvRTrees::predict( const CvMat* sample, const CvMat* missing ) const
float CvRTrees::predict_prob( const CvMat* sample, const CvMat* missing) const
{
double result = -1;
int k;
if( nclasses == 2 ) //classification
{
int max_nvotes = 0;
cv::AutoBuffer<int> _votes(nclasses);
int* votes = _votes;
memset( votes, 0, sizeof(*votes)*nclasses );
for( k = 0; k < ntrees; k++ )
for( int k = 0; k < ntrees; k++ )
{
CvDTreeNode* predicted_node = trees[k]->predict( sample, missing );
int nvotes;
int class_idx = predicted_node->class_idx;
CV_Assert( 0 <= class_idx && class_idx < nclasses );
nvotes = ++votes[class_idx];
if( nvotes > max_nvotes )
{
max_nvotes = nvotes;
result = predicted_node->value;
}
++votes[class_idx];
}
return float(votes[1])/ntrees;

@ -391,7 +391,6 @@ float ann_calc_error( CvANN_MLP* ann, CvMLData* _data, map<int, int>& cls_map, i
int cls_count = (int)cls_map.size();
Mat output( 1, cls_count, CV_32FC1 );
CvMat _output = CvMat(output);
map<int, int>::iterator b_it = cls_map.begin();
for( int i = 0; i < sample_count; i++ )
{
CvMat sample;

@ -898,7 +898,7 @@ void CV_DescriptorMatcherTest::radiusMatchTest( const Mat& query, const Mat& tra
dmatcher->radiusMatch( query, matches, radius, masks );
int curRes = cvtest::TS::OK;
//int curRes = cvtest::TS::OK;
if( (int)matches.size() != queryDescCount )
{
ts->printf(cvtest::TS::LOG, "Incorrect matches count while test radiusMatch() function (1).\n");
@ -938,7 +938,6 @@ void CV_DescriptorMatcherTest::radiusMatchTest( const Mat& query, const Mat& tra
}
if( (float)badCount > (float)queryDescCount*badPart )
{
curRes = cvtest::TS::FAIL_INVALID_OUTPUT;
ts->printf( cvtest::TS::LOG, "%f - too large bad matches part while test radiusMatch() function (2).\n",
(float)badCount/(float)queryDescCount );
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );

@ -169,7 +169,7 @@ int Sampler::hasbars()
void Sampler::timing()
{
uchar light, dark = getpixel(9, 0);
/*uchar light, dark = getpixel(9, 0);
for (int i = 1; i < 3; i += 2) {
light = getpixel(9, i);
// if (light <= dark)
@ -177,7 +177,7 @@ void Sampler::timing()
dark = getpixel(9, i + 1);
// if (up <= down)
// goto endo;
}
}*/
}
CvMat *Sampler::extract()
@ -528,8 +528,8 @@ namespace
line(image, code.corners[2], code.corners[3], c);
line(image, code.corners[3], code.corners[0], c);
string code_text(code.msg,4);
int baseline = 0;
Size sz = getTextSize(code_text, CV_FONT_HERSHEY_SIMPLEX, 1, 1, &baseline);
//int baseline = 0;
//Size sz = getTextSize(code_text, CV_FONT_HERSHEY_SIMPLEX, 1, 1, &baseline);
putText(image, code_text, code.corners[0], CV_FONT_HERSHEY_SIMPLEX, 0.8, c2, 1, CV_AA, false);
}
cv::Mat& image;

@ -657,8 +657,6 @@ CV_IMPL int
cvRunHaarClassifierCascadeSum( const CvHaarClassifierCascade* _cascade,
CvPoint pt, double& stage_sum, int start_stage )
{
int result = -1;
int p_offset, pq_offset;
int i, j;
double mean, variance_norm_factor;
@ -690,12 +688,9 @@ cvRunHaarClassifierCascadeSum( const CvHaarClassifierCascade* _cascade,
if( cascade->is_tree )
{
CvHidHaarStageClassifier* ptr;
CvHidHaarStageClassifier* ptr = cascade->stage_classifier;
assert( start_stage == 0 );
result = 1;
ptr = cascade->stage_classifier;
while( ptr )
{
stage_sum = 0.0;

@ -929,7 +929,9 @@ void orUnaligned8u(const uchar * src, const int src_stride,
{
#if CV_SSE2
volatile bool haveSSE2 = checkHardwareSupport(CV_CPU_SSE2);
#if CV_SSE3
volatile bool haveSSE3 = checkHardwareSupport(CV_CPU_SSE3);
#endif
bool src_aligned = reinterpret_cast<unsigned long long>(src) % 16 == 0;
#endif
@ -1203,7 +1205,9 @@ void similarity(const std::vector<Mat>& linear_memories, const Template& templ,
#if CV_SSE2
volatile bool haveSSE2 = checkHardwareSupport(CV_CPU_SSE2);
#if CV_SSE3
volatile bool haveSSE3 = checkHardwareSupport(CV_CPU_SSE3);
#endif
#endif
// Compute the similarity measure for this template by accumulating the contribution of
@ -1281,7 +1285,9 @@ void similarityLocal(const std::vector<Mat>& linear_memories, const Template& te
#if CV_SSE2
volatile bool haveSSE2 = checkHardwareSupport(CV_CPU_SSE2);
#if CV_SSE3
volatile bool haveSSE3 = checkHardwareSupport(CV_CPU_SSE3);
#endif
__m128i* dst_ptr_sse = dst.ptr<__m128i>();
#endif

@ -345,7 +345,7 @@ static bool pyopencv_to(PyObject* obj, size_t& value, const char* name = "<unkno
if(!obj || obj == Py_None)
return true;
value = (int)PyLong_AsUnsignedLong(obj);
return value != -1 || !PyErr_Occurred();
return value != (size_t)-1 || !PyErr_Occurred();
}
static PyObject* pyopencv_from(int value)

@ -61,13 +61,9 @@ cvUpdateMotionHistory( const void* silhouette, void* mhimg,
CvSize size = cvGetMatSize( mhi );
int mhi_step = mhi->step;
int silh_step = silh->step;
if( CV_IS_MAT_CONT( mhi->type & silh->type ))
{
size.width *= size.height;
mhi_step = silh_step = CV_STUB_STEP;
size.height = 1;
}

@ -189,7 +189,7 @@ void CV_OptFlowPyrLKTest::run( int )
if( max_err > 1 )
{
ts->printf( cvtest::TS::LOG, "Maximum tracking error is too big (=%g)\n", max_err );
ts->printf( cvtest::TS::LOG, "Maximum tracking error is too big (=%g) at %d\n", max_err, merr_i );
code = cvtest::TS::FAIL_BAD_ACCURACY;
goto _exit_;
}

@ -68,7 +68,7 @@ int main( int argc, char** argv )
for ( int j = 0; j < (int)r.size(); j++ )
{
Point pt = r[j];
img.at<Vec3b>(r[j]) = bcolors[i%9];
img.at<Vec3b>(pt) = bcolors[i%9];
}
// find ellipse (it seems cvfitellipse2 have error or sth?)

@ -39,7 +39,6 @@ namespace
{
Point2f pt_new = query[matches[i].queryIdx].pt;
Point2f pt_old = train[matches[i].trainIdx].pt;
Point2f dist = pt_new - pt_old;
cv::line(img, pt_new, pt_old, Scalar(125, 255, 125), 1);
cv::circle(img, pt_new, 2, Scalar(255, 0, 125), 1);

Loading…
Cancel
Save