From 844bdea5acc7c2ac4739447e6efb924e2de1176b Mon Sep 17 00:00:00 2001 From: Vladislav Vinogradov Date: Mon, 19 Mar 2012 14:18:12 +0000 Subject: [PATCH] fixed several bugs in gpu arithm functions refactored tests for them --- modules/gpu/include/opencv2/gpu/gpu.hpp | 4 +- modules/gpu/src/cuda/element_operations.cu | 114 +- modules/gpu/src/element_operations.cpp | 240 ++- modules/gpu/test/test_arithm.cpp | 1992 ++++++++++++++------ modules/gpu/test/utility.hpp | 31 +- 5 files changed, 1601 insertions(+), 780 deletions(-) diff --git a/modules/gpu/include/opencv2/gpu/gpu.hpp b/modules/gpu/include/opencv2/gpu/gpu.hpp index 98c838bd55..e377063993 100644 --- a/modules/gpu/include/opencv2/gpu/gpu.hpp +++ b/modules/gpu/include/opencv2/gpu/gpu.hpp @@ -638,11 +638,11 @@ CV_EXPORTS void bitwise_xor(const GpuMat& src1, const Scalar& sc, GpuMat& dst, S //! pixel by pixel right shift of an image by a constant value //! supports 1, 3 and 4 channels images with integers elements -CV_EXPORTS void rshift(const GpuMat& src, const Scalar& sc, GpuMat& dst, Stream& stream = Stream::Null()); +CV_EXPORTS void rshift(const GpuMat& src, Scalar_ sc, GpuMat& dst, Stream& stream = Stream::Null()); //! pixel by pixel left shift of an image by a constant value //! supports 1, 3 and 4 channels images with CV_8U, CV_16U or CV_32S depth -CV_EXPORTS void lshift(const GpuMat& src, const Scalar& sc, GpuMat& dst, Stream& stream = Stream::Null()); +CV_EXPORTS void lshift(const GpuMat& src, Scalar_ sc, GpuMat& dst, Stream& stream = Stream::Null()); //! computes per-element minimum of two arrays (dst = min(src1, src2)) CV_EXPORTS void min(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream = Stream::Null()); diff --git a/modules/gpu/src/cuda/element_operations.cu b/modules/gpu/src/cuda/element_operations.cu index 27136d5ce3..f5e8459091 100644 --- a/modules/gpu/src/cuda/element_operations.cu +++ b/modules/gpu/src/cuda/element_operations.cu @@ -47,7 +47,7 @@ #include "opencv2/gpu/device/limits.hpp" #include "opencv2/gpu/device/saturate_cast.hpp" -namespace cv { namespace gpu { namespace device +namespace cv { namespace gpu { namespace device { ////////////////////////////////////////////////////////////////////////// // add @@ -684,7 +684,7 @@ namespace cv { namespace gpu { namespace device __device__ __forceinline__ uchar4 operator ()(uchar4 a, float b) const { return b != 0 ? make_uchar4(saturate_cast(a.x / b), saturate_cast(a.y / b), - saturate_cast(a.z / b), saturate_cast(a.w / b)) + saturate_cast(a.z / b), saturate_cast(a.w / b)) : make_uchar4(0,0,0,0); } }; @@ -706,8 +706,8 @@ namespace cv { namespace gpu { namespace device { __device__ __forceinline__ short4 operator ()(short4 a, float b) const { - return b != 0 ? make_short4(saturate_cast(a.x / b), saturate_cast(a.y / b), - saturate_cast(a.z / b), saturate_cast(a.w / b)) + return b != 0 ? make_short4(saturate_cast(a.x / b), saturate_cast(a.y / b), + saturate_cast(a.z / b), saturate_cast(a.w / b)) : make_short4(0,0,0,0); } }; @@ -1106,10 +1106,10 @@ namespace cv { namespace gpu { namespace device //template void absdiff_gpu(const DevMem2Db& src1, double src2, const DevMem2Db& dst, cudaStream_t stream); template void absdiff_gpu(const DevMem2Db& src1, double src2, const DevMem2Db& dst, cudaStream_t stream); - //template void absdiff_gpu(const DevMem2Db& src1, double src2, const DevMem2Db& dst, cudaStream_t stream); + //template void absdiff_gpu(const DevMem2Db& src1, double src2, const DevMem2Db& dst, cudaStream_t stream); template void absdiff_gpu(const DevMem2Db& src1, double src2, const DevMem2Db& dst, cudaStream_t stream); - template void absdiff_gpu(const DevMem2Db& src1, double src2, const DevMem2Db& dst, cudaStream_t stream); - //template void absdiff_gpu(const DevMem2Db& src1, double src2, const DevMem2Db& dst, cudaStream_t stream); + template void absdiff_gpu(const DevMem2Db& src1, double src2, const DevMem2Db& dst, cudaStream_t stream); + //template void absdiff_gpu(const DevMem2Db& src1, double src2, const DevMem2Db& dst, cudaStream_t stream); template void absdiff_gpu(const DevMem2Db& src1, double src2, const DevMem2Db& dst, cudaStream_t stream); ////////////////////////////////////////////////////////////////////////////////////// @@ -1251,7 +1251,7 @@ namespace cv { namespace gpu { namespace device template struct UnOp - { + { static __device__ __forceinline__ T call(T v) { return ~v; } }; @@ -1262,7 +1262,7 @@ namespace cv { namespace gpu { namespace device const int x = (blockDim.x * blockIdx.x + threadIdx.x) * 4; const int y = blockDim.y * blockIdx.y + threadIdx.y; - if (y < rows) + if (y < rows) { uchar* dst_ptr = dst.ptr(y) + x; const uchar* src_ptr = src.ptr(y) + x; @@ -1283,29 +1283,29 @@ namespace cv { namespace gpu { namespace device template - void bitwiseUnOp(int rows, int width, const PtrStepb src, PtrStepb dst, + void bitwiseUnOp(int rows, int width, const PtrStepb src, PtrStepb dst, cudaStream_t stream) { dim3 threads(16, 16); - dim3 grid(divUp(width, threads.x * sizeof(uint)), + dim3 grid(divUp(width, threads.x * sizeof(uint)), divUp(rows, threads.y)); bitwiseUnOpKernel<<>>(rows, width, src, dst); cudaSafeCall( cudaGetLastError() ); - if (stream == 0) + if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } template - __global__ void bitwiseUnOpKernel(int rows, int cols, int cn, const PtrStepb src, + __global__ void bitwiseUnOpKernel(int rows, int cols, int cn, const PtrStepb src, const PtrStepb mask, PtrStepb dst) { const int x = blockDim.x * blockIdx.x + threadIdx.x; const int y = blockDim.y * blockIdx.y + threadIdx.y; - if (x < cols && y < rows && mask.ptr(y)[x / cn]) + if (x < cols && y < rows && mask.ptr(y)[x / cn]) { T* dst_row = (T*)dst.ptr(y); const T* src_row = (const T*)src.ptr(y); @@ -1316,21 +1316,21 @@ namespace cv { namespace gpu { namespace device template - void bitwiseUnOp(int rows, int cols, int cn, const PtrStepb src, + void bitwiseUnOp(int rows, int cols, int cn, const PtrStepb src, const PtrStepb mask, PtrStepb dst, cudaStream_t stream) { dim3 threads(16, 16); dim3 grid(divUp(cols, threads.x), divUp(rows, threads.y)); - bitwiseUnOpKernel<<>>(rows, cols, cn, src, mask, dst); + bitwiseUnOpKernel<<>>(rows, cols, cn, src, mask, dst); cudaSafeCall( cudaGetLastError() ); - if (stream == 0) + if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } - void bitwiseNotCaller(int rows, int cols, size_t elem_size1, int cn, + void bitwiseNotCaller(int rows, int cols, size_t elem_size1, int cn, const PtrStepb src, PtrStepb dst, cudaStream_t stream) { bitwiseUnOp(rows, static_cast(cols * elem_size1 * cn), src, dst, stream); @@ -1338,7 +1338,7 @@ namespace cv { namespace gpu { namespace device template - void bitwiseMaskNotCaller(int rows, int cols, int cn, const PtrStepb src, + void bitwiseMaskNotCaller(int rows, int cols, int cn, const PtrStepb src, const PtrStepb mask, PtrStepb dst, cudaStream_t stream) { bitwiseUnOp(rows, cols * cn, cn, src, mask, dst, stream); @@ -1359,32 +1359,32 @@ namespace cv { namespace gpu { namespace device template struct BinOp - { - static __device__ __forceinline__ T call(T a, T b) { return a | b; } + { + static __device__ __forceinline__ T call(T a, T b) { return a | b; } }; template struct BinOp - { - static __device__ __forceinline__ T call(T a, T b) { return a & b; } + { + static __device__ __forceinline__ T call(T a, T b) { return a & b; } }; template struct BinOp - { - static __device__ __forceinline__ T call(T a, T b) { return a ^ b; } + { + static __device__ __forceinline__ T call(T a, T b) { return a ^ b; } }; template - __global__ void bitwiseBinOpKernel(int rows, int width, const PtrStepb src1, + __global__ void bitwiseBinOpKernel(int rows, int width, const PtrStepb src1, const PtrStepb src2, PtrStepb dst) { const int x = (blockDim.x * blockIdx.x + threadIdx.x) * 4; const int y = blockDim.y * blockIdx.y + threadIdx.y; - if (y < rows) + if (y < rows) { uchar* dst_ptr = dst.ptr(y) + x; const uchar* src1_ptr = src1.ptr(y) + x; @@ -1407,7 +1407,7 @@ namespace cv { namespace gpu { namespace device template - void bitwiseBinOp(int rows, int width, const PtrStepb src1, const PtrStepb src2, + void bitwiseBinOp(int rows, int width, const PtrStepb src1, const PtrStepb src2, PtrStepb dst, cudaStream_t stream) { dim3 threads(16, 16); @@ -1416,20 +1416,20 @@ namespace cv { namespace gpu { namespace device bitwiseBinOpKernel<<>>(rows, width, src1, src2, dst); cudaSafeCall( cudaGetLastError() ); - if (stream == 0) + if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } template __global__ void bitwiseBinOpKernel( - int rows, int cols, int cn, const PtrStepb src1, const PtrStepb src2, + int rows, int cols, int cn, const PtrStepb src1, const PtrStepb src2, const PtrStepb mask, PtrStepb dst) { const int x = blockDim.x * blockIdx.x + threadIdx.x; const int y = blockDim.y * blockIdx.y + threadIdx.y; - if (x < cols && y < rows && mask.ptr(y)[x / cn]) + if (x < cols && y < rows && mask.ptr(y)[x / cn]) { T* dst_row = (T*)dst.ptr(y); const T* src1_row = (const T*)src1.ptr(y); @@ -1441,7 +1441,7 @@ namespace cv { namespace gpu { namespace device template - void bitwiseBinOp(int rows, int cols, int cn, const PtrStepb src1, const PtrStepb src2, + void bitwiseBinOp(int rows, int cols, int cn, const PtrStepb src1, const PtrStepb src2, const PtrStepb mask, PtrStepb dst, cudaStream_t stream) { dim3 threads(16, 16); @@ -1450,12 +1450,12 @@ namespace cv { namespace gpu { namespace device bitwiseBinOpKernel<<>>(rows, cols, cn, src1, src2, mask, dst); cudaSafeCall( cudaGetLastError() ); - if (stream == 0) + if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } - void bitwiseOrCaller(int rows, int cols, size_t elem_size1, int cn, const PtrStepb src1, + void bitwiseOrCaller(int rows, int cols, size_t elem_size1, int cn, const PtrStepb src1, const PtrStepb src2, PtrStepb dst, cudaStream_t stream) { bitwiseBinOp(rows, static_cast(cols * elem_size1 * cn), src1, src2, dst, stream); @@ -1463,7 +1463,7 @@ namespace cv { namespace gpu { namespace device template - void bitwiseMaskOrCaller(int rows, int cols, int cn, const PtrStepb src1, const PtrStepb src2, + void bitwiseMaskOrCaller(int rows, int cols, int cn, const PtrStepb src1, const PtrStepb src2, const PtrStepb mask, PtrStepb dst, cudaStream_t stream) { bitwiseBinOp(rows, cols * cn, cn, src1, src2, mask, dst, stream); @@ -1474,7 +1474,7 @@ namespace cv { namespace gpu { namespace device template void bitwiseMaskOrCaller(int, int, int, const PtrStepb, const PtrStepb, const PtrStepb, PtrStepb, cudaStream_t); - void bitwiseAndCaller(int rows, int cols, size_t elem_size1, int cn, const PtrStepb src1, + void bitwiseAndCaller(int rows, int cols, size_t elem_size1, int cn, const PtrStepb src1, const PtrStepb src2, PtrStepb dst, cudaStream_t stream) { bitwiseBinOp(rows, static_cast(cols * elem_size1 * cn), src1, src2, dst, stream); @@ -1482,7 +1482,7 @@ namespace cv { namespace gpu { namespace device template - void bitwiseMaskAndCaller(int rows, int cols, int cn, const PtrStepb src1, const PtrStepb src2, + void bitwiseMaskAndCaller(int rows, int cols, int cn, const PtrStepb src1, const PtrStepb src2, const PtrStepb mask, PtrStepb dst, cudaStream_t stream) { bitwiseBinOp(rows, cols * cn, cn, src1, src2, mask, dst, stream); @@ -1493,7 +1493,7 @@ namespace cv { namespace gpu { namespace device template void bitwiseMaskAndCaller(int, int, int, const PtrStepb, const PtrStepb, const PtrStepb, PtrStepb, cudaStream_t); - void bitwiseXorCaller(int rows, int cols, size_t elem_size1, int cn, const PtrStepb src1, + void bitwiseXorCaller(int rows, int cols, size_t elem_size1, int cn, const PtrStepb src1, const PtrStepb src2, PtrStepb dst, cudaStream_t stream) { bitwiseBinOp(rows, static_cast(cols * elem_size1 * cn), src1, src2, dst, stream); @@ -1501,7 +1501,7 @@ namespace cv { namespace gpu { namespace device template - void bitwiseMaskXorCaller(int rows, int cols, int cn, const PtrStepb src1, const PtrStepb src2, + void bitwiseMaskXorCaller(int rows, int cols, int cn, const PtrStepb src1, const PtrStepb src2, const PtrStepb mask, PtrStepb dst, cudaStream_t stream) { bitwiseBinOp(rows, cols * cn, cn, src1, src2, mask, dst, stream); @@ -1546,7 +1546,7 @@ namespace cv { namespace gpu { namespace device template void min_gpu(const DevMem2D_& src1, const DevMem2D_& src2, const DevMem2D_& dst, cudaStream_t stream) { - cv::gpu::device::transform(src1, src2, dst, minimum(), WithOutMask(), stream); + cv::gpu::device::transform(src1, src2, dst, minimum(), WithOutMask(), stream); } template void min_gpu(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream); @@ -1560,7 +1560,7 @@ namespace cv { namespace gpu { namespace device template void max_gpu(const DevMem2D_& src1, const DevMem2D_& src2, const DevMem2D_& dst, cudaStream_t stream) { - cv::gpu::device::transform(src1, src2, dst, maximum(), WithOutMask(), stream); + cv::gpu::device::transform(src1, src2, dst, maximum(), WithOutMask(), stream); } template void max_gpu(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream); @@ -1574,7 +1574,7 @@ namespace cv { namespace gpu { namespace device template void min_gpu(const DevMem2D_& src1, T src2, const DevMem2D_& dst, cudaStream_t stream) { - cv::gpu::device::transform(src1, dst, device::bind2nd(minimum(), src2), WithOutMask(), stream); + cv::gpu::device::transform(src1, dst, device::bind2nd(minimum(), src2), WithOutMask(), stream); } template void min_gpu(const DevMem2Db& src1, uchar src2, const DevMem2Db& dst, cudaStream_t stream); @@ -1588,7 +1588,7 @@ namespace cv { namespace gpu { namespace device template void max_gpu(const DevMem2D_& src1, T src2, const DevMem2D_& dst, cudaStream_t stream) { - cv::gpu::device::transform(src1, dst, device::bind2nd(maximum(), src2), WithOutMask(), stream); + cv::gpu::device::transform(src1, dst, device::bind2nd(maximum(), src2), WithOutMask(), stream); } template void max_gpu(const DevMem2Db& src1, uchar src2, const DevMem2Db& dst, cudaStream_t stream); @@ -1647,12 +1647,12 @@ namespace cv { namespace gpu { namespace device { typedef void (*caller_t)(const DevMem2D_& src, const DevMem2D_& dst, T thresh, T maxVal, cudaStream_t stream); - static const caller_t callers[] = + static const caller_t callers[] = { - threshold_caller, - threshold_caller, - threshold_caller, - threshold_caller, + threshold_caller, + threshold_caller, + threshold_caller, + threshold_caller, threshold_caller }; @@ -1671,14 +1671,14 @@ namespace cv { namespace gpu { namespace device // pow template::is_signed> struct PowOp : unary_function - { + { float power; PowOp(float power_) : power(power_) {} - + __device__ __forceinline__ T operator()(const T& e) const - { + { return saturate_cast(__powf((float)e, power)); - } + } }; template struct PowOp : unary_function @@ -1688,11 +1688,11 @@ namespace cv { namespace gpu { namespace device __device__ __forceinline__ float operator()(const T& e) const { - T res = saturate_cast(__powf((float)e, power)); - + T res = saturate_cast(__powf((float)e, power)); + if ( (e < 0) && (1 & (int)power) ) - res *= -1; - return res; + res *= -1; + return res; } }; @@ -1736,7 +1736,7 @@ namespace cv { namespace gpu { namespace device void pow_caller(const DevMem2Db& src, float power, DevMem2Db dst, cudaStream_t stream) { cv::gpu::device::transform((DevMem2D_)src, (DevMem2D_)dst, PowOp(power), WithOutMask(), stream); - } + } template void pow_caller(const DevMem2Db& src, float power, DevMem2Db dst, cudaStream_t stream); template void pow_caller(const DevMem2Db& src, float power, DevMem2Db dst, cudaStream_t stream); diff --git a/modules/gpu/src/element_operations.cpp b/modules/gpu/src/element_operations.cpp index 35926f1b9a..9abe173ae8 100644 --- a/modules/gpu/src/element_operations.cpp +++ b/modules/gpu/src/element_operations.cpp @@ -71,8 +71,8 @@ void cv::gpu::bitwise_and(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&, void cv::gpu::bitwise_and(const GpuMat&, const Scalar&, GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::bitwise_xor(const GpuMat&, const GpuMat&, GpuMat&, const GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::bitwise_xor(const GpuMat&, const Scalar&, GpuMat&, Stream&) { throw_nogpu(); } -void cv::gpu::rshift(const GpuMat&, const Scalar&, GpuMat&, Stream&) { throw_nogpu(); } -void cv::gpu::lshift(const GpuMat&, const Scalar&, GpuMat&, Stream&) { throw_nogpu(); } +void cv::gpu::rshift(const GpuMat&, Scalar_, GpuMat&, Stream&) { throw_nogpu(); } +void cv::gpu::lshift(const GpuMat&, Scalar_, GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::min(const GpuMat&, const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::min(const GpuMat&, double, GpuMat&, Stream&) { throw_nogpu(); } void cv::gpu::max(const GpuMat&, const GpuMat&, GpuMat&, Stream&) { throw_nogpu(); } @@ -101,11 +101,11 @@ namespace template struct NppArithmFunc { typedef typename NppTypeTraits::npp_t npp_t; - + typedef NppStatus (*func_t)(const npp_t* pSrc1, int nSrc1Step, const npp_t* pSrc2, int nSrc2Step, npp_t* pDst, int nDstStep, NppiSize oSizeROI, int nScaleFactor); }; template <> struct NppArithmFunc - { + { typedef NppTypeTraits::npp_t npp_t; typedef NppStatus (*func_t)(const Npp32f* pSrc1, int nSrc1Step, const Npp32f* pSrc2, int nSrc2Step, Npp32f* pDst, int nDstStep, NppiSize oSizeROI); @@ -123,7 +123,7 @@ namespace sz.width = src1.cols; sz.height = src1.rows; - nppSafeCall( func((const npp_t*)src1.data, static_cast(src1.step), (const npp_t*)src2.data, static_cast(src2.step), + nppSafeCall( func((const npp_t*)src1.data, static_cast(src1.step), (const npp_t*)src2.data, static_cast(src2.step), (npp_t*)dst.data, static_cast(dst.step), sz, 0) ); if (stream == 0) @@ -145,8 +145,8 @@ namespace NppiSize sz; sz.width = src1.cols; sz.height = src1.rows; - - nppSafeCall( func((const npp_t*)src1.data, static_cast(src1.step), (const npp_t*)src2.data, static_cast(src2.step), + + nppSafeCall( func((const npp_t*)src1.data, static_cast(src1.step), (const npp_t*)src2.data, static_cast(src2.step), (npp_t*)dst.data, static_cast(dst.step), sz) ); if (stream == 0) @@ -162,12 +162,12 @@ namespace //////////////////////////////////////////////////////////////////////// // add -namespace cv { namespace gpu { namespace device +namespace cv { namespace gpu { namespace device { - template + template void add_gpu(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, const PtrStepb& mask, cudaStream_t stream); - template + template void add_gpu(const DevMem2Db& src1, double val, const DevMem2Db& dst, const PtrStepb& mask, cudaStream_t stream); }}} @@ -177,7 +177,7 @@ void cv::gpu::add(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const Gpu typedef void (*func_t)(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, const PtrStepb& mask, cudaStream_t stream); - static const func_t funcs[7][7] = + static const func_t funcs[7][7] = { {add_gpu, 0/*add_gpu*/, add_gpu, add_gpu, add_gpu, add_gpu, add_gpu}, {0/*add_gpu*/, 0/*add_gpu*/, 0/*add_gpu*/, 0/*add_gpu*/, 0/*add_gpu*/, 0/*add_gpu*/, 0/*add_gpu*/}, @@ -188,7 +188,7 @@ void cv::gpu::add(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, const Gpu {0/*add_gpu*/, 0/*add_gpu*/, 0/*add_gpu*/, 0/*add_gpu*/, 0/*add_gpu*/, 0/*add_gpu*/, add_gpu} }; - static const func_t npp_funcs[7] = + static const func_t npp_funcs[7] = { NppArithm::call, 0, @@ -228,21 +228,21 @@ namespace { typedef typename NppTypeTraits::npp_t npp_t; - typedef NppStatus (*func_ptr)(const npp_t* pSrc1, int nSrc1Step, const npp_t* pConstants, + typedef NppStatus (*func_ptr)(const npp_t* pSrc1, int nSrc1Step, const npp_t* pConstants, npp_t* pDst, int nDstStep, NppiSize oSizeROI, int nScaleFactor); }; template struct NppArithmScalarFunc { typedef typename NppTypeTraits::npp_t npp_t; - typedef NppStatus (*func_ptr)(const npp_t* pSrc1, int nSrc1Step, const npp_t pConstants, + typedef NppStatus (*func_ptr)(const npp_t* pSrc1, int nSrc1Step, const npp_t pConstants, npp_t* pDst, int nDstStep, NppiSize oSizeROI, int nScaleFactor); }; template struct NppArithmScalarFunc { typedef typename NppTypeTraits::npp_complex_type npp_complex_type; - typedef NppStatus (*func_ptr)(const npp_complex_type* pSrc1, int nSrc1Step, const npp_complex_type pConstants, + typedef NppStatus (*func_ptr)(const npp_complex_type* pSrc1, int nSrc1Step, const npp_complex_type pConstants, npp_complex_type* pDst, int nDstStep, NppiSize oSizeROI, int nScaleFactor); }; template struct NppArithmScalarFunc @@ -313,7 +313,7 @@ namespace nConstant.re = saturate_cast(sc.val[0]); nConstant.im = saturate_cast(sc.val[1]); - nppSafeCall( func(src.ptr(), static_cast(src.step), nConstant, + nppSafeCall( func(src.ptr(), static_cast(src.step), nConstant, dst.ptr(), static_cast(dst.step), sz, 0) ); if (stream == 0) @@ -382,7 +382,7 @@ void cv::gpu::add(const GpuMat& src, const Scalar& sc, GpuMat& dst, const GpuMat typedef void (*func_t)(const DevMem2Db& src1, double val, const DevMem2Db& dst, const PtrStepb& mask, cudaStream_t stream); - static const func_t funcs[7][7] = + static const func_t funcs[7][7] = { {add_gpu, 0/*add_gpu*/, add_gpu, add_gpu, add_gpu, add_gpu, add_gpu}, {0/*add_gpu*/, 0/*add_gpu*/, 0/*add_gpu*/, 0/*add_gpu*/, 0/*add_gpu*/, 0/*add_gpu*/, 0/*add_gpu*/}, @@ -394,7 +394,7 @@ void cv::gpu::add(const GpuMat& src, const Scalar& sc, GpuMat& dst, const GpuMat }; typedef void (*npp_func_t)(const GpuMat& src, const Scalar& sc, GpuMat& dst, cudaStream_t stream); - static const npp_func_t npp_funcs[7][4] = + static const npp_func_t npp_funcs[7][4] = { {NppArithmScalar::call, 0, NppArithmScalar::call, NppArithmScalar::call}, {0,0,0,0}, @@ -436,12 +436,12 @@ void cv::gpu::add(const GpuMat& src, const Scalar& sc, GpuMat& dst, const GpuMat //////////////////////////////////////////////////////////////////////// // subtract -namespace cv { namespace gpu { namespace device +namespace cv { namespace gpu { namespace device { - template + template void subtract_gpu(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, const PtrStepb& mask, cudaStream_t stream); - template + template void subtract_gpu(const DevMem2Db& src1, double val, const DevMem2Db& dst, const PtrStepb& mask, cudaStream_t stream); }}} @@ -451,7 +451,7 @@ void cv::gpu::subtract(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cons typedef void (*func_t)(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, const PtrStepb& mask, cudaStream_t stream); - static const func_t funcs[7][7] = + static const func_t funcs[7][7] = { {subtract_gpu, 0/*subtract_gpu*/, subtract_gpu, subtract_gpu, subtract_gpu, subtract_gpu, subtract_gpu}, {0/*subtract_gpu*/, 0/*subtract_gpu*/, 0/*subtract_gpu*/, 0/*subtract_gpu*/, 0/*subtract_gpu*/, 0/*subtract_gpu*/, 0/*subtract_gpu*/}, @@ -462,15 +462,14 @@ void cv::gpu::subtract(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cons {0/*subtract_gpu*/, 0/*subtract_gpu*/, 0/*subtract_gpu*/, 0/*subtract_gpu*/, 0/*subtract_gpu*/, 0/*subtract_gpu*/, subtract_gpu} }; - static const func_t npp_funcs[7] = + static const func_t npp_funcs[6] = { NppArithm::call, 0, NppArithm::call, NppArithm::call, NppArithm::call, - NppArithm::call, - subtract_gpu + NppArithm::call }; CV_Assert(src1.type() != CV_8S); @@ -484,7 +483,7 @@ void cv::gpu::subtract(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cons cudaStream_t stream = StreamAccessor::getStream(s); - if (mask.empty() && dst.type() == src1.type()) + if (mask.empty() && dst.type() == src1.type() && src1.depth() <= CV_32F) { npp_funcs[src1.depth()](src2.reshape(1), src1.reshape(1), dst.reshape(1), PtrStepb(), stream); return; @@ -502,7 +501,7 @@ void cv::gpu::subtract(const GpuMat& src, const Scalar& sc, GpuMat& dst, const G typedef void (*func_t)(const DevMem2Db& src1, double val, const DevMem2Db& dst, const PtrStepb& mask, cudaStream_t stream); - static const func_t funcs[7][7] = + static const func_t funcs[7][7] = { {subtract_gpu, 0/*subtract_gpu*/, subtract_gpu, subtract_gpu, subtract_gpu, subtract_gpu, subtract_gpu}, {0/*subtract_gpu*/, 0/*subtract_gpu*/, 0/*subtract_gpu*/, 0/*subtract_gpu*/, 0/*subtract_gpu*/, 0/*subtract_gpu*/, 0/*subtract_gpu*/}, @@ -514,7 +513,7 @@ void cv::gpu::subtract(const GpuMat& src, const Scalar& sc, GpuMat& dst, const G }; typedef void (*npp_func_t)(const GpuMat& src, const Scalar& sc, GpuMat& dst, cudaStream_t stream); - static const npp_func_t npp_funcs[7][4] = + static const npp_func_t npp_funcs[7][4] = { {NppArithmScalar::call, 0, NppArithmScalar::call, NppArithmScalar::call}, {0,0,0,0}, @@ -556,15 +555,15 @@ void cv::gpu::subtract(const GpuMat& src, const Scalar& sc, GpuMat& dst, const G //////////////////////////////////////////////////////////////////////// // multiply -namespace cv { namespace gpu { namespace device +namespace cv { namespace gpu { namespace device { void multiply_gpu(const DevMem2D_& src1, const DevMem2Df& src2, const DevMem2D_& dst, cudaStream_t stream); void multiply_gpu(const DevMem2D_& src1, const DevMem2Df& src2, const DevMem2D_& dst, cudaStream_t stream); - template + template void multiply_gpu(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, double scale, cudaStream_t stream); - template + template void multiply_gpu(const DevMem2Db& src1, double val, const DevMem2Db& dst, double scale, cudaStream_t stream); }}} @@ -574,7 +573,7 @@ void cv::gpu::multiply(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, doub typedef void (*func_t)(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, double scale, cudaStream_t stream); - static const func_t funcs[7][7] = + static const func_t funcs[7][7] = { {multiply_gpu, 0/*multiply_gpu*/, multiply_gpu, multiply_gpu, multiply_gpu, multiply_gpu, multiply_gpu}, {0/*multiply_gpu*/, 0/*multiply_gpu*/, 0/*multiply_gpu*/, 0/*multiply_gpu*/, 0/*multiply_gpu*/, 0/*multiply_gpu*/, 0/*multiply_gpu*/}, @@ -585,7 +584,7 @@ void cv::gpu::multiply(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, doub {0/*multiply_gpu*/, 0/*multiply_gpu*/, 0/*multiply_gpu*/, 0/*multiply_gpu*/, 0/*multiply_gpu*/, 0/*multiply_gpu*/, multiply_gpu} }; - static const func_t npp_funcs[7] = + static const func_t npp_funcs[7] = { NppArithm::call, 0, @@ -651,7 +650,7 @@ void cv::gpu::multiply(const GpuMat& src, const Scalar& sc, GpuMat& dst, double typedef void (*func_t)(const DevMem2Db& src1, double val, const DevMem2Db& dst, double scale, cudaStream_t stream); - static const func_t funcs[7][7] = + static const func_t funcs[7][7] = { {multiply_gpu, 0/*multiply_gpu*/, multiply_gpu, multiply_gpu, multiply_gpu, multiply_gpu, multiply_gpu}, {0/*multiply_gpu*/, 0/*multiply_gpu*/, 0/*multiply_gpu*/, 0/*multiply_gpu*/, 0/*multiply_gpu*/, 0/*multiply_gpu*/, 0/*multiply_gpu*/}, @@ -663,7 +662,7 @@ void cv::gpu::multiply(const GpuMat& src, const Scalar& sc, GpuMat& dst, double }; typedef void (*npp_func_t)(const GpuMat& src, const Scalar& sc, GpuMat& dst, cudaStream_t stream); - static const npp_func_t npp_funcs[7][4] = + static const npp_func_t npp_funcs[7][4] = { {NppArithmScalar::call, 0, NppArithmScalar::call, NppArithmScalar::call}, {0,0,0,0}, @@ -702,18 +701,18 @@ void cv::gpu::multiply(const GpuMat& src, const Scalar& sc, GpuMat& dst, double //////////////////////////////////////////////////////////////////////// // divide -namespace cv { namespace gpu { namespace device +namespace cv { namespace gpu { namespace device { void divide_gpu(const DevMem2D_& src1, const DevMem2Df& src2, const DevMem2D_& dst, cudaStream_t stream); void divide_gpu(const DevMem2D_& src1, const DevMem2Df& src2, const DevMem2D_& dst, cudaStream_t stream); - template + template void divide_gpu(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, double scale, cudaStream_t stream); - template + template void divide_gpu(const DevMem2Db& src1, double val, const DevMem2Db& dst, double scale, cudaStream_t stream); - template + template void divide_gpu(double scalar, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream); }}} @@ -723,7 +722,7 @@ void cv::gpu::divide(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, double typedef void (*func_t)(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, double scale, cudaStream_t stream); - static const func_t funcs[7][7] = + static const func_t funcs[7][7] = { {divide_gpu, 0/*divide_gpu*/, divide_gpu, divide_gpu, divide_gpu, divide_gpu, divide_gpu}, {0/*divide_gpu*/, 0/*divide_gpu*/, 0/*divide_gpu*/, 0/*divide_gpu*/, 0/*divide_gpu*/, 0/*divide_gpu*/, 0/*divide_gpu*/}, @@ -734,15 +733,14 @@ void cv::gpu::divide(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, double {0/*divide_gpu*/, 0/*divide_gpu*/, 0/*divide_gpu*/, 0/*divide_gpu*/, 0/*divide_gpu*/, 0/*divide_gpu*/, divide_gpu} }; - static const func_t npp_funcs[7] = + static const func_t npp_funcs[6] = { NppArithm::call, 0, NppArithm::call, NppArithm::call, NppArithm::call, - NppArithm::call, - divide_gpu + NppArithm::call }; cudaStream_t stream = StreamAccessor::getStream(s); @@ -753,7 +751,7 @@ void cv::gpu::divide(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, double dst.create(src1.size(), src1.type()); - multiply_gpu(static_cast >(src1), static_cast(src2), static_cast >(dst), stream); + divide_gpu(static_cast >(src1), static_cast(src2), static_cast >(dst), stream); } else if (src1.type() == CV_16SC4 && src2.type() == CV_32FC1) { @@ -761,10 +759,10 @@ void cv::gpu::divide(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, double dst.create(src1.size(), src1.type()); - multiply_gpu(static_cast >(src1), static_cast(src2), static_cast >(dst), stream); + divide_gpu(static_cast >(src1), static_cast(src2), static_cast >(dst), stream); } else - { + { CV_Assert(src1.type() != CV_8S); CV_Assert(src1.type() == src2.type() && src1.size() == src2.size()); @@ -773,7 +771,7 @@ void cv::gpu::divide(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, double dst.create(src1.size(), CV_MAKE_TYPE(CV_MAT_DEPTH(dtype), src1.channels())); - if (scale == 1 && dst.type() == src1.type()) + if (scale == 1 && dst.type() == src1.type() && src1.depth() <= CV_32F) { npp_funcs[src1.depth()](src2.reshape(1), src1.reshape(1), dst.reshape(1), 1, stream); return; @@ -792,7 +790,7 @@ void cv::gpu::divide(const GpuMat& src, const Scalar& sc, GpuMat& dst, double sc typedef void (*func_t)(const DevMem2Db& src1, double val, const DevMem2Db& dst, double scale, cudaStream_t stream); - static const func_t funcs[7][7] = + static const func_t funcs[7][7] = { {divide_gpu, 0/*divide_gpu*/, divide_gpu, divide_gpu, divide_gpu, divide_gpu, divide_gpu}, {0/*divide_gpu*/, 0/*divide_gpu*/, 0/*divide_gpu*/, 0/*divide_gpu*/, 0/*divide_gpu*/, 0/*divide_gpu*/, 0/*divide_gpu*/}, @@ -804,7 +802,7 @@ void cv::gpu::divide(const GpuMat& src, const Scalar& sc, GpuMat& dst, double sc }; typedef void (*npp_func_t)(const GpuMat& src, const Scalar& sc, GpuMat& dst, cudaStream_t stream); - static const npp_func_t npp_funcs[7][4] = + static const npp_func_t npp_funcs[7][4] = { {NppArithmScalar::call, 0, NppArithmScalar::call, NppArithmScalar::call}, {0,0,0,0}, @@ -846,7 +844,7 @@ void cv::gpu::divide(double scale, const GpuMat& src, GpuMat& dst, int dtype, St typedef void (*func_t)(double scalar, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream); - static const func_t funcs[7][7] = + static const func_t funcs[7][7] = { {divide_gpu, 0/*divide_gpu*/, divide_gpu, divide_gpu, divide_gpu, divide_gpu, divide_gpu}, {0/*divide_gpu*/, 0/*divide_gpu*/, 0/*divide_gpu*/, 0/*divide_gpu*/, 0/*divide_gpu*/, 0/*divide_gpu*/, 0/*divide_gpu*/}, @@ -875,12 +873,12 @@ void cv::gpu::divide(double scale, const GpuMat& src, GpuMat& dst, int dtype, St ////////////////////////////////////////////////////////////////////////////// // absdiff -namespace cv { namespace gpu { namespace device +namespace cv { namespace gpu { namespace device { template void absdiff_gpu(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream); - template + template void absdiff_gpu(const DevMem2Db& src1, double val, const DevMem2Db& dst, cudaStream_t stream); }}} @@ -890,7 +888,7 @@ void cv::gpu::absdiff(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Strea typedef void (*func_t)(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream); - static const func_t funcs[] = + static const func_t funcs[] = { absdiff_gpu, absdiff_gpu, absdiff_gpu, absdiff_gpu, absdiff_gpu, absdiff_gpu, absdiff_gpu }; @@ -909,7 +907,7 @@ void cv::gpu::absdiff(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Strea { NppStreamHandler h(stream); - nppSafeCall( nppiAbsDiff_8u_C1R(src1.ptr(), static_cast(src1.step), src2.ptr(), static_cast(src2.step), + nppSafeCall( nppiAbsDiff_8u_C1R(src1.ptr(), static_cast(src1.step), src2.ptr(), static_cast(src2.step), dst.ptr(), static_cast(dst.step), sz) ); if (stream == 0) @@ -919,7 +917,7 @@ void cv::gpu::absdiff(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Strea { NppStreamHandler h(stream); - nppSafeCall( nppiAbsDiff_16u_C1R(src1.ptr(), static_cast(src1.step), src2.ptr(), static_cast(src2.step), + nppSafeCall( nppiAbsDiff_16u_C1R(src1.ptr(), static_cast(src1.step), src2.ptr(), static_cast(src2.step), dst.ptr(), static_cast(dst.step), sz) ); if (stream == 0) @@ -929,7 +927,7 @@ void cv::gpu::absdiff(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Strea { NppStreamHandler h(stream); - nppSafeCall( nppiAbsDiff_32f_C1R(src1.ptr(), static_cast(src1.step), src2.ptr(), static_cast(src2.step), + nppSafeCall( nppiAbsDiff_32f_C1R(src1.ptr(), static_cast(src1.step), src2.ptr(), static_cast(src2.step), dst.ptr(), static_cast(dst.step), sz) ); if (stream == 0) @@ -969,7 +967,7 @@ namespace sz.width = src1.cols; sz.height = src1.rows; - nppSafeCall( func((const npp_t*)src1.data, static_cast(src1.step), (npp_t*)dst.data, static_cast(dst.step), + nppSafeCall( func((const npp_t*)src1.data, static_cast(src1.step), (npp_t*)dst.data, static_cast(dst.step), sz, static_cast(val)) ); if (stream == 0) @@ -984,14 +982,14 @@ void cv::gpu::absdiff(const GpuMat& src1, const Scalar& src2, GpuMat& dst, Strea typedef void (*func_t)(const DevMem2Db& src1, double val, const DevMem2Db& dst, cudaStream_t stream); - static const func_t funcs[] = + static const func_t funcs[] = { - NppAbsDiffC::call, - absdiff_gpu, - NppAbsDiffC::call, + NppAbsDiffC::call, + absdiff_gpu, + NppAbsDiffC::call, absdiff_gpu, - absdiff_gpu, - NppAbsDiffC::call, + absdiff_gpu, + NppAbsDiffC::call, absdiff_gpu }; @@ -1132,7 +1130,7 @@ void cv::gpu::sqr(const GpuMat& src, GpuMat& dst, Stream& stream) { typedef void (*func_t)(const GpuMat& src, GpuMat& dst, cudaStream_t stream); - static const func_t funcs[] = + static const func_t funcs[] = { NppSqr::call, 0, @@ -1209,7 +1207,7 @@ void cv::gpu::sqrt(const GpuMat& src, GpuMat& dst, Stream& stream) { typedef void (*func_t)(const GpuMat& src, GpuMat& dst, cudaStream_t stream); - static const func_t funcs[] = + static const func_t funcs[] = { NppOneSource::call, 0, @@ -1233,7 +1231,7 @@ void cv::gpu::log(const GpuMat& src, GpuMat& dst, Stream& stream) { typedef void (*func_t)(const GpuMat& src, GpuMat& dst, cudaStream_t stream); - static const func_t funcs[] = + static const func_t funcs[] = { NppOneSource::call, 0, @@ -1257,7 +1255,7 @@ void cv::gpu::exp(const GpuMat& src, GpuMat& dst, Stream& stream) { typedef void (*func_t)(const GpuMat& src, GpuMat& dst, cudaStream_t stream); - static const func_t funcs[] = + static const func_t funcs[] = { NppOneSource::call, 0, @@ -1277,7 +1275,7 @@ void cv::gpu::exp(const GpuMat& src, GpuMat& dst, Stream& stream) ////////////////////////////////////////////////////////////////////////////// // Comparison of two matrixes -namespace cv { namespace gpu { namespace device +namespace cv { namespace gpu { namespace device { template void compare_eq(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream); template void compare_ne(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream); @@ -1291,7 +1289,7 @@ void cv::gpu::compare(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, int c typedef void (*func_t)(const DevMem2Db& src1, const DevMem2Db& src2, const DevMem2Db& dst, cudaStream_t stream); - static const func_t funcs[7][4] = + static const func_t funcs[7][4] = { {compare_eq, compare_ne, compare_lt, compare_le}, {compare_eq, compare_ne, compare_lt, compare_le}, @@ -1353,7 +1351,7 @@ void cv::gpu::compare(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, int c ////////////////////////////////////////////////////////////////////////////// // Unary bitwise logical operations -namespace cv { namespace gpu { namespace device +namespace cv { namespace gpu { namespace device { void bitwiseNotCaller(int rows, int cols, size_t elem_size1, int cn, const PtrStepb src, PtrStepb dst, cudaStream_t stream); @@ -1377,9 +1375,9 @@ namespace typedef void (*Caller)(int, int, int, const PtrStepb, const PtrStepb, PtrStepb, cudaStream_t); - static Caller callers[] = + static Caller callers[] = { - bitwiseMaskNotCaller, bitwiseMaskNotCaller, + bitwiseMaskNotCaller, bitwiseMaskNotCaller, bitwiseMaskNotCaller, bitwiseMaskNotCaller, bitwiseMaskNotCaller, bitwiseMaskNotCaller, bitwiseMaskNotCaller @@ -1410,7 +1408,7 @@ void cv::gpu::bitwise_not(const GpuMat& src, GpuMat& dst, const GpuMat& mask, St ////////////////////////////////////////////////////////////////////////////// // Binary bitwise logical operations -namespace cv { namespace gpu { namespace device +namespace cv { namespace gpu { namespace device { void bitwiseOrCaller(int rows, int cols, size_t elem_size1, int cn, const PtrStepb src1, const PtrStepb src2, PtrStepb dst, cudaStream_t stream); @@ -1444,9 +1442,9 @@ namespace typedef void (*Caller)(int, int, int, const PtrStepb, const PtrStepb, const PtrStepb, PtrStepb, cudaStream_t); - static Caller callers[] = + static Caller callers[] = { - bitwiseMaskOrCaller, bitwiseMaskOrCaller, + bitwiseMaskOrCaller, bitwiseMaskOrCaller, bitwiseMaskOrCaller, bitwiseMaskOrCaller, bitwiseMaskOrCaller, bitwiseMaskOrCaller, bitwiseMaskOrCaller @@ -1478,9 +1476,9 @@ namespace typedef void (*Caller)(int, int, int, const PtrStepb, const PtrStepb, const PtrStepb, PtrStepb, cudaStream_t); - static Caller callers[] = + static Caller callers[] = { - bitwiseMaskAndCaller, bitwiseMaskAndCaller, + bitwiseMaskAndCaller, bitwiseMaskAndCaller, bitwiseMaskAndCaller, bitwiseMaskAndCaller, bitwiseMaskAndCaller, bitwiseMaskAndCaller, bitwiseMaskAndCaller @@ -1512,9 +1510,9 @@ namespace typedef void (*Caller)(int, int, int, const PtrStepb, const PtrStepb, const PtrStepb, PtrStepb, cudaStream_t); - static Caller callers[] = + static Caller callers[] = { - bitwiseMaskXorCaller, bitwiseMaskXorCaller, + bitwiseMaskXorCaller, bitwiseMaskXorCaller, bitwiseMaskXorCaller, bitwiseMaskXorCaller, bitwiseMaskXorCaller, bitwiseMaskXorCaller, bitwiseMaskXorCaller @@ -1584,7 +1582,7 @@ namespace const npp_t pConstants[] = {static_cast(sc.val[0]), static_cast(sc.val[1]), static_cast(sc.val[2]), static_cast(sc.val[3])}; - nppSafeCall( func(src.ptr(), static_cast(src.step), pConstants, dst.ptr(), static_cast(dst.step), oSizeROI) ); + nppSafeCall( func(src.ptr(), static_cast(src.step), pConstants, dst.ptr(), static_cast(dst.step), oSizeROI) ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); @@ -1602,7 +1600,7 @@ namespace oSizeROI.width = src.cols; oSizeROI.height = src.rows; - nppSafeCall( func(src.ptr(), static_cast(src.step), static_cast(sc.val[0]), dst.ptr(), static_cast(dst.step), oSizeROI) ); + nppSafeCall( func(src.ptr(), static_cast(src.step), static_cast(sc.val[0]), dst.ptr(), static_cast(dst.step), oSizeROI) ); if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); @@ -1614,7 +1612,7 @@ void cv::gpu::bitwise_or(const GpuMat& src, const Scalar& sc, GpuMat& dst, Strea { typedef void (*func_t)(const GpuMat& src, Scalar sc, GpuMat& dst, cudaStream_t stream); - static const func_t funcs[5][4] = + static const func_t funcs[5][4] = { {NppBitwiseC::call, 0, NppBitwiseC::call, NppBitwiseC::call}, {0,0,0,0}, @@ -1635,7 +1633,7 @@ void cv::gpu::bitwise_and(const GpuMat& src, const Scalar& sc, GpuMat& dst, Stre { typedef void (*func_t)(const GpuMat& src, Scalar sc, GpuMat& dst, cudaStream_t stream); - static const func_t funcs[5][4] = + static const func_t funcs[5][4] = { {NppBitwiseC::call, 0, NppBitwiseC::call, NppBitwiseC::call}, {0,0,0,0}, @@ -1656,7 +1654,7 @@ void cv::gpu::bitwise_xor(const GpuMat& src, const Scalar& sc, GpuMat& dst, Stre { typedef void (*func_t)(const GpuMat& src, Scalar sc, GpuMat& dst, cudaStream_t stream); - static const func_t funcs[5][4] = + static const func_t funcs[5][4] = { {NppBitwiseC::call, 0, NppBitwiseC::call, NppBitwiseC::call}, {0,0,0,0}, @@ -1704,7 +1702,7 @@ namespace oSizeROI.height = src.rows; nppSafeCall( func(src.ptr(), static_cast(src.step), sc.val, dst.ptr(), static_cast(dst.step), oSizeROI) ); - + if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } @@ -1722,17 +1720,17 @@ namespace oSizeROI.height = src.rows; nppSafeCall( func(src.ptr(), static_cast(src.step), sc.val[0], dst.ptr(), static_cast(dst.step), oSizeROI) ); - + if (stream == 0) cudaSafeCall( cudaDeviceSynchronize() ); } }; } -void cv::gpu::rshift(const GpuMat& src, const Scalar& sc, GpuMat& dst, Stream& stream) +void cv::gpu::rshift(const GpuMat& src, Scalar_ sc, GpuMat& dst, Stream& stream) { typedef void (*func_t)(const GpuMat& src, Scalar_ sc, GpuMat& dst, cudaStream_t stream); - static const func_t funcs[5][4] = + static const func_t funcs[5][4] = { {NppShift::call, 0, NppShift::call, NppShift::call }, {NppShift::call, 0, NppShift::call, NppShift::call }, @@ -1749,10 +1747,10 @@ void cv::gpu::rshift(const GpuMat& src, const Scalar& sc, GpuMat& dst, Stream& s funcs[src.depth()][src.channels() - 1](src, sc, dst, StreamAccessor::getStream(stream)); } -void cv::gpu::lshift(const GpuMat& src, const Scalar& sc, GpuMat& dst, Stream& stream) +void cv::gpu::lshift(const GpuMat& src, Scalar_ sc, GpuMat& dst, Stream& stream) { typedef void (*func_t)(const GpuMat& src, Scalar_ sc, GpuMat& dst, cudaStream_t stream); - static const func_t funcs[5][4] = + static const func_t funcs[5][4] = { {NppShift::call , 0, NppShift::call , NppShift::call }, {0 , 0, 0 , 0 }, @@ -1772,7 +1770,7 @@ void cv::gpu::lshift(const GpuMat& src, const Scalar& sc, GpuMat& dst, Stream& s ////////////////////////////////////////////////////////////////////////////// // Minimum and maximum operations -namespace cv { namespace gpu { namespace device +namespace cv { namespace gpu { namespace device { template void min_gpu(const DevMem2D_& src1, const DevMem2D_& src2, const DevMem2D_& dst, cudaStream_t stream); @@ -1803,7 +1801,7 @@ namespace dst.create(src1.size(), src1.type()); ::cv::gpu::device::min_gpu(src1.reshape(1), saturate_cast(src2), dst.reshape(1), stream); } - + template void max_caller(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream) { @@ -1820,58 +1818,58 @@ namespace } } -void cv::gpu::min(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream) -{ +void cv::gpu::min(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream) +{ CV_Assert(src1.size() == src2.size() && src1.type() == src2.type()); - CV_Assert((src1.depth() != CV_64F) || + CV_Assert((src1.depth() != CV_64F) || (TargetArchs::builtWith(NATIVE_DOUBLE) && DeviceInfo().supports(NATIVE_DOUBLE))); typedef void (*func_t)(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream); - static const func_t funcs[] = + static const func_t funcs[] = { - min_caller, min_caller, min_caller, min_caller, min_caller, + min_caller, min_caller, min_caller, min_caller, min_caller, min_caller, min_caller }; funcs[src1.depth()](src1, src2, dst, StreamAccessor::getStream(stream)); } -void cv::gpu::min(const GpuMat& src1, double src2, GpuMat& dst, Stream& stream) +void cv::gpu::min(const GpuMat& src1, double src2, GpuMat& dst, Stream& stream) { - CV_Assert((src1.depth() != CV_64F) || + CV_Assert((src1.depth() != CV_64F) || (TargetArchs::builtWith(NATIVE_DOUBLE) && DeviceInfo().supports(NATIVE_DOUBLE))); typedef void (*func_t)(const GpuMat& src1, double src2, GpuMat& dst, cudaStream_t stream); - static const func_t funcs[] = + static const func_t funcs[] = { - min_caller, min_caller, min_caller, min_caller, min_caller, + min_caller, min_caller, min_caller, min_caller, min_caller, min_caller, min_caller }; funcs[src1.depth()](src1, src2, dst, StreamAccessor::getStream(stream)); } -void cv::gpu::max(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream) -{ +void cv::gpu::max(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, Stream& stream) +{ CV_Assert(src1.size() == src2.size() && src1.type() == src2.type()); - CV_Assert((src1.depth() != CV_64F) || + CV_Assert((src1.depth() != CV_64F) || (TargetArchs::builtWith(NATIVE_DOUBLE) && DeviceInfo().supports(NATIVE_DOUBLE))); typedef void (*func_t)(const GpuMat& src1, const GpuMat& src2, GpuMat& dst, cudaStream_t stream); - static const func_t funcs[] = + static const func_t funcs[] = { - max_caller, max_caller, max_caller, max_caller, max_caller, + max_caller, max_caller, max_caller, max_caller, max_caller, max_caller, max_caller }; funcs[src1.depth()](src1, src2, dst, StreamAccessor::getStream(stream)); } -void cv::gpu::max(const GpuMat& src1, double src2, GpuMat& dst, Stream& stream) +void cv::gpu::max(const GpuMat& src1, double src2, GpuMat& dst, Stream& stream) { - CV_Assert((src1.depth() != CV_64F) || + CV_Assert((src1.depth() != CV_64F) || (TargetArchs::builtWith(NATIVE_DOUBLE) && DeviceInfo().supports(NATIVE_DOUBLE))); typedef void (*func_t)(const GpuMat& src1, double src2, GpuMat& dst, cudaStream_t stream); - static const func_t funcs[] = + static const func_t funcs[] = { - max_caller, max_caller, max_caller, max_caller, max_caller, + max_caller, max_caller, max_caller, max_caller, max_caller, max_caller, max_caller }; funcs[src1.depth()](src1, src2, dst, StreamAccessor::getStream(stream)); @@ -1880,7 +1878,7 @@ void cv::gpu::max(const GpuMat& src1, double src2, GpuMat& dst, Stream& stream) //////////////////////////////////////////////////////////////////////// // threshold -namespace cv { namespace gpu { namespace device +namespace cv { namespace gpu { namespace device { template void threshold_gpu(const DevMem2Db& src, const DevMem2Db& dst, T thresh, T maxVal, int type, cudaStream_t stream); @@ -1921,10 +1919,10 @@ double cv::gpu::threshold(const GpuMat& src, GpuMat& dst, double thresh, double { typedef void (*caller_t)(const GpuMat& src, GpuMat& dst, double thresh, double maxVal, int type, cudaStream_t stream); - static const caller_t callers[] = + static const caller_t callers[] = { - threshold_caller, threshold_caller, - threshold_caller, threshold_caller, + threshold_caller, threshold_caller, + threshold_caller, threshold_caller, threshold_caller, threshold_caller, threshold_caller }; @@ -1943,7 +1941,7 @@ double cv::gpu::threshold(const GpuMat& src, GpuMat& dst, double thresh, double //////////////////////////////////////////////////////////////////////// // pow -namespace cv { namespace gpu { namespace device +namespace cv { namespace gpu { namespace device { template void pow_caller(const DevMem2Db& src, float power, DevMem2Db dst, cudaStream_t stream); @@ -1958,10 +1956,10 @@ void cv::gpu::pow(const GpuMat& src, double power, GpuMat& dst, Stream& stream) typedef void (*caller_t)(const DevMem2Db& src, float power, DevMem2Db dst, cudaStream_t stream); - static const caller_t callers[] = + static const caller_t callers[] = { - pow_caller, pow_caller, - pow_caller, pow_caller, + pow_caller, pow_caller, + pow_caller, pow_caller, pow_caller, pow_caller }; @@ -1992,7 +1990,7 @@ namespace oSizeROI.width = img1.cols; oSizeROI.height = img2.rows; - nppSafeCall( func(img1.ptr(), static_cast(img1.step), img2.ptr(), static_cast(img2.step), + nppSafeCall( func(img1.ptr(), static_cast(img1.step), img2.ptr(), static_cast(img2.step), dst.ptr(), static_cast(dst.step), oSizeROI, eAlphaOp) ); if (stream == 0) @@ -2021,7 +2019,7 @@ void cv::gpu::alphaComp(const GpuMat& img1, const GpuMat& img2, GpuMat& dst, int typedef void (*func_t)(const GpuMat& img1, const GpuMat& img2, GpuMat& dst, NppiAlphaOp eAlphaOp, cudaStream_t stream); - static const func_t funcs[] = + static const func_t funcs[] = { NppAlphaComp::call, 0, @@ -2046,7 +2044,7 @@ void cv::gpu::alphaComp(const GpuMat& img1, const GpuMat& img2, GpuMat& dst, int //////////////////////////////////////////////////////////////////////// // addWeighted -namespace cv { namespace gpu { namespace device +namespace cv { namespace gpu { namespace device { template void addWeighted_gpu(const DevMem2Db& src1, double alpha, const DevMem2Db& src2, double beta, double gamma, const DevMem2Db& dst, cudaStream_t stream); diff --git a/modules/gpu/test/test_arithm.cpp b/modules/gpu/test/test_arithm.cpp index b8fed5ef86..0bf806b2a1 100644 --- a/modules/gpu/test/test_arithm.cpp +++ b/modules/gpu/test/test_arithm.cpp @@ -43,408 +43,1493 @@ #ifdef HAVE_CUDA -using namespace cvtest; -using namespace testing; +//////////////////////////////////////////////////////////////////////////////// +// Add_Array + +PARAM_TEST_CASE(Add_Array, cv::gpu::DeviceInfo, cv::Size, std::pair, int, UseRoi) +{ + cv::gpu::DeviceInfo devInfo; + cv::Size size; + std::pair depth; + int channels; + bool useRoi; + + int stype; + int dtype; + + virtual void SetUp() + { + devInfo = GET_PARAM(0); + size = GET_PARAM(1); + depth = GET_PARAM(2); + channels = GET_PARAM(3); + useRoi = GET_PARAM(4); + + cv::gpu::setDevice(devInfo.deviceID()); + + stype = CV_MAKE_TYPE(depth.first, channels); + dtype = CV_MAKE_TYPE(depth.second, channels); + } +}; + +TEST_P(Add_Array, Accuracy) +{ + if (depth.first == CV_64F || depth.second == CV_64F) + { + if (!devInfo.supports(cv::gpu::NATIVE_DOUBLE)) + return; + } + + cv::Mat mat1 = randomMat(size, stype); + cv::Mat mat2 = randomMat(size, stype); + cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0); + + cv::gpu::GpuMat dst = createMat(size, dtype, useRoi); + dst.setTo(cv::Scalar::all(0)); + cv::gpu::add(loadMat(mat1, useRoi), loadMat(mat2, useRoi), dst, channels == 1 ? loadMat(mask, useRoi) : cv::gpu::GpuMat(), depth.second); + + cv::Mat dst_gold(size, dtype, cv::Scalar::all(0)); + cv::add(mat1, mat2, dst_gold, channels == 1 ? mask : cv::noArray(), depth.second); + + EXPECT_MAT_NEAR(dst_gold, dst, depth.first >= CV_32F || depth.second >= CV_32F ? 1e-4 : 0.0); +} + +INSTANTIATE_TEST_CASE_P(GPU_Core, Add_Array, testing::Combine( + ALL_DEVICES, + DIFFERENT_SIZES, + DEPTH_PAIRS, + testing::Values(1, 2, 3, 4), + WHOLE_SUBMAT)); + +//////////////////////////////////////////////////////////////////////////////// +// Add_Scalar + +PARAM_TEST_CASE(Add_Scalar, cv::gpu::DeviceInfo, cv::Size, std::pair, UseRoi) +{ + cv::gpu::DeviceInfo devInfo; + cv::Size size; + std::pair depth; + bool useRoi; + + virtual void SetUp() + { + devInfo = GET_PARAM(0); + size = GET_PARAM(1); + depth = GET_PARAM(2); + useRoi = GET_PARAM(3); + + cv::gpu::setDevice(devInfo.deviceID()); + } +}; + +TEST_P(Add_Scalar, Accuracy) +{ + if (depth.first == CV_64F || depth.second == CV_64F) + { + if (!devInfo.supports(cv::gpu::NATIVE_DOUBLE)) + return; + } + + cv::Mat mat = randomMat(size, depth.first); + cv::Scalar val = randomScalar(0, 255); + cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0); + + cv::gpu::GpuMat dst = createMat(size, depth.second, useRoi); + dst.setTo(cv::Scalar::all(0)); + cv::gpu::add(loadMat(mat, useRoi), val, dst, loadMat(mask, useRoi), depth.second); + + cv::Mat dst_gold(size, depth.second, cv::Scalar::all(0)); + cv::add(mat, val, dst_gold, mask, depth.second); + + EXPECT_MAT_NEAR(dst_gold, dst, depth.first >= CV_32F || depth.second >= CV_32F ? 1e-4 : 0.0); +} + +INSTANTIATE_TEST_CASE_P(GPU_Core, Add_Scalar, testing::Combine( + ALL_DEVICES, + DIFFERENT_SIZES, + DEPTH_PAIRS, + WHOLE_SUBMAT)); + +//////////////////////////////////////////////////////////////////////////////// +// Subtract_Array + +PARAM_TEST_CASE(Subtract_Array, cv::gpu::DeviceInfo, cv::Size, std::pair, int, UseRoi) +{ + cv::gpu::DeviceInfo devInfo; + cv::Size size; + std::pair depth; + int channels; + bool useRoi; + + int stype; + int dtype; + + virtual void SetUp() + { + devInfo = GET_PARAM(0); + size = GET_PARAM(1); + depth = GET_PARAM(2); + channels = GET_PARAM(3); + useRoi = GET_PARAM(4); + + cv::gpu::setDevice(devInfo.deviceID()); + + stype = CV_MAKE_TYPE(depth.first, channels); + dtype = CV_MAKE_TYPE(depth.second, channels); + } +}; + +TEST_P(Subtract_Array, Accuracy) +{ + if (depth.first == CV_64F || depth.second == CV_64F) + { + if (!devInfo.supports(cv::gpu::NATIVE_DOUBLE)) + return; + } + + cv::Mat mat1 = randomMat(size, stype); + cv::Mat mat2 = randomMat(size, stype); + cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0); + + cv::gpu::GpuMat dst = createMat(size, dtype, useRoi); + dst.setTo(cv::Scalar::all(0)); + cv::gpu::subtract(loadMat(mat1, useRoi), loadMat(mat2, useRoi), dst, channels == 1 ? loadMat(mask, useRoi) : cv::gpu::GpuMat(), depth.second); + + cv::Mat dst_gold(size, dtype, cv::Scalar::all(0)); + cv::subtract(mat1, mat2, dst_gold, channels == 1 ? mask : cv::noArray(), depth.second); + + EXPECT_MAT_NEAR(dst_gold, dst, depth.first >= CV_32F || depth.second >= CV_32F ? 1e-4 : 0.0); +} + +INSTANTIATE_TEST_CASE_P(GPU_Core, Subtract_Array, testing::Combine( + ALL_DEVICES, + DIFFERENT_SIZES, + DEPTH_PAIRS, + testing::Values(1, 2, 3, 4), + WHOLE_SUBMAT)); + +//////////////////////////////////////////////////////////////////////////////// +// Subtract_Scalar + +PARAM_TEST_CASE(Subtract_Scalar, cv::gpu::DeviceInfo, cv::Size, std::pair, UseRoi) +{ + cv::gpu::DeviceInfo devInfo; + cv::Size size; + std::pair depth; + bool useRoi; + + virtual void SetUp() + { + devInfo = GET_PARAM(0); + size = GET_PARAM(1); + depth = GET_PARAM(2); + useRoi = GET_PARAM(3); + + cv::gpu::setDevice(devInfo.deviceID()); + } +}; + +TEST_P(Subtract_Scalar, Accuracy) +{ + if (depth.first == CV_64F || depth.second == CV_64F) + { + if (!devInfo.supports(cv::gpu::NATIVE_DOUBLE)) + return; + } + + cv::Mat mat = randomMat(size, depth.first); + cv::Scalar val = randomScalar(0, 255); + cv::Mat mask = randomMat(size, CV_8UC1, 0.0, 2.0); + + cv::gpu::GpuMat dst = createMat(size, depth.second, useRoi); + dst.setTo(cv::Scalar::all(0)); + cv::gpu::subtract(loadMat(mat, useRoi), val, dst, loadMat(mask, useRoi), depth.second); + + cv::Mat dst_gold(size, depth.second, cv::Scalar::all(0)); + cv::subtract(mat, val, dst_gold, mask, depth.second); + + EXPECT_MAT_NEAR(dst_gold, dst, depth.first >= CV_32F || depth.second >= CV_32F ? 1e-4 : 0.0); +} + +INSTANTIATE_TEST_CASE_P(GPU_Core, Subtract_Scalar, testing::Combine( + ALL_DEVICES, + DIFFERENT_SIZES, + DEPTH_PAIRS, + WHOLE_SUBMAT)); + +//////////////////////////////////////////////////////////////////////////////// +// Multiply_Array + +PARAM_TEST_CASE(Multiply_Array, cv::gpu::DeviceInfo, cv::Size, std::pair, int, UseRoi) +{ + cv::gpu::DeviceInfo devInfo; + cv::Size size; + std::pair depth; + int channels; + bool useRoi; + + int stype; + int dtype; + + virtual void SetUp() + { + devInfo = GET_PARAM(0); + size = GET_PARAM(1); + depth = GET_PARAM(2); + channels = GET_PARAM(3); + useRoi = GET_PARAM(4); + + cv::gpu::setDevice(devInfo.deviceID()); + + stype = CV_MAKE_TYPE(depth.first, channels); + dtype = CV_MAKE_TYPE(depth.second, channels); + } +}; + +TEST_P(Multiply_Array, Accuracy) +{ + if (depth.first == CV_64F || depth.second == CV_64F) + { + if (!devInfo.supports(cv::gpu::NATIVE_DOUBLE)) + return; + } + + cv::Mat mat1 = randomMat(size, stype); + cv::Mat mat2 = randomMat(size, stype); + double scale = randomDouble(0.0, 255.0); + + cv::gpu::GpuMat dst = createMat(size, dtype, useRoi); + cv::gpu::multiply(loadMat(mat1, useRoi), loadMat(mat2, useRoi), dst, scale, depth.second); + + cv::Mat dst_gold; + cv::multiply(mat1, mat2, dst_gold, scale, depth.second); + + EXPECT_MAT_NEAR(dst_gold, dst, 1.0); +} + +INSTANTIATE_TEST_CASE_P(GPU_Core, Multiply_Array, testing::Combine( + ALL_DEVICES, + DIFFERENT_SIZES, + DEPTH_PAIRS, + testing::Values(1, 2, 3, 4), + WHOLE_SUBMAT)); + +//////////////////////////////////////////////////////////////////////////////// +// Multiply_Array_Special_Case + +PARAM_TEST_CASE(Multiply_Array_Special_Case, cv::gpu::DeviceInfo, cv::Size, UseRoi) +{ + cv::gpu::DeviceInfo devInfo; + cv::Size size; + bool useRoi; + + virtual void SetUp() + { + devInfo = GET_PARAM(0); + size = GET_PARAM(1); + useRoi = GET_PARAM(2); + + cv::gpu::setDevice(devInfo.deviceID()); + } +}; + +TEST_P(Multiply_Array_Special_Case, _8UC4x_32FC1) +{ + cv::Mat mat1 = randomMat(size, CV_8UC4); + cv::Mat mat2 = randomMat(size, CV_32FC1); + + cv::gpu::GpuMat dst = createMat(size, CV_8UC4, useRoi); + cv::gpu::multiply(loadMat(mat1, useRoi), loadMat(mat2, useRoi), dst); + + cv::Mat h_dst(dst); + + for (int y = 0; y < h_dst.rows; ++y) + { + const cv::Vec4b* mat1_row = mat1.ptr(y); + const float* mat2_row = mat2.ptr(y); + const cv::Vec4b* dst_row = h_dst.ptr(y); + + for (int x = 0; x < h_dst.cols; ++x) + { + cv::Vec4b val1 = mat1_row[x]; + float val2 = mat2_row[x]; + cv::Vec4b actual = dst_row[x]; + + cv::Vec4b gold; + + gold[0] = cv::saturate_cast(val1[0] * val2); + gold[1] = cv::saturate_cast(val1[1] * val2); + gold[2] = cv::saturate_cast(val1[2] * val2); + gold[3] = cv::saturate_cast(val1[3] * val2); + + ASSERT_LE(std::abs(gold[0] - actual[0]), 1.0); + ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); + ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); + ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); + } + } +} + +TEST_P(Multiply_Array_Special_Case, _16SC4x_32FC1) +{ + cv::Mat mat1 = randomMat(size, CV_16SC4); + cv::Mat mat2 = randomMat(size, CV_32FC1); + + cv::gpu::GpuMat dst = createMat(size, CV_16SC4, useRoi); + cv::gpu::multiply(loadMat(mat1, useRoi), loadMat(mat2, useRoi), dst); + + cv::Mat h_dst(dst); + + for (int y = 0; y < h_dst.rows; ++y) + { + const cv::Vec4s* mat1_row = mat1.ptr(y); + const float* mat2_row = mat2.ptr(y); + const cv::Vec4s* dst_row = h_dst.ptr(y); + + for (int x = 0; x < h_dst.cols; ++x) + { + cv::Vec4s val1 = mat1_row[x]; + float val2 = mat2_row[x]; + cv::Vec4s actual = dst_row[x]; + + cv::Vec4s gold; + + gold[0] = cv::saturate_cast(val1[0] * val2); + gold[1] = cv::saturate_cast(val1[1] * val2); + gold[2] = cv::saturate_cast(val1[2] * val2); + gold[3] = cv::saturate_cast(val1[3] * val2); + + ASSERT_LE(std::abs(gold[0] - actual[0]), 1.0); + ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); + ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); + ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); + } + } +} + +INSTANTIATE_TEST_CASE_P(GPU_Core, Multiply_Array_Special_Case, testing::Combine( + ALL_DEVICES, + DIFFERENT_SIZES, + WHOLE_SUBMAT)); + +//////////////////////////////////////////////////////////////////////////////// +// Multiply_Scalar + +PARAM_TEST_CASE(Multiply_Scalar, cv::gpu::DeviceInfo, cv::Size, std::pair, UseRoi) +{ + cv::gpu::DeviceInfo devInfo; + cv::Size size; + std::pair depth; + bool useRoi; + + virtual void SetUp() + { + devInfo = GET_PARAM(0); + size = GET_PARAM(1); + depth = GET_PARAM(2); + useRoi = GET_PARAM(3); + + cv::gpu::setDevice(devInfo.deviceID()); + } +}; + +TEST_P(Multiply_Scalar, Accuracy) +{ + if (depth.first == CV_64F || depth.second == CV_64F) + { + if (!devInfo.supports(cv::gpu::NATIVE_DOUBLE)) + return; + } + + cv::Mat mat = randomMat(size, depth.first); + cv::Scalar val = randomScalar(0, 255); + double scale = randomDouble(0.0, 255.0); + + cv::gpu::GpuMat dst = createMat(size, depth.second, useRoi); + cv::gpu::multiply(loadMat(mat, useRoi), val, dst, scale, depth.second); + + cv::Mat dst_gold; + cv::multiply(mat, val, dst_gold, scale, depth.second); + + EXPECT_MAT_NEAR(dst_gold, dst, depth.first >= CV_32F || depth.second >= CV_32F ? 1e-4 : 0.0); +} + +INSTANTIATE_TEST_CASE_P(GPU_Core, Multiply_Scalar, testing::Combine( + ALL_DEVICES, + DIFFERENT_SIZES, + DEPTH_PAIRS, + WHOLE_SUBMAT)); + +//////////////////////////////////////////////////////////////////////////////// +// Divide_Array + +PARAM_TEST_CASE(Divide_Array, cv::gpu::DeviceInfo, cv::Size, std::pair, int, UseRoi) +{ + cv::gpu::DeviceInfo devInfo; + cv::Size size; + std::pair depth; + int channels; + bool useRoi; + + int stype; + int dtype; + + virtual void SetUp() + { + devInfo = GET_PARAM(0); + size = GET_PARAM(1); + depth = GET_PARAM(2); + channels = GET_PARAM(3); + useRoi = GET_PARAM(4); + + cv::gpu::setDevice(devInfo.deviceID()); + + stype = CV_MAKE_TYPE(depth.first, channels); + dtype = CV_MAKE_TYPE(depth.second, channels); + } +}; + +TEST_P(Divide_Array, Accuracy) +{ + if (depth.first == CV_64F || depth.second == CV_64F) + { + if (!devInfo.supports(cv::gpu::NATIVE_DOUBLE)) + return; + } + + cv::Mat mat1 = randomMat(size, stype); + cv::Mat mat2 = randomMat(size, stype, 1.0, 255.0); + double scale = randomDouble(0.0, 255.0); + + cv::gpu::GpuMat dst = createMat(size, dtype, useRoi); + cv::gpu::divide(loadMat(mat1, useRoi), loadMat(mat2, useRoi), dst, scale, depth.second); + + cv::Mat dst_gold; + cv::divide(mat1, mat2, dst_gold, scale, depth.second); + + EXPECT_MAT_NEAR(dst_gold, dst, 1.0); +} + +INSTANTIATE_TEST_CASE_P(GPU_Core, Divide_Array, testing::Combine( + ALL_DEVICES, + DIFFERENT_SIZES, + DEPTH_PAIRS, + testing::Values(1, 2, 3, 4), + WHOLE_SUBMAT)); + +//////////////////////////////////////////////////////////////////////////////// +// Divide_Array_Special_Case + +PARAM_TEST_CASE(Divide_Array_Special_Case, cv::gpu::DeviceInfo, cv::Size, UseRoi) +{ + cv::gpu::DeviceInfo devInfo; + cv::Size size; + bool useRoi; + + virtual void SetUp() + { + devInfo = GET_PARAM(0); + size = GET_PARAM(1); + useRoi = GET_PARAM(2); + + cv::gpu::setDevice(devInfo.deviceID()); + } +}; + +TEST_P(Divide_Array_Special_Case, _8UC4x_32FC1) +{ + cv::Mat mat1 = randomMat(size, CV_8UC4); + cv::Mat mat2 = randomMat(size, CV_32FC1, 1.0, 255.0); + + cv::gpu::GpuMat dst = createMat(size, CV_8UC4, useRoi); + cv::gpu::divide(loadMat(mat1, useRoi), loadMat(mat2, useRoi), dst); + + cv::Mat h_dst(dst); + + for (int y = 0; y < h_dst.rows; ++y) + { + const cv::Vec4b* mat1_row = mat1.ptr(y); + const float* mat2_row = mat2.ptr(y); + const cv::Vec4b* dst_row = h_dst.ptr(y); + + for (int x = 0; x < h_dst.cols; ++x) + { + cv::Vec4b val1 = mat1_row[x]; + float val2 = mat2_row[x]; + cv::Vec4b actual = dst_row[x]; + + cv::Vec4b gold; + + gold[0] = cv::saturate_cast(val1[0] / val2); + gold[1] = cv::saturate_cast(val1[1] / val2); + gold[2] = cv::saturate_cast(val1[2] / val2); + gold[3] = cv::saturate_cast(val1[3] / val2); + + ASSERT_LE(std::abs(gold[0] - actual[0]), 1.0); + ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); + ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); + ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); + } + } +} + +TEST_P(Divide_Array_Special_Case, _16SC4x_32FC1) +{ + cv::Mat mat1 = randomMat(size, CV_16SC4); + cv::Mat mat2 = randomMat(size, CV_32FC1, 1.0, 255.0); + + cv::gpu::GpuMat dst = createMat(size, CV_16SC4, useRoi); + cv::gpu::divide(loadMat(mat1, useRoi), loadMat(mat2, useRoi), dst); + + cv::Mat h_dst(dst); + + for (int y = 0; y < h_dst.rows; ++y) + { + const cv::Vec4s* mat1_row = mat1.ptr(y); + const float* mat2_row = mat2.ptr(y); + const cv::Vec4s* dst_row = h_dst.ptr(y); + + for (int x = 0; x < h_dst.cols; ++x) + { + cv::Vec4s val1 = mat1_row[x]; + float val2 = mat2_row[x]; + cv::Vec4s actual = dst_row[x]; + + cv::Vec4s gold; + + gold[0] = cv::saturate_cast(val1[0] / val2); + gold[1] = cv::saturate_cast(val1[1] / val2); + gold[2] = cv::saturate_cast(val1[2] / val2); + gold[3] = cv::saturate_cast(val1[3] / val2); + + ASSERT_LE(std::abs(gold[0] - actual[0]), 1.0); + ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); + ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); + ASSERT_LE(std::abs(gold[1] - actual[1]), 1.0); + } + } +} + +INSTANTIATE_TEST_CASE_P(GPU_Core, Divide_Array_Special_Case, testing::Combine( + ALL_DEVICES, + DIFFERENT_SIZES, + WHOLE_SUBMAT)); + +//////////////////////////////////////////////////////////////////////////////// +// Divide_Scalar + +PARAM_TEST_CASE(Divide_Scalar, cv::gpu::DeviceInfo, cv::Size, std::pair, UseRoi) +{ + cv::gpu::DeviceInfo devInfo; + cv::Size size; + std::pair depth; + bool useRoi; + + virtual void SetUp() + { + devInfo = GET_PARAM(0); + size = GET_PARAM(1); + depth = GET_PARAM(2); + useRoi = GET_PARAM(3); + + cv::gpu::setDevice(devInfo.deviceID()); + } +}; + +TEST_P(Divide_Scalar, Accuracy) +{ + if (depth.first == CV_64F || depth.second == CV_64F) + { + if (!devInfo.supports(cv::gpu::NATIVE_DOUBLE)) + return; + } + + cv::Mat mat = randomMat(size, depth.first); + cv::Scalar val = randomScalar(1.0, 255.0); + double scale = randomDouble(0.0, 255.0); + + cv::gpu::GpuMat dst = createMat(size, depth.second, useRoi); + cv::gpu::divide(loadMat(mat, useRoi), val, dst, scale, depth.second); + + cv::Mat dst_gold; + cv::divide(mat, val, dst_gold, scale, depth.second); + + EXPECT_MAT_NEAR(dst_gold, dst, depth.first >= CV_32F || depth.second >= CV_32F ? 1e-4 : 0.0); +} -PARAM_TEST_CASE(ArithmTestBase, cv::gpu::DeviceInfo, MatType, UseRoi) +INSTANTIATE_TEST_CASE_P(GPU_Core, Divide_Scalar, testing::Combine( + ALL_DEVICES, + DIFFERENT_SIZES, + DEPTH_PAIRS, + WHOLE_SUBMAT)); + +//////////////////////////////////////////////////////////////////////////////// +// Divide_Scalar_Inv + +PARAM_TEST_CASE(Divide_Scalar_Inv, cv::gpu::DeviceInfo, cv::Size, std::pair, UseRoi) +{ + cv::gpu::DeviceInfo devInfo; + cv::Size size; + std::pair depth; + bool useRoi; + + virtual void SetUp() + { + devInfo = GET_PARAM(0); + size = GET_PARAM(1); + depth = GET_PARAM(2); + useRoi = GET_PARAM(3); + + cv::gpu::setDevice(devInfo.deviceID()); + } +}; + +TEST_P(Divide_Scalar_Inv, Accuracy) +{ + if (depth.first == CV_64F || depth.second == CV_64F) + { + if (!devInfo.supports(cv::gpu::NATIVE_DOUBLE)) + return; + } + + double scale = randomDouble(0.0, 255.0); + cv::Mat mat = randomMat(size, depth.first, 1.0, 255.0); + + cv::gpu::GpuMat dst = createMat(size, depth.second, useRoi); + cv::gpu::divide(scale, loadMat(mat, useRoi), dst, depth.second); + + cv::Mat dst_gold; + cv::divide(scale, mat, dst_gold, depth.second); + + EXPECT_MAT_NEAR(dst_gold, dst, depth.first >= CV_32F || depth.second >= CV_32F ? 1e-4 : 0.0); +} + +INSTANTIATE_TEST_CASE_P(GPU_Core, Divide_Scalar_Inv, testing::Combine( + ALL_DEVICES, + DIFFERENT_SIZES, + DEPTH_PAIRS, + WHOLE_SUBMAT)); + +//////////////////////////////////////////////////////////////////////////////// +// AbsDiff + +PARAM_TEST_CASE(AbsDiff, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi) +{ + cv::gpu::DeviceInfo devInfo; + cv::Size size; + int depth; + bool useRoi; + + virtual void SetUp() + { + devInfo = GET_PARAM(0); + size = GET_PARAM(1); + depth = GET_PARAM(2); + useRoi = GET_PARAM(3); + + cv::gpu::setDevice(devInfo.deviceID()); + } +}; + +TEST_P(AbsDiff, Array) +{ + if (depth == CV_64F) + { + if (!devInfo.supports(cv::gpu::NATIVE_DOUBLE)) + return; + } + + cv::Mat src1 = randomMat(size, depth); + cv::Mat src2 = randomMat(size, depth); + + cv::gpu::GpuMat dst = createMat(size, depth, useRoi); + cv::gpu::absdiff(loadMat(src1, useRoi), loadMat(src2, useRoi), dst); + + cv::Mat dst_gold; + cv::absdiff(src1, src2, dst_gold); + + EXPECT_MAT_NEAR(dst_gold, dst, 0.0); +} + +TEST_P(AbsDiff, Scalar) +{ + if (depth == CV_64F) + { + if (!devInfo.supports(cv::gpu::NATIVE_DOUBLE)) + return; + } + + cv::Mat src = randomMat(size, depth); + cv::Scalar val = randomScalar(0.0, 255.0); + + cv::gpu::GpuMat dst = createMat(size, depth, useRoi); + cv::gpu::absdiff(loadMat(src, useRoi), val, dst); + + cv::Mat dst_gold; + cv::absdiff(src, val, dst_gold); + + EXPECT_MAT_NEAR(dst_gold, dst, depth <= CV_32F ? 1.0 : 1e-5); +} + +INSTANTIATE_TEST_CASE_P(GPU_Core, AbsDiff, testing::Combine( + ALL_DEVICES, + DIFFERENT_SIZES, + ALL_DEPTH, + WHOLE_SUBMAT)); + +//////////////////////////////////////////////////////////////////////////////// +// Abs + +PARAM_TEST_CASE(Abs, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi) +{ + cv::gpu::DeviceInfo devInfo; + cv::Size size; + int type; + bool useRoi; + + virtual void SetUp() + { + devInfo = GET_PARAM(0); + size = GET_PARAM(1); + type = GET_PARAM(2); + useRoi = GET_PARAM(3); + + cv::gpu::setDevice(devInfo.deviceID()); + } +}; + +TEST_P(Abs, Accuracy) +{ + cv::Mat src = randomMat(size, type); + + cv::gpu::GpuMat dst = createMat(size, type, useRoi); + cv::gpu::abs(loadMat(src, useRoi), dst); + + cv::Mat dst_gold = cv::abs(src); + + EXPECT_MAT_NEAR(dst_gold, dst, 0.0); +} + +INSTANTIATE_TEST_CASE_P(GPU_Core, Abs, testing::Combine( + ALL_DEVICES, + DIFFERENT_SIZES, + testing::Values(MatType(CV_16SC1), MatType(CV_32FC1)), + WHOLE_SUBMAT)); + +//////////////////////////////////////////////////////////////////////////////// +// Sqr + +PARAM_TEST_CASE(Sqr, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi) +{ + cv::gpu::DeviceInfo devInfo; + cv::Size size; + int type; + bool useRoi; + + virtual void SetUp() + { + devInfo = GET_PARAM(0); + size = GET_PARAM(1); + type = GET_PARAM(2); + useRoi = GET_PARAM(3); + + cv::gpu::setDevice(devInfo.deviceID()); + } +}; + +TEST_P(Sqr, Accuracy) +{ + cv::Mat src = randomMat(size, type); + + cv::gpu::GpuMat dst = createMat(size, type, useRoi); + cv::gpu::sqr(loadMat(src, useRoi), dst); + + cv::Mat dst_gold; + cv::multiply(src, src, dst_gold); + + EXPECT_MAT_NEAR(dst_gold, dst, 0.0); +} + +INSTANTIATE_TEST_CASE_P(GPU_Core, Sqr, testing::Combine( + ALL_DEVICES, + DIFFERENT_SIZES, + testing::Values(MatType(CV_8UC1), MatType(CV_16UC1), MatType(CV_16SC1), MatType(CV_32FC1)), + WHOLE_SUBMAT)); + +//////////////////////////////////////////////////////////////////////////////// +// Sqrt + +namespace +{ + template void sqrtImpl(const cv::Mat& src, cv::Mat& dst) + { + dst.create(src.size(), src.type()); + + for (int y = 0; y < src.rows; ++y) + { + for (int x = 0; x < src.cols; ++x) + dst.at(y, x) = static_cast(std::sqrt(static_cast(src.at(y, x)))); + } + } + + void sqrtGold(const cv::Mat& src, cv::Mat& dst) + { + typedef void (*func_t)(const cv::Mat& src, cv::Mat& dst); + + const func_t funcs[] = + { + sqrtImpl, sqrtImpl, sqrtImpl, sqrtImpl, + sqrtImpl, sqrtImpl + }; + + funcs[src.depth()](src, dst); + } +} + +PARAM_TEST_CASE(Sqrt, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi) +{ + cv::gpu::DeviceInfo devInfo; + cv::Size size; + int type; + bool useRoi; + + virtual void SetUp() + { + devInfo = GET_PARAM(0); + size = GET_PARAM(1); + type = GET_PARAM(2); + useRoi = GET_PARAM(3); + + cv::gpu::setDevice(devInfo.deviceID()); + } +}; + +TEST_P(Sqrt, Accuracy) +{ + cv::Mat src = randomMat(size, type); + + cv::gpu::GpuMat dst = createMat(size, type, useRoi); + cv::gpu::sqrt(loadMat(src, useRoi), dst); + + cv::Mat dst_gold; + sqrtGold(src, dst_gold); + + EXPECT_MAT_NEAR(dst_gold, dst, 0.0); +} + +INSTANTIATE_TEST_CASE_P(GPU_Core, Sqrt, testing::Combine( + ALL_DEVICES, + DIFFERENT_SIZES, + testing::Values(MatType(CV_8UC1), MatType(CV_16UC1), MatType(CV_16SC1), MatType(CV_32FC1)), + WHOLE_SUBMAT)); + +//////////////////////////////////////////////////////////////////////////////// +// Log + +namespace +{ + template void logImpl(const cv::Mat& src, cv::Mat& dst) + { + dst.create(src.size(), src.type()); + + for (int y = 0; y < src.rows; ++y) + { + for (int x = 0; x < src.cols; ++x) + dst.at(y, x) = static_cast(std::log(static_cast(src.at(y, x)))); + } + } + + void logGold(const cv::Mat& src, cv::Mat& dst) + { + typedef void (*func_t)(const cv::Mat& src, cv::Mat& dst); + + const func_t funcs[] = + { + logImpl, logImpl, logImpl, logImpl, + logImpl, logImpl + }; + + funcs[src.depth()](src, dst); + } +} + +PARAM_TEST_CASE(Log, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi) +{ + cv::gpu::DeviceInfo devInfo; + cv::Size size; + int type; + bool useRoi; + + virtual void SetUp() + { + devInfo = GET_PARAM(0); + size = GET_PARAM(1); + type = GET_PARAM(2); + useRoi = GET_PARAM(3); + + cv::gpu::setDevice(devInfo.deviceID()); + } +}; + +TEST_P(Log, Accuracy) +{ + cv::Mat src = randomMat(size, type, 1.0, 255.0); + + cv::gpu::GpuMat dst = createMat(size, type, useRoi); + cv::gpu::log(loadMat(src, useRoi), dst); + + cv::Mat dst_gold; + logGold(src, dst_gold); + + EXPECT_MAT_NEAR(dst_gold, dst, 1e-6); +} + +INSTANTIATE_TEST_CASE_P(GPU_Core, Log, testing::Combine( + ALL_DEVICES, + DIFFERENT_SIZES, + testing::Values(MatType(CV_8UC1), MatType(CV_16UC1), MatType(CV_16SC1), MatType(CV_32FC1)), + WHOLE_SUBMAT)); + +//////////////////////////////////////////////////////////////////////////////// +// Exp + +PARAM_TEST_CASE(Exp, cv::gpu::DeviceInfo, cv::Size, MatType, UseRoi) +{ + cv::gpu::DeviceInfo devInfo; + cv::Size size; + int type; + bool useRoi; + + virtual void SetUp() + { + devInfo = GET_PARAM(0); + size = GET_PARAM(1); + type = GET_PARAM(2); + useRoi = GET_PARAM(3); + + cv::gpu::setDevice(devInfo.deviceID()); + } +}; + +TEST_P(Exp, Accuracy) +{ + cv::Mat src = randomMat(size, type, 0.0, 10.0); + + cv::gpu::GpuMat dst = createMat(size, type, useRoi); + cv::gpu::exp(loadMat(src, useRoi), dst); + + cv::Mat dst_gold; + cv::exp(src, dst_gold); + + EXPECT_MAT_NEAR(dst_gold, dst, 1e-2); +} + +INSTANTIATE_TEST_CASE_P(GPU_Core, Exp, testing::Combine( + ALL_DEVICES, + DIFFERENT_SIZES, + testing::Values(MatType(CV_32FC1)), + WHOLE_SUBMAT)); + +//////////////////////////////////////////////////////////////////////////////// +// compare + +PARAM_TEST_CASE(Compare, cv::gpu::DeviceInfo, cv::Size, MatDepth, CmpCode, UseRoi) +{ + cv::gpu::DeviceInfo devInfo; + cv::Size size; + int depth; + int cmp_code; + bool useRoi; + + virtual void SetUp() + { + devInfo = GET_PARAM(0); + size = GET_PARAM(1); + depth = GET_PARAM(2); + cmp_code = GET_PARAM(3); + useRoi = GET_PARAM(4); + + cv::gpu::setDevice(devInfo.deviceID()); + } +}; + +TEST_P(Compare, Accuracy) +{ + cv::Mat src1 = randomMat(size, depth); + cv::Mat src2 = randomMat(size, depth); + + cv::gpu::GpuMat dst = createMat(size, CV_8UC1, useRoi); + cv::gpu::compare(loadMat(src1, useRoi), loadMat(src2, useRoi), dst, cmp_code); + + cv::Mat dst_gold; + cv::compare(src1, src2, dst_gold, cmp_code); + + EXPECT_MAT_NEAR(dst_gold, dst, 0.0); +} + +INSTANTIATE_TEST_CASE_P(GPU_Core, Compare, testing::Combine( + ALL_DEVICES, + DIFFERENT_SIZES, + ALL_DEPTH, + ALL_CMP_CODES, + WHOLE_SUBMAT)); + +////////////////////////////////////////////////////////////////////////////// +// Bitwise_Array + +PARAM_TEST_CASE(Bitwise_Array, cv::gpu::DeviceInfo, cv::Size, MatType) { cv::gpu::DeviceInfo devInfo; + cv::Size size; int type; - bool useRoi; - cv::Size size; - cv::Mat mat1; - cv::Mat mat2; - cv::Scalar val; - + cv::Mat src1; + cv::Mat src2; + virtual void SetUp() { devInfo = GET_PARAM(0); - type = GET_PARAM(1); - useRoi = GET_PARAM(2); + size = GET_PARAM(1); + type = GET_PARAM(2); cv::gpu::setDevice(devInfo.deviceID()); - cv::RNG& rng = TS::ptr()->get_rng(); - - size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); - - mat1 = randomMat(rng, size, type, 5, 16, false); - mat2 = randomMat(rng, size, type, 5, 16, false); - - val = cv::Scalar(rng.uniform(1, 3), rng.uniform(1, 3), rng.uniform(1, 3), rng.uniform(1, 3)); + src1 = randomMat(size, type, 0.0, std::numeric_limits::max()); + src2 = randomMat(size, type, 0.0, std::numeric_limits::max()); } }; -//////////////////////////////////////////////////////////////////////////////// -// add - -struct Add : ArithmTestBase {}; - -TEST_P(Add, Array) -{ - cv::Mat dst_gold; - cv::add(mat1, mat2, dst_gold); +TEST_P(Bitwise_Array, Not) +{ + cv::gpu::GpuMat dst; + cv::gpu::bitwise_not(loadMat(src1), dst); - cv::Mat dst; + cv::Mat dst_gold = ~src1; - cv::gpu::GpuMat gpuRes; + EXPECT_MAT_NEAR(dst_gold, dst, 0.0); +} - cv::gpu::add(loadMat(mat1, useRoi), loadMat(mat2, useRoi), gpuRes); +TEST_P(Bitwise_Array, Or) +{ + cv::gpu::GpuMat dst; + cv::gpu::bitwise_or(loadMat(src1), loadMat(src2), dst); - gpuRes.download(dst); + cv::Mat dst_gold = src1 | src2; EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } -TEST_P(Add, Scalar) -{ - cv::Mat dst_gold; - cv::add(mat1, val, dst_gold); +TEST_P(Bitwise_Array, And) +{ + cv::gpu::GpuMat dst; + cv::gpu::bitwise_and(loadMat(src1), loadMat(src2), dst); - cv::Mat dst; + cv::Mat dst_gold = src1 & src2; - cv::gpu::GpuMat gpuRes; + EXPECT_MAT_NEAR(dst_gold, dst, 0.0); +} - cv::gpu::add(loadMat(mat1, useRoi), val, gpuRes); +TEST_P(Bitwise_Array, Xor) +{ + cv::gpu::GpuMat dst; + cv::gpu::bitwise_xor(loadMat(src1), loadMat(src2), dst); - gpuRes.download(dst); + cv::Mat dst_gold = src1 ^ src2; - EXPECT_MAT_NEAR(dst_gold, dst, 1e-5); + EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } -INSTANTIATE_TEST_CASE_P(Arithm, Add, Combine( - ALL_DEVICES, - Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_16UC1, CV_16UC3, CV_16UC4, CV_16SC1, CV_16SC2, CV_16SC3, CV_16SC4, - CV_32SC1, CV_32SC2, CV_32SC3, CV_32FC1, CV_32FC2, CV_32FC3, CV_32FC4), - WHOLE_SUBMAT)); +INSTANTIATE_TEST_CASE_P(GPU_Core, Bitwise_Array, testing::Combine( + ALL_DEVICES, + DIFFERENT_SIZES, + TYPES(CV_8U, CV_32S, 1, 4))); -//////////////////////////////////////////////////////////////////////////////// -// subtract +////////////////////////////////////////////////////////////////////////////// +// Bitwise_Scalar -struct Subtract : ArithmTestBase {}; +PARAM_TEST_CASE(Bitwise_Scalar, cv::gpu::DeviceInfo, cv::Size, MatDepth, int) +{ + cv::gpu::DeviceInfo devInfo; + cv::Size size; + int depth; + int channels; -TEST_P(Subtract, Array) -{ - cv::Mat dst_gold; - cv::subtract(mat1, mat2, dst_gold); + cv::Mat src; + cv::Scalar val; - cv::Mat dst; + virtual void SetUp() + { + devInfo = GET_PARAM(0); + size = GET_PARAM(1); + depth = GET_PARAM(2); + channels = GET_PARAM(3); - cv::gpu::GpuMat gpuRes; + cv::gpu::setDevice(devInfo.deviceID()); - cv::gpu::subtract(loadMat(mat1, useRoi), loadMat(mat2, useRoi), gpuRes); + src = randomMat(size, CV_MAKE_TYPE(depth, channels)); + cv::Scalar_ ival = randomScalar(0.0, 255.0); + val = ival; + } +}; - gpuRes.download(dst); +TEST_P(Bitwise_Scalar, Or) +{ + cv::gpu::GpuMat dst; + cv::gpu::bitwise_or(loadMat(src), val, dst); + + cv::Mat dst_gold; + cv::bitwise_or(src, val, dst_gold); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } -TEST_P(Subtract, Scalar) -{ - cv::Mat dst_gold; - cv::subtract(mat1, val, dst_gold); +TEST_P(Bitwise_Scalar, And) +{ + cv::gpu::GpuMat dst; + cv::gpu::bitwise_and(loadMat(src), val, dst); - cv::Mat dst; + cv::Mat dst_gold; + cv::bitwise_and(src, val, dst_gold); - cv::gpu::GpuMat gpuRes; + EXPECT_MAT_NEAR(dst_gold, dst, 0.0); +} - cv::gpu::subtract(loadMat(mat1, useRoi), val, gpuRes); +TEST_P(Bitwise_Scalar, Xor) +{ + cv::gpu::GpuMat dst; + cv::gpu::bitwise_xor(loadMat(src), val, dst); - gpuRes.download(dst); + cv::Mat dst_gold; + cv::bitwise_xor(src, val, dst_gold); - EXPECT_MAT_NEAR(dst_gold, dst, 1e-5); + EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } -INSTANTIATE_TEST_CASE_P(Arithm, Subtract, Combine( - ALL_DEVICES, - Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_16UC1, CV_16UC3, CV_16UC4, CV_16SC1, CV_16SC2, CV_16SC3, CV_16SC4, - CV_32SC1, CV_32SC2, CV_32SC3, CV_32FC1, CV_32FC2, CV_32FC3, CV_32FC4), - WHOLE_SUBMAT)); - -//////////////////////////////////////////////////////////////////////////////// -// multiply +INSTANTIATE_TEST_CASE_P(GPU_Core, Bitwise_Scalar, testing::Combine( + ALL_DEVICES, + DIFFERENT_SIZES, + testing::Values(MatDepth(CV_8U), MatDepth(CV_16U), MatDepth(CV_32S)), + testing::Values(1, 3, 4))); -struct Multiply : ArithmTestBase {}; +////////////////////////////////////////////////////////////////////////////// +// RShift -TEST_P(Multiply, Array) -{ - cv::Mat dst_gold; - cv::multiply(mat1, mat2, dst_gold); +namespace +{ + template void rhiftImpl(const cv::Mat& src, cv::Scalar_ val, cv::Mat& dst) + { + const int cn = src.channels(); - cv::Mat dst; + dst.create(src.size(), src.type()); - cv::gpu::GpuMat gpuRes; + for (int y = 0; y < src.rows; ++y) + { + for (int x = 0; x < src.cols; ++x) + { + for (int c = 0; c < cn; ++c) + dst.at(y, x * cn + c) = src.at(y, x * cn + c) >> val.val[c]; + } + } + } - cv::gpu::multiply(loadMat(mat1, useRoi), loadMat(mat2, useRoi), gpuRes); + void rhiftGold(const cv::Mat& src, cv::Scalar_ val, cv::Mat& dst) + { + typedef void (*func_t)(const cv::Mat& src, cv::Scalar_ val, cv::Mat& dst); - gpuRes.download(dst); + const func_t funcs[] = + { + rhiftImpl, rhiftImpl, rhiftImpl, rhiftImpl, rhiftImpl + }; - EXPECT_MAT_NEAR(dst_gold, dst, 0.0); + funcs[src.depth()](src, val, dst); + } } -TEST_P(Multiply, Scalar) -{ - cv::Mat dst_gold; - cv::multiply(mat1, val, dst_gold); +PARAM_TEST_CASE(RShift, cv::gpu::DeviceInfo, cv::Size, MatDepth, int, UseRoi) +{ + cv::gpu::DeviceInfo devInfo; + cv::Size size; + int depth; + int channels; + bool useRoi; - cv::Mat dst; + virtual void SetUp() + { + devInfo = GET_PARAM(0); + size = GET_PARAM(1); + depth = GET_PARAM(2); + channels = GET_PARAM(3); + useRoi = GET_PARAM(4); - cv::gpu::GpuMat gpuRes; + cv::gpu::setDevice(devInfo.deviceID()); + } +}; + +TEST_P(RShift, Accuracy) +{ + int type = CV_MAKE_TYPE(depth, channels); + cv::Mat src = randomMat(size, type); + cv::Scalar_ val = randomScalar(0.0, 8.0); - cv::gpu::multiply(loadMat(mat1, useRoi), val, gpuRes); + cv::gpu::GpuMat dst = createMat(size, type, useRoi); + cv::gpu::rshift(loadMat(src, useRoi), val, dst); - gpuRes.download(dst); + cv::Mat dst_gold; + rhiftGold(src, val, dst_gold); - EXPECT_MAT_NEAR(dst_gold, dst, 1e-5); + EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } -INSTANTIATE_TEST_CASE_P(Arithm, Multiply, Combine( - ALL_DEVICES, - Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_16UC1, CV_16UC3, CV_16UC4, CV_16SC1, CV_16SC3, CV_16SC4, - CV_32SC1, CV_32SC3, CV_32FC1, CV_32FC3, CV_32FC4), - WHOLE_SUBMAT)); - -//////////////////////////////////////////////////////////////////////////////// -// divide +INSTANTIATE_TEST_CASE_P(GPU_Core, RShift, testing::Combine( + ALL_DEVICES, + DIFFERENT_SIZES, + testing::Values(MatDepth(CV_8U), MatDepth(CV_8S), MatDepth(CV_16U), MatDepth(CV_16S), MatDepth(CV_32S)), + testing::Values(1, 3, 4), + WHOLE_SUBMAT)); -struct Divide : ArithmTestBase {}; +////////////////////////////////////////////////////////////////////////////// +// LShift -TEST_P(Divide, Array) -{ - cv::Mat dst_gold; - cv::divide(mat1, mat2, dst_gold); +namespace +{ + template void lhiftImpl(const cv::Mat& src, cv::Scalar_ val, cv::Mat& dst) + { + const int cn = src.channels(); - cv::Mat dst; + dst.create(src.size(), src.type()); - cv::gpu::GpuMat gpuRes; + for (int y = 0; y < src.rows; ++y) + { + for (int x = 0; x < src.cols; ++x) + { + for (int c = 0; c < cn; ++c) + dst.at(y, x * cn + c) = src.at(y, x * cn + c) << val.val[c]; + } + } + } - cv::gpu::divide(loadMat(mat1, useRoi), loadMat(mat2, useRoi), gpuRes); + void lhiftGold(const cv::Mat& src, cv::Scalar_ val, cv::Mat& dst) + { + typedef void (*func_t)(const cv::Mat& src, cv::Scalar_ val, cv::Mat& dst); - gpuRes.download(dst); + const func_t funcs[] = + { + lhiftImpl, lhiftImpl, lhiftImpl, lhiftImpl, lhiftImpl + }; - EXPECT_MAT_NEAR(dst_gold, dst, mat1.depth() == CV_32F ? 1e-5 : 1); + funcs[src.depth()](src, val, dst); + } } -TEST_P(Divide, Scalar) -{ - cv::Mat dst_gold; - cv::divide(mat1, val, dst_gold); +PARAM_TEST_CASE(LShift, cv::gpu::DeviceInfo, cv::Size, MatDepth, int, UseRoi) +{ + cv::gpu::DeviceInfo devInfo; + cv::Size size; + int depth; + int channels; + bool useRoi; - cv::Mat dst; + virtual void SetUp() + { + devInfo = GET_PARAM(0); + size = GET_PARAM(1); + depth = GET_PARAM(2); + channels = GET_PARAM(3); + useRoi = GET_PARAM(4); - cv::gpu::GpuMat gpuRes; + cv::gpu::setDevice(devInfo.deviceID()); + } +}; - cv::gpu::divide(loadMat(mat1, useRoi), val, gpuRes); +TEST_P(LShift, Accuracy) +{ + int type = CV_MAKE_TYPE(depth, channels); + cv::Mat src = randomMat(size, type); + cv::Scalar_ val = randomScalar(0.0, 8.0); - gpuRes.download(dst); + cv::gpu::GpuMat dst = createMat(size, type, useRoi); + cv::gpu::rshift(loadMat(src, useRoi), val, dst); - EXPECT_MAT_NEAR(dst_gold, dst, mat1.depth() == CV_32F ? 1e-5 : 1); -} + cv::Mat dst_gold; + rhiftGold(src, val, dst_gold); -INSTANTIATE_TEST_CASE_P(Arithm, Divide, Combine( - ALL_DEVICES, - Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_16UC1, CV_16UC3, CV_16UC4, CV_16SC1, CV_16SC3, CV_16SC4, - CV_32SC1, CV_32SC3, CV_32FC1, CV_32FC3, CV_32FC4), - WHOLE_SUBMAT)); + EXPECT_MAT_NEAR(dst_gold, dst, 0.0); +} -//////////////////////////////////////////////////////////////////////////////// -// transpose +INSTANTIATE_TEST_CASE_P(GPU_Core, LShift, testing::Combine( + ALL_DEVICES, + DIFFERENT_SIZES, + testing::Values(MatDepth(CV_8U), MatDepth(CV_16U), MatDepth(CV_32S)), + testing::Values(1, 3, 4), + WHOLE_SUBMAT)); -struct Transpose : ArithmTestBase {}; +////////////////////////////////////////////////////////////////////////////// +// Min -TEST_P(Transpose, Accuracy) +PARAM_TEST_CASE(Min, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi) { - cv::Mat dst_gold; - cv::transpose(mat1, dst_gold); + cv::gpu::DeviceInfo devInfo; + cv::Size size; + int depth; + bool useRoi; - cv::Mat dst; - - cv::gpu::GpuMat gpuRes; + virtual void SetUp() + { + devInfo = GET_PARAM(0); + size = GET_PARAM(1); + depth = GET_PARAM(2); + useRoi = GET_PARAM(3); - cv::gpu::transpose(loadMat(mat1, useRoi), gpuRes); + cv::gpu::setDevice(devInfo.deviceID()); + } +}; - gpuRes.download(dst); +TEST_P(Min, Accuracy) +{ + cv::Mat src1 = randomMat(size, depth); + cv::Mat src2 = randomMat(size, depth); + + cv::gpu::GpuMat dst = createMat(size, depth, useRoi); + cv::gpu::min(loadMat(src1, useRoi), loadMat(src2, useRoi), dst); + + cv::Mat dst_gold = cv::min(src1, src2); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } -INSTANTIATE_TEST_CASE_P(Arithm, Transpose, Combine( - ALL_DEVICES, - Values(CV_8UC1, CV_8UC4, CV_8SC1, CV_8SC4, CV_16UC2, CV_16SC2, CV_32SC1, CV_32SC2, CV_32FC1, CV_32FC2, CV_64FC1), - WHOLE_SUBMAT)); +INSTANTIATE_TEST_CASE_P(GPU_Core, Min, testing::Combine( + ALL_DEVICES, + DIFFERENT_SIZES, + ALL_DEPTH, + WHOLE_SUBMAT)); -//////////////////////////////////////////////////////////////////////////////// -// absdiff +////////////////////////////////////////////////////////////////////////////// +// Max -struct Absdiff : ArithmTestBase {}; +PARAM_TEST_CASE(Max, cv::gpu::DeviceInfo, cv::Size, MatDepth, UseRoi) +{ + cv::gpu::DeviceInfo devInfo; + cv::Size size; + int depth; + bool useRoi; -TEST_P(Absdiff, Array) -{ - cv::Mat dst_gold; - cv::absdiff(mat1, mat2, dst_gold); + virtual void SetUp() + { + devInfo = GET_PARAM(0); + size = GET_PARAM(1); + depth = GET_PARAM(2); + useRoi = GET_PARAM(3); - cv::Mat dst; + cv::gpu::setDevice(devInfo.deviceID()); + } +}; - cv::gpu::GpuMat gpuRes; +TEST_P(Max, Accuracy) +{ + cv::Mat src1 = randomMat(size, depth); + cv::Mat src2 = randomMat(size, depth); - cv::gpu::absdiff(loadMat(mat1, useRoi), loadMat(mat2, useRoi), gpuRes); + cv::gpu::GpuMat dst = createMat(size, depth, useRoi); + cv::gpu::max(loadMat(src1, useRoi), loadMat(src2, useRoi), dst); - gpuRes.download(dst); + cv::Mat dst_gold = cv::max(src1, src2); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } -TEST_P(Absdiff, Scalar) -{ - cv::Mat dst_gold; - cv::absdiff(mat1, val, dst_gold); - - cv::Mat dst; - - cv::gpu::GpuMat gpuRes; - - cv::gpu::absdiff(loadMat(mat1, useRoi), val, gpuRes); +INSTANTIATE_TEST_CASE_P(GPU_Core, Max, testing::Combine( + ALL_DEVICES, + DIFFERENT_SIZES, + ALL_DEPTH, + WHOLE_SUBMAT)); - gpuRes.download(dst); - EXPECT_MAT_NEAR(dst_gold, dst, 1e-5); -} -INSTANTIATE_TEST_CASE_P(Arithm, Absdiff, Combine( - ALL_DEVICES, - Values(CV_8UC1, CV_16UC1, CV_32SC1, CV_32FC1), - WHOLE_SUBMAT)); -//////////////////////////////////////////////////////////////////////////////// -// abs -struct Abs : ArithmTestBase {}; -TEST_P(Abs, Array) -{ - cv::Mat dst_gold = cv::abs(mat1); - cv::Mat dst; - cv::gpu::GpuMat gpuRes; - cv::gpu::abs(loadMat(mat1, useRoi), gpuRes); - gpuRes.download(dst); - EXPECT_MAT_NEAR(dst_gold, dst, 0.0); -} -INSTANTIATE_TEST_CASE_P(Arithm, Abs, Combine( - ALL_DEVICES, - Values(CV_16SC1, CV_32FC1), - WHOLE_SUBMAT)); -//////////////////////////////////////////////////////////////////////////////// -// Sqr -struct Sqr : ArithmTestBase {}; -TEST_P(Sqr, Array) -{ - cv::Mat dst_gold; - cv::multiply(mat1, mat1, dst_gold); - cv::Mat dst; - cv::gpu::GpuMat gpuRes; - cv::gpu::sqr(loadMat(mat1, useRoi), gpuRes); - gpuRes.download(dst); - EXPECT_MAT_NEAR(dst_gold, dst, 0.0); -} -INSTANTIATE_TEST_CASE_P(Arithm, Sqr, Combine( - ALL_DEVICES, - Values(CV_8UC1, CV_16UC1, CV_16SC1, CV_32FC1), - WHOLE_SUBMAT)); -//////////////////////////////////////////////////////////////////////////////// -// Sqrt -struct Sqrt : ArithmTestBase {}; -TEST_P(Sqrt, Array) -{ - cv::Mat dst_gold; - cv::sqrt(mat1, dst_gold); - cv::Mat dst; - cv::gpu::GpuMat gpuRes; - cv::gpu::sqrt(loadMat(mat1, useRoi), gpuRes); - gpuRes.download(dst); - EXPECT_MAT_NEAR(dst_gold, dst, 1e-6); -} -INSTANTIATE_TEST_CASE_P(Arithm, Sqrt, Combine( - ALL_DEVICES, - Values(MatType(CV_32FC1)), - WHOLE_SUBMAT)); -//////////////////////////////////////////////////////////////////////////////// -// compare +using namespace cvtest; +using namespace testing; -PARAM_TEST_CASE(Compare, cv::gpu::DeviceInfo, MatType, CmpCode, UseRoi) +PARAM_TEST_CASE(ArithmTestBase, cv::gpu::DeviceInfo, MatType, UseRoi) { cv::gpu::DeviceInfo devInfo; int type; - int cmp_code; bool useRoi; cv::Size size; - cv::Mat mat1, mat2; + cv::Mat mat1; + cv::Mat mat2; + cv::Scalar val; - cv::Mat dst_gold; - virtual void SetUp() { devInfo = GET_PARAM(0); type = GET_PARAM(1); - cmp_code = GET_PARAM(2); - useRoi = GET_PARAM(3); + useRoi = GET_PARAM(2); cv::gpu::setDevice(devInfo.deviceID()); cv::RNG& rng = TS::ptr()->get_rng(); size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); - - mat1 = randomMat(rng, size, type, 1, 16, false); - mat2 = randomMat(rng, size, type, 1, 16, false); - cv::compare(mat1, mat2, dst_gold, cmp_code); + mat1 = randomMat(rng, size, type, 5, 16, false); + mat2 = randomMat(rng, size, type, 5, 16, false); + + val = cv::Scalar(rng.uniform(1, 3), rng.uniform(1, 3), rng.uniform(1, 3), rng.uniform(1, 3)); } }; -TEST_P(Compare, Accuracy) +//////////////////////////////////////////////////////////////////////////////// +// transpose + +struct Transpose : ArithmTestBase {}; + +TEST_P(Transpose, Accuracy) { + cv::Mat dst_gold; + cv::transpose(mat1, dst_gold); + cv::Mat dst; - + cv::gpu::GpuMat gpuRes; - cv::gpu::compare(loadMat(mat1, useRoi), loadMat(mat2, useRoi), gpuRes, cmp_code); + cv::gpu::transpose(loadMat(mat1, useRoi), gpuRes); gpuRes.download(dst); EXPECT_MAT_NEAR(dst_gold, dst, 0.0); } -INSTANTIATE_TEST_CASE_P(Arithm, Compare, Combine( +INSTANTIATE_TEST_CASE_P(Arithm, Transpose, Combine( ALL_DEVICES, - Values(CV_8UC1, CV_16UC1, CV_32SC1), - Values((int) cv::CMP_EQ, (int) cv::CMP_GT, (int) cv::CMP_GE, (int) cv::CMP_LT, (int) cv::CMP_LE, (int) cv::CMP_NE), + Values(CV_8UC1, CV_8UC4, CV_8SC1, CV_8SC4, CV_16UC2, CV_16SC2, CV_32SC1, CV_32SC2, CV_32FC1, CV_32FC2, CV_64FC1), WHOLE_SUBMAT)); //////////////////////////////////////////////////////////////////////////////// @@ -461,7 +1546,7 @@ PARAM_TEST_CASE(MeanStdDev, cv::gpu::DeviceInfo, UseRoi) cv::Scalar mean_gold; cv::Scalar stddev_gold; - virtual void SetUp() + virtual void SetUp() { devInfo = GET_PARAM(0); useRoi = GET_PARAM(1); @@ -471,18 +1556,18 @@ PARAM_TEST_CASE(MeanStdDev, cv::gpu::DeviceInfo, UseRoi) cv::RNG& rng = TS::ptr()->get_rng(); size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); - + mat = randomMat(rng, size, CV_8UC1, 1, 255, false); cv::meanStdDev(mat, mean_gold, stddev_gold); } }; -TEST_P(MeanStdDev, Accuracy) +TEST_P(MeanStdDev, Accuracy) { cv::Scalar mean; cv::Scalar stddev; - + cv::gpu::meanStdDev(loadMat(mat, useRoi), mean, stddev); EXPECT_NEAR(mean_gold[0], mean[0], 1e-5); @@ -514,7 +1599,7 @@ PARAM_TEST_CASE(NormDiff, cv::gpu::DeviceInfo, NormCode, UseRoi) double norm_gold; - virtual void SetUp() + virtual void SetUp() { devInfo = GET_PARAM(0); normCode = GET_PARAM(1); @@ -525,7 +1610,7 @@ PARAM_TEST_CASE(NormDiff, cv::gpu::DeviceInfo, NormCode, UseRoi) cv::RNG& rng = TS::ptr()->get_rng(); size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); - + mat1 = randomMat(rng, size, CV_8UC1, 1, 255, false); mat2 = randomMat(rng, size, CV_8UC1, 1, 255, false); @@ -533,8 +1618,8 @@ PARAM_TEST_CASE(NormDiff, cv::gpu::DeviceInfo, NormCode, UseRoi) } }; -TEST_P(NormDiff, Accuracy) -{ +TEST_P(NormDiff, Accuracy) +{ double norm = cv::gpu::norm(loadMat(mat1, useRoi), loadMat(mat2, useRoi), normCode); EXPECT_NEAR(norm_gold, norm, 1e-6); @@ -560,7 +1645,7 @@ PARAM_TEST_CASE(Flip, cv::gpu::DeviceInfo, MatType, FlipCode, UseRoi) cv::Mat dst_gold; - virtual void SetUp() + virtual void SetUp() { devInfo = GET_PARAM(0); type = GET_PARAM(1); @@ -572,17 +1657,17 @@ PARAM_TEST_CASE(Flip, cv::gpu::DeviceInfo, MatType, FlipCode, UseRoi) cv::RNG& rng = TS::ptr()->get_rng(); size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); - + mat = randomMat(rng, size, type, 1, 255, false); cv::flip(mat, dst_gold, flip_code); } }; -TEST_P(Flip, Accuracy) -{ +TEST_P(Flip, Accuracy) +{ cv::Mat dst; - + cv::gpu::GpuMat gpu_res; cv::gpu::flip(loadMat(mat, useRoi), gpu_res, flip_code); @@ -613,7 +1698,7 @@ PARAM_TEST_CASE(LUT, cv::gpu::DeviceInfo, MatType, UseRoi) cv::Mat dst_gold; - virtual void SetUp() + virtual void SetUp() { devInfo = GET_PARAM(0); type = GET_PARAM(1); @@ -624,7 +1709,7 @@ PARAM_TEST_CASE(LUT, cv::gpu::DeviceInfo, MatType, UseRoi) cv::RNG& rng = TS::ptr()->get_rng(); size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); - + mat = randomMat(rng, size, type, 1, 255, false); lut = randomMat(rng, cv::Size(256, 1), CV_8UC1, 100, 200, false); @@ -632,10 +1717,10 @@ PARAM_TEST_CASE(LUT, cv::gpu::DeviceInfo, MatType, UseRoi) } }; -TEST_P(LUT, Accuracy) +TEST_P(LUT, Accuracy) { cv::Mat dst; - + cv::gpu::GpuMat gpu_res; cv::gpu::LUT(loadMat(mat, useRoi), lut, gpu_res); @@ -650,53 +1735,6 @@ INSTANTIATE_TEST_CASE_P(Arithm, LUT, Combine( Values(CV_8UC1, CV_8UC3), WHOLE_SUBMAT)); -//////////////////////////////////////////////////////////////////////////////// -// exp - -PARAM_TEST_CASE(Exp, cv::gpu::DeviceInfo, UseRoi) -{ - cv::gpu::DeviceInfo devInfo; - bool useRoi; - - cv::Size size; - cv::Mat mat; - - cv::Mat dst_gold; - - virtual void SetUp() - { - devInfo = GET_PARAM(0); - useRoi = GET_PARAM(1); - - cv::gpu::setDevice(devInfo.deviceID()); - - cv::RNG& rng = TS::ptr()->get_rng(); - - size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); - - mat = randomMat(rng, size, CV_32FC1, -10.0, 2.0, false); - - cv::exp(mat, dst_gold); - } -}; - -TEST_P(Exp, Accuracy) -{ - cv::Mat dst; - - cv::gpu::GpuMat gpu_res; - - cv::gpu::exp(loadMat(mat, useRoi), gpu_res); - - gpu_res.download(dst); - - EXPECT_MAT_NEAR(dst_gold, dst, 1e-5); -} - -INSTANTIATE_TEST_CASE_P(Arithm, Exp, Combine( - ALL_DEVICES, - WHOLE_SUBMAT)); - //////////////////////////////////////////////////////////////////////////////// // pow @@ -712,7 +1750,7 @@ PARAM_TEST_CASE(Pow, cv::gpu::DeviceInfo, MatType, UseRoi) cv::Mat dst_gold; - virtual void SetUp() + virtual void SetUp() { devInfo = GET_PARAM(0); type = GET_PARAM(1); @@ -724,7 +1762,7 @@ PARAM_TEST_CASE(Pow, cv::gpu::DeviceInfo, MatType, UseRoi) size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); - mat = randomMat(rng, size, type, 0.0, 100.0, false); + mat = randomMat(rng, size, type, 0.0, 100.0, false); if (mat.depth() == CV_32F) power = rng.uniform(1.2f, 3.f); @@ -738,10 +1776,10 @@ PARAM_TEST_CASE(Pow, cv::gpu::DeviceInfo, MatType, UseRoi) } }; -TEST_P(Pow, Accuracy) +TEST_P(Pow, Accuracy) { cv::Mat dst; - + cv::gpu::GpuMat gpu_res; cv::gpu::pow(loadMat(mat, useRoi), power, gpu_res); @@ -756,53 +1794,6 @@ INSTANTIATE_TEST_CASE_P(Arithm, Pow, Combine( Values(CV_32F, CV_32FC3), WHOLE_SUBMAT)); -//////////////////////////////////////////////////////////////////////////////// -// log - -PARAM_TEST_CASE(Log, cv::gpu::DeviceInfo, UseRoi) -{ - cv::gpu::DeviceInfo devInfo; - bool useRoi; - - cv::Size size; - cv::Mat mat; - - cv::Mat dst_gold; - - virtual void SetUp() - { - devInfo = GET_PARAM(0); - useRoi = GET_PARAM(1); - - cv::gpu::setDevice(devInfo.deviceID()); - - cv::RNG& rng = TS::ptr()->get_rng(); - - size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); - - mat = randomMat(rng, size, CV_32FC1, 0.0, 100.0, false); - - cv::log(mat, dst_gold); - } -}; - -TEST_P(Log, Accuracy) -{ - cv::Mat dst; - - cv::gpu::GpuMat gpu_res; - - cv::gpu::log(loadMat(mat, useRoi), gpu_res); - - gpu_res.download(dst); - - EXPECT_MAT_NEAR(dst_gold, dst, 1e-5); -} - -INSTANTIATE_TEST_CASE_P(Arithm, Log, Combine( - ALL_DEVICES, - WHOLE_SUBMAT)); - //////////////////////////////////////////////////////////////////////////////// // magnitude @@ -816,7 +1807,7 @@ PARAM_TEST_CASE(Magnitude, cv::gpu::DeviceInfo, UseRoi) cv::Mat dst_gold; - virtual void SetUp() + virtual void SetUp() { devInfo = GET_PARAM(0); useRoi = GET_PARAM(1); @@ -828,13 +1819,13 @@ PARAM_TEST_CASE(Magnitude, cv::gpu::DeviceInfo, UseRoi) size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); mat1 = randomMat(rng, size, CV_32FC1, 0.0, 100.0, false); - mat2 = randomMat(rng, size, CV_32FC1, 0.0, 100.0, false); + mat2 = randomMat(rng, size, CV_32FC1, 0.0, 100.0, false); cv::magnitude(mat1, mat2, dst_gold); } }; -TEST_P(Magnitude, Accuracy) +TEST_P(Magnitude, Accuracy) { cv::Mat dst; @@ -864,7 +1855,7 @@ PARAM_TEST_CASE(Phase, cv::gpu::DeviceInfo, UseRoi) cv::Mat dst_gold; - virtual void SetUp() + virtual void SetUp() { devInfo = GET_PARAM(0); useRoi = GET_PARAM(1); @@ -876,16 +1867,16 @@ PARAM_TEST_CASE(Phase, cv::gpu::DeviceInfo, UseRoi) size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); mat1 = randomMat(rng, size, CV_32FC1, 0.0, 100.0, false); - mat2 = randomMat(rng, size, CV_32FC1, 0.0, 100.0, false); + mat2 = randomMat(rng, size, CV_32FC1, 0.0, 100.0, false); cv::phase(mat1, mat2, dst_gold); } }; -TEST_P(Phase, Accuracy) +TEST_P(Phase, Accuracy) { cv::Mat dst; - + cv::gpu::GpuMat gpu_res; cv::gpu::phase(loadMat(mat1, useRoi), loadMat(mat2, useRoi), gpu_res); @@ -913,7 +1904,7 @@ PARAM_TEST_CASE(CartToPolar, cv::gpu::DeviceInfo, UseRoi) cv::Mat mag_gold; cv::Mat angle_gold; - virtual void SetUp() + virtual void SetUp() { devInfo = GET_PARAM(0); useRoi = GET_PARAM(1); @@ -925,16 +1916,16 @@ PARAM_TEST_CASE(CartToPolar, cv::gpu::DeviceInfo, UseRoi) size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); mat1 = randomMat(rng, size, CV_32FC1, -100.0, 100.0, false); - mat2 = randomMat(rng, size, CV_32FC1, -100.0, 100.0, false); + mat2 = randomMat(rng, size, CV_32FC1, -100.0, 100.0, false); cv::cartToPolar(mat1, mat2, mag_gold, angle_gold); } }; -TEST_P(CartToPolar, Accuracy) +TEST_P(CartToPolar, Accuracy) { cv::Mat mag, angle; - + cv::gpu::GpuMat gpuMag; cv::gpu::GpuMat gpuAngle; @@ -966,7 +1957,7 @@ PARAM_TEST_CASE(PolarToCart, cv::gpu::DeviceInfo, UseRoi) cv::Mat x_gold; cv::Mat y_gold; - virtual void SetUp() + virtual void SetUp() { devInfo = GET_PARAM(0); useRoi = GET_PARAM(1); @@ -978,13 +1969,13 @@ PARAM_TEST_CASE(PolarToCart, cv::gpu::DeviceInfo, UseRoi) size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); mag = randomMat(rng, size, CV_32FC1, -100.0, 100.0, false); - angle = randomMat(rng, size, CV_32FC1, 0.0, 2.0 * CV_PI, false); + angle = randomMat(rng, size, CV_32FC1, 0.0, 2.0 * CV_PI, false); cv::polarToCart(mag, angle, x_gold, y_gold); } }; -TEST_P(PolarToCart, Accuracy) +TEST_P(PolarToCart, Accuracy) { cv::Mat x, y; @@ -1020,7 +2011,7 @@ PARAM_TEST_CASE(MinMax, cv::gpu::DeviceInfo, MatType, UseRoi) double minVal_gold; double maxVal_gold; - virtual void SetUp() + virtual void SetUp() { devInfo = GET_PARAM(0); type = GET_PARAM(1); @@ -1039,9 +2030,9 @@ PARAM_TEST_CASE(MinMax, cv::gpu::DeviceInfo, MatType, UseRoi) { cv::minMaxLoc(mat, &minVal_gold, &maxVal_gold, 0, 0, mask); } - else + else { - // OpenCV's minMaxLoc doesn't support CV_8S type + // OpenCV's minMaxLoc doesn't support CV_8S type minVal_gold = std::numeric_limits::max(); maxVal_gold = -std::numeric_limits::max(); for (int i = 0; i < mat.rows; ++i) @@ -1050,11 +2041,11 @@ PARAM_TEST_CASE(MinMax, cv::gpu::DeviceInfo, MatType, UseRoi) const unsigned char* mask_row = mask.ptr(i); for (int j = 0; j < mat.cols; ++j) { - if (mask_row[j]) - { + if (mask_row[j]) + { signed char val = mat_row[j]; if (val < minVal_gold) minVal_gold = val; - if (val > maxVal_gold) maxVal_gold = val; + if (val > maxVal_gold) maxVal_gold = val; } } } @@ -1062,13 +2053,13 @@ PARAM_TEST_CASE(MinMax, cv::gpu::DeviceInfo, MatType, UseRoi) } }; -TEST_P(MinMax, Accuracy) +TEST_P(MinMax, Accuracy) { if (type == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) return; double minVal, maxVal; - + cv::gpu::minMax(loadMat(mat, useRoi), &minVal, &maxVal, loadMat(mask, useRoi)); EXPECT_DOUBLE_EQ(minVal_gold, minVal); @@ -1098,7 +2089,7 @@ PARAM_TEST_CASE(MinMaxLoc, cv::gpu::DeviceInfo, MatType, UseRoi) cv::Point minLoc_gold; cv::Point maxLoc_gold; - virtual void SetUp() + virtual void SetUp() { devInfo = GET_PARAM(0); type = GET_PARAM(1); @@ -1117,9 +2108,9 @@ PARAM_TEST_CASE(MinMaxLoc, cv::gpu::DeviceInfo, MatType, UseRoi) { cv::minMaxLoc(mat, &minVal_gold, &maxVal_gold, &minLoc_gold, &maxLoc_gold, mask); } - else + else { - // OpenCV's minMaxLoc doesn't support CV_8S type + // OpenCV's minMaxLoc doesn't support CV_8S type minVal_gold = std::numeric_limits::max(); maxVal_gold = -std::numeric_limits::max(); for (int i = 0; i < mat.rows; ++i) @@ -1128,8 +2119,8 @@ PARAM_TEST_CASE(MinMaxLoc, cv::gpu::DeviceInfo, MatType, UseRoi) const unsigned char* mask_row = mask.ptr(i); for (int j = 0; j < mat.cols; ++j) { - if (mask_row[j]) - { + if (mask_row[j]) + { signed char val = mat_row[j]; if (val < minVal_gold) { minVal_gold = val; minLoc_gold = cv::Point(j, i); } if (val > maxVal_gold) { maxVal_gold = val; maxLoc_gold = cv::Point(j, i); } @@ -1140,24 +2131,24 @@ PARAM_TEST_CASE(MinMaxLoc, cv::gpu::DeviceInfo, MatType, UseRoi) } }; -TEST_P(MinMaxLoc, Accuracy) +TEST_P(MinMaxLoc, Accuracy) { if (type == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) return; double minVal, maxVal; cv::Point minLoc, maxLoc; - + cv::gpu::minMaxLoc(loadMat(mat, useRoi), &minVal, &maxVal, &minLoc, &maxLoc, loadMat(mask, useRoi)); EXPECT_DOUBLE_EQ(minVal_gold, minVal); EXPECT_DOUBLE_EQ(maxVal_gold, maxVal); - int cmpMinVals = memcmp(mat.data + minLoc_gold.y * mat.step + minLoc_gold.x * mat.elemSize(), - mat.data + minLoc.y * mat.step + minLoc.x * mat.elemSize(), + int cmpMinVals = memcmp(mat.data + minLoc_gold.y * mat.step + minLoc_gold.x * mat.elemSize(), + mat.data + minLoc.y * mat.step + minLoc.x * mat.elemSize(), mat.elemSize()); - int cmpMaxVals = memcmp(mat.data + maxLoc_gold.y * mat.step + maxLoc_gold.x * mat.elemSize(), - mat.data + maxLoc.y * mat.step + maxLoc.x * mat.elemSize(), + int cmpMaxVals = memcmp(mat.data + maxLoc_gold.y * mat.step + maxLoc_gold.x * mat.elemSize(), + mat.data + maxLoc.y * mat.step + maxLoc.x * mat.elemSize(), mat.elemSize()); EXPECT_EQ(0, cmpMinVals); @@ -1183,7 +2174,7 @@ PARAM_TEST_CASE(CountNonZero, cv::gpu::DeviceInfo, MatType, UseRoi) int n_gold; - virtual void SetUp() + virtual void SetUp() { devInfo = GET_PARAM(0); type = GET_PARAM(1); @@ -1202,7 +2193,7 @@ PARAM_TEST_CASE(CountNonZero, cv::gpu::DeviceInfo, MatType, UseRoi) } }; -TEST_P(CountNonZero, Accuracy) +TEST_P(CountNonZero, Accuracy) { if (type == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) return; @@ -1229,7 +2220,7 @@ PARAM_TEST_CASE(Sum, cv::gpu::DeviceInfo, MatType, UseRoi) cv::Size size; cv::Mat mat; - virtual void SetUp() + virtual void SetUp() { devInfo = GET_PARAM(0); type = GET_PARAM(1); @@ -1245,7 +2236,7 @@ PARAM_TEST_CASE(Sum, cv::gpu::DeviceInfo, MatType, UseRoi) } }; -TEST_P(Sum, Simple) +TEST_P(Sum, Simple) { if (type == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) return; @@ -1260,7 +2251,7 @@ TEST_P(Sum, Simple) EXPECT_NEAR(sum[3], sum_gold[3], mat.size().area() * 1e-5); } -TEST_P(Sum, Abs) +TEST_P(Sum, Abs) { if (type == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) return; @@ -1275,7 +2266,7 @@ TEST_P(Sum, Abs) EXPECT_NEAR(sum[3], sum_gold[3], mat.size().area() * 1e-5); } -TEST_P(Sum, Sqr) +TEST_P(Sum, Sqr) { if (type == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) return; @@ -1297,203 +2288,6 @@ INSTANTIATE_TEST_CASE_P(Arithm, Sum, Combine( Values(CV_8U, CV_8S, CV_16U, CV_16S, CV_32S, CV_32F, CV_64F), WHOLE_SUBMAT)); -////////////////////////////////////////////////////////////////////////////// -// bitwise - -PARAM_TEST_CASE(Bitwise, cv::gpu::DeviceInfo, MatType) -{ - cv::gpu::DeviceInfo devInfo; - int type; - - cv::Size size; - cv::Mat mat1; - cv::Mat mat2; - - virtual void SetUp() - { - devInfo = GET_PARAM(0); - type = GET_PARAM(1); - - cv::gpu::setDevice(devInfo.deviceID()); - - cv::RNG& rng = cvtest::TS::ptr()->get_rng(); - - size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); - - mat1.create(size, type); - mat2.create(size, type); - - for (int i = 0; i < mat1.rows; ++i) - { - cv::Mat row1(1, static_cast(mat1.cols * mat1.elemSize()), CV_8U, (void*)mat1.ptr(i)); - rng.fill(row1, cv::RNG::UNIFORM, cv::Scalar(0), cv::Scalar(255)); - - cv::Mat row2(1, static_cast(mat2.cols * mat2.elemSize()), CV_8U, (void*)mat2.ptr(i)); - rng.fill(row2, cv::RNG::UNIFORM, cv::Scalar(0), cv::Scalar(255)); - } - } -}; - -TEST_P(Bitwise, Not) -{ - if (mat1.depth() == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) - return; - - cv::Mat dst_gold = ~mat1; - - cv::Mat dst; - - cv::gpu::GpuMat dev_dst; - - cv::gpu::bitwise_not(loadMat(mat1), dev_dst); - - dev_dst.download(dst); - - EXPECT_MAT_NEAR(dst_gold, dst, 0.0); -} - -TEST_P(Bitwise, Or) -{ - if (mat1.depth() == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) - return; - - cv::Mat dst_gold = mat1 | mat2; - - cv::Mat dst; - - cv::gpu::GpuMat dev_dst; - - cv::gpu::bitwise_or(loadMat(mat1), loadMat(mat2), dev_dst); - - dev_dst.download(dst); - - EXPECT_MAT_NEAR(dst_gold, dst, 0.0); -} - -TEST_P(Bitwise, And) -{ - if (mat1.depth() == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) - return; - - cv::Mat dst_gold = mat1 & mat2; - - cv::Mat dst; - - cv::gpu::GpuMat dev_dst; - - cv::gpu::bitwise_and(loadMat(mat1), loadMat(mat2), dev_dst); - - dev_dst.download(dst); - - EXPECT_MAT_NEAR(dst_gold, dst, 0.0); -} - -TEST_P(Bitwise, Xor) -{ - if (mat1.depth() == CV_64F && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) - return; - - cv::Mat dst_gold = mat1 ^ mat2; - - cv::Mat dst; - - cv::gpu::GpuMat dev_dst; - - cv::gpu::bitwise_xor(loadMat(mat1), loadMat(mat2), dev_dst); - - dev_dst.download(dst); - - EXPECT_MAT_NEAR(dst_gold, dst, 0.0); -} - -INSTANTIATE_TEST_CASE_P(Arithm, Bitwise, Combine( - ALL_DEVICES, - ALL_TYPES)); - -PARAM_TEST_CASE(BitwiseScalar, cv::gpu::DeviceInfo, MatType) -{ - cv::gpu::DeviceInfo devInfo; - int type; - - cv::Size size; - cv::Mat mat; - cv::Scalar sc; - - virtual void SetUp() - { - devInfo = GET_PARAM(0); - type = GET_PARAM(1); - - cv::gpu::setDevice(devInfo.deviceID()); - - cv::RNG& rng = cvtest::TS::ptr()->get_rng(); - - size = cv::Size(rng.uniform(100, 200), rng.uniform(100, 200)); - - mat.create(size, type); - - for (int i = 0; i < mat.rows; ++i) - { - cv::Mat row(1, static_cast(mat.cols * mat.elemSize()), CV_8U, (void*)mat.ptr(i)); - rng.fill(row, cv::RNG::UNIFORM, cv::Scalar(0), cv::Scalar(255)); - } - - sc = cv::Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255)); - } -}; - -TEST_P(BitwiseScalar, Or) -{ - cv::Mat dst_gold; - cv::bitwise_or(mat, sc, dst_gold); - - cv::Mat dst; - - cv::gpu::GpuMat dev_dst; - - cv::gpu::bitwise_or(loadMat(mat), sc, dev_dst); - - dev_dst.download(dst); - - EXPECT_MAT_NEAR(dst_gold, dst, 0.0); -} - -TEST_P(BitwiseScalar, And) -{ - cv::Mat dst_gold; - cv::bitwise_and(mat, sc, dst_gold); - - cv::Mat dst; - - cv::gpu::GpuMat dev_dst; - - cv::gpu::bitwise_and(loadMat(mat), sc, dev_dst); - - dev_dst.download(dst); - - EXPECT_MAT_NEAR(dst_gold, dst, 0.0); -} - -TEST_P(BitwiseScalar, Xor) -{ - cv::Mat dst_gold; - cv::bitwise_xor(mat, sc, dst_gold); - - cv::Mat dst; - - cv::gpu::GpuMat dev_dst; - - cv::gpu::bitwise_xor(loadMat(mat), sc, dev_dst); - - dev_dst.download(dst); - - EXPECT_MAT_NEAR(dst_gold, dst, 0.0); -} - -INSTANTIATE_TEST_CASE_P(Arithm, BitwiseScalar, Combine( - ALL_DEVICES, - Values(CV_8UC1, CV_8UC3, CV_8UC4, CV_16UC1, CV_16UC3, CV_16UC4, CV_32SC1, CV_32SC3, CV_32SC4))); - ////////////////////////////////////////////////////////////////////////////// // addWeighted @@ -1514,7 +2308,7 @@ PARAM_TEST_CASE(AddWeighted, cv::gpu::DeviceInfo, MatType, MatType, MatType, Use cv::Mat dst_gold; - virtual void SetUp() + virtual void SetUp() { devInfo = GET_PARAM(0); type1 = GET_PARAM(1); @@ -1539,13 +2333,13 @@ PARAM_TEST_CASE(AddWeighted, cv::gpu::DeviceInfo, MatType, MatType, MatType, Use } }; -TEST_P(AddWeighted, Accuracy) +TEST_P(AddWeighted, Accuracy) { if ((src1.depth() == CV_64F || src2.depth() == CV_64F || dst_gold.depth() == CV_64F) && !supportFeature(devInfo, cv::gpu::NATIVE_DOUBLE)) return; cv::Mat dst; - + cv::gpu::GpuMat dev_dst; cv::gpu::addWeighted(loadMat(src1, useRoi), alpha, loadMat(src2, useRoi), beta, gamma, dev_dst, dtype); @@ -1570,7 +2364,7 @@ PARAM_TEST_CASE(Reduce, cv::gpu::DeviceInfo, MatType, int, ReduceOp, UseRoi) cv::gpu::DeviceInfo devInfo; int type; int dim; - int reduceOp; + int reduceOp; bool useRoi; cv::Size size; @@ -1578,7 +2372,7 @@ PARAM_TEST_CASE(Reduce, cv::gpu::DeviceInfo, MatType, int, ReduceOp, UseRoi) cv::Mat dst_gold; - virtual void SetUp() + virtual void SetUp() { devInfo = GET_PARAM(0); type = GET_PARAM(1); @@ -1605,10 +2399,10 @@ PARAM_TEST_CASE(Reduce, cv::gpu::DeviceInfo, MatType, int, ReduceOp, UseRoi) } }; -TEST_P(Reduce, Accuracy) +TEST_P(Reduce, Accuracy) { cv::Mat dst; - + cv::gpu::GpuMat dev_dst; cv::gpu::reduce(loadMat(src, useRoi), dev_dst, dim, reduceOp, reduceOp == CV_REDUCE_SUM || reduceOp == CV_REDUCE_AVG ? CV_32F : CV_MAT_DEPTH(type)); @@ -1645,7 +2439,7 @@ PARAM_TEST_CASE(GEMM, cv::gpu::DeviceInfo, MatType, GemmFlags, UseRoi) cv::Mat dst_gold; - virtual void SetUp() + virtual void SetUp() { devInfo = GET_PARAM(0); type = GET_PARAM(1); @@ -1668,10 +2462,10 @@ PARAM_TEST_CASE(GEMM, cv::gpu::DeviceInfo, MatType, GemmFlags, UseRoi) } }; -TEST_P(GEMM, Accuracy) +TEST_P(GEMM, Accuracy) { cv::Mat dst; - + cv::gpu::GpuMat dev_dst; cv::gpu::gemm(loadMat(src1, useRoi), loadMat(src2, useRoi), alpha, loadMat(src3, useRoi), beta, dev_dst, flags); diff --git a/modules/gpu/test/utility.hpp b/modules/gpu/test/utility.hpp index 76fcb6efe7..c551ceed5b 100644 --- a/modules/gpu/test/utility.hpp +++ b/modules/gpu/test/utility.hpp @@ -162,10 +162,37 @@ CV_FLAGS(DftFlags, cv::DFT_INVERSE, cv::DFT_SCALE, cv::DFT_ROWS, cv::DFT_COMPLEX #define ALL_DEVICES testing::ValuesIn(devices()) #define DEVICES(feature) testing::ValuesIn(devices(feature)) +#define DIFFERENT_SIZES testing::Values(cv::Size(128, 128), cv::Size(113, 113)) + +#define ALL_DEPTH testing::Values(MatDepth(CV_8U), MatDepth(CV_8S), MatDepth(CV_16U), MatDepth(CV_16S), MatDepth(CV_32S), MatDepth(CV_32F), MatDepth(CV_64F)) #define ALL_TYPES testing::ValuesIn(all_types()) #define TYPES(depth_start, depth_end, cn_start, cn_end) testing::ValuesIn(types(depth_start, depth_end, cn_start, cn_end)) -#define DIFFERENT_SIZES testing::Values(cv::Size(128, 128), cv::Size(113, 113)) +#define DEPTH_PAIRS testing::Values(std::make_pair(MatDepth(CV_8U), MatDepth(CV_8U)), \ + std::make_pair(MatDepth(CV_8U), MatDepth(CV_16U)), \ + std::make_pair(MatDepth(CV_8U), MatDepth(CV_16S)), \ + std::make_pair(MatDepth(CV_8U), MatDepth(CV_32S)), \ + std::make_pair(MatDepth(CV_8U), MatDepth(CV_32F)), \ + std::make_pair(MatDepth(CV_8U), MatDepth(CV_64F)), \ + \ + std::make_pair(MatDepth(CV_16U), MatDepth(CV_16U)), \ + std::make_pair(MatDepth(CV_16U), MatDepth(CV_32S)), \ + std::make_pair(MatDepth(CV_16U), MatDepth(CV_32F)), \ + std::make_pair(MatDepth(CV_16U), MatDepth(CV_64F)), \ + \ + std::make_pair(MatDepth(CV_16S), MatDepth(CV_16S)), \ + std::make_pair(MatDepth(CV_16S), MatDepth(CV_32S)), \ + std::make_pair(MatDepth(CV_16S), MatDepth(CV_32F)), \ + std::make_pair(MatDepth(CV_16S), MatDepth(CV_64F)), \ + \ + std::make_pair(MatDepth(CV_32S), MatDepth(CV_32S)), \ + std::make_pair(MatDepth(CV_32S), MatDepth(CV_32F)), \ + std::make_pair(MatDepth(CV_32S), MatDepth(CV_64F)), \ + \ + std::make_pair(MatDepth(CV_32F), MatDepth(CV_32F)), \ + std::make_pair(MatDepth(CV_32F), MatDepth(CV_64F)), \ + \ + std::make_pair(MatDepth(CV_64F), MatDepth(CV_64F))) #define WHOLE testing::Values(UseRoi(false)) #define SUBMAT testing::Values(UseRoi(true)) @@ -173,4 +200,6 @@ CV_FLAGS(DftFlags, cv::DFT_INVERSE, cv::DFT_SCALE, cv::DFT_ROWS, cv::DFT_COMPLEX #define DIRECT_INVERSE testing::Values(Inverse(false), Inverse(true)) +#define ALL_CMP_CODES testing::Values(CmpCode(cv::CMP_EQ), CmpCode(cv::CMP_NE), CmpCode(cv::CMP_GT), CmpCode(cv::CMP_GE), CmpCode(cv::CMP_LT), CmpCode(cv::CMP_LE)) + #endif // __OPENCV_TEST_UTILITY_HPP__