commit
827fa850f6
8 changed files with 861 additions and 12 deletions
@ -0,0 +1,168 @@ |
|||||||
|
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||||
|
//
|
||||||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||||
|
//
|
||||||
|
// By downloading, copying, installing or using the software you agree to this license.
|
||||||
|
// If you do not agree to this license, do not download, install,
|
||||||
|
// copy or use the software.
|
||||||
|
//
|
||||||
|
//
|
||||||
|
// License Agreement
|
||||||
|
// For Open Source Computer Vision Library
|
||||||
|
//
|
||||||
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||||
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||||
|
// Third party copyrights are property of their respective owners.
|
||||||
|
//
|
||||||
|
// Redistribution and use in source and binary forms, with or without modification,
|
||||||
|
// are permitted provided that the following conditions are met:
|
||||||
|
//
|
||||||
|
// * Redistribution's of source code must retain the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer.
|
||||||
|
//
|
||||||
|
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||||
|
// this list of conditions and the following disclaimer in the documentation
|
||||||
|
// and/or other materials provided with the distribution.
|
||||||
|
//
|
||||||
|
// * The name of the copyright holders may not be used to endorse or promote products
|
||||||
|
// derived from this software without specific prior written permission.
|
||||||
|
//
|
||||||
|
// This software is provided by the copyright holders and contributors "as is" and
|
||||||
|
// any express or implied warranties, including, but not limited to, the implied
|
||||||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||||
|
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||||
|
// indirect, incidental, special, exemplary, or consequential damages
|
||||||
|
// (including, but not limited to, procurement of substitute goods or services;
|
||||||
|
// loss of use, data, or profits; or business interruption) however caused
|
||||||
|
// and on any theory of liability, whether in contract, strict liability,
|
||||||
|
// or tort (including negligence or otherwise) arising in any way out of
|
||||||
|
// the use of this software, even if advised of the possibility of such damage.
|
||||||
|
//
|
||||||
|
//M*/
|
||||||
|
|
||||||
|
#include "precomp.hpp" |
||||||
|
|
||||||
|
#ifndef HAVE_CUDA |
||||||
|
|
||||||
|
cv::gpu::GMG_GPU::GMG_GPU() { throw_nogpu(); } |
||||||
|
void cv::gpu::GMG_GPU::initialize(cv::Size, float, float) { throw_nogpu(); } |
||||||
|
void cv::gpu::GMG_GPU::operator ()(const cv::gpu::GpuMat&, cv::gpu::GpuMat&, float, cv::gpu::Stream&) { throw_nogpu(); } |
||||||
|
void cv::gpu::GMG_GPU::release() {} |
||||||
|
|
||||||
|
#else |
||||||
|
|
||||||
|
namespace cv { namespace gpu { namespace device { |
||||||
|
namespace bgfg_gmg |
||||||
|
{ |
||||||
|
void loadConstants(int width, int height, float minVal, float maxVal, int quantizationLevels, float backgroundPrior, |
||||||
|
float decisionThreshold, int maxFeatures, int numInitializationFrames); |
||||||
|
|
||||||
|
template <typename SrcT> |
||||||
|
void update_gpu(DevMem2Db frame, PtrStepb fgmask, DevMem2Di colors, PtrStepf weights, PtrStepi nfeatures, |
||||||
|
int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream); |
||||||
|
} |
||||||
|
}}} |
||||||
|
|
||||||
|
cv::gpu::GMG_GPU::GMG_GPU() |
||||||
|
{ |
||||||
|
maxFeatures = 64; |
||||||
|
learningRate = 0.025f; |
||||||
|
numInitializationFrames = 120; |
||||||
|
quantizationLevels = 16; |
||||||
|
backgroundPrior = 0.8f; |
||||||
|
decisionThreshold = 0.8f; |
||||||
|
smoothingRadius = 7; |
||||||
|
updateBackgroundModel = true; |
||||||
|
} |
||||||
|
|
||||||
|
void cv::gpu::GMG_GPU::initialize(cv::Size frameSize, float min, float max) |
||||||
|
{ |
||||||
|
using namespace cv::gpu::device::bgfg_gmg; |
||||||
|
|
||||||
|
CV_Assert(min < max); |
||||||
|
CV_Assert(maxFeatures > 0); |
||||||
|
CV_Assert(learningRate >= 0.0f && learningRate <= 1.0f); |
||||||
|
CV_Assert(numInitializationFrames >= 1); |
||||||
|
CV_Assert(quantizationLevels >= 1 && quantizationLevels <= 255); |
||||||
|
CV_Assert(backgroundPrior >= 0.0f && backgroundPrior <= 1.0f); |
||||||
|
|
||||||
|
minVal_ = min; |
||||||
|
maxVal_ = max; |
||||||
|
|
||||||
|
frameSize_ = frameSize; |
||||||
|
|
||||||
|
frameNum_ = 0; |
||||||
|
|
||||||
|
nfeatures_.create(frameSize_, CV_32SC1); |
||||||
|
colors_.create(maxFeatures * frameSize_.height, frameSize_.width, CV_32SC1); |
||||||
|
weights_.create(maxFeatures * frameSize_.height, frameSize_.width, CV_32FC1); |
||||||
|
|
||||||
|
nfeatures_.setTo(cv::Scalar::all(0)); |
||||||
|
|
||||||
|
if (smoothingRadius > 0) |
||||||
|
boxFilter_ = cv::gpu::createBoxFilter_GPU(CV_8UC1, CV_8UC1, cv::Size(smoothingRadius, smoothingRadius)); |
||||||
|
|
||||||
|
loadConstants(frameSize_.width, frameSize_.height, minVal_, maxVal_, quantizationLevels, backgroundPrior, decisionThreshold, maxFeatures, numInitializationFrames); |
||||||
|
} |
||||||
|
|
||||||
|
void cv::gpu::GMG_GPU::operator ()(const cv::gpu::GpuMat& frame, cv::gpu::GpuMat& fgmask, float newLearningRate, cv::gpu::Stream& stream) |
||||||
|
{ |
||||||
|
using namespace cv::gpu::device::bgfg_gmg; |
||||||
|
|
||||||
|
typedef void (*func_t)(DevMem2Db frame, PtrStepb fgmask, DevMem2Di colors, PtrStepf weights, PtrStepi nfeatures, |
||||||
|
int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream); |
||||||
|
static const func_t funcs[6][4] = |
||||||
|
{ |
||||||
|
{update_gpu<uchar>, 0, update_gpu<uchar3>, update_gpu<uchar4>}, |
||||||
|
{0,0,0,0}, |
||||||
|
{update_gpu<ushort>, 0, update_gpu<ushort3>, update_gpu<ushort4>}, |
||||||
|
{0,0,0,0}, |
||||||
|
{0,0,0,0}, |
||||||
|
{update_gpu<float>, 0, update_gpu<float3>, update_gpu<float4>} |
||||||
|
}; |
||||||
|
|
||||||
|
CV_Assert(frame.depth() == CV_8U || frame.depth() == CV_16U || frame.depth() == CV_32F); |
||||||
|
CV_Assert(frame.channels() == 1 || frame.channels() == 3 || frame.channels() == 4); |
||||||
|
|
||||||
|
if (newLearningRate != -1.0f) |
||||||
|
{ |
||||||
|
CV_Assert(newLearningRate >= 0.0f && newLearningRate <= 1.0f); |
||||||
|
learningRate = newLearningRate; |
||||||
|
} |
||||||
|
|
||||||
|
if (frame.size() != frameSize_) |
||||||
|
initialize(frame.size(), 0.0f, frame.depth() == CV_8U ? 255.0f : frame.depth() == CV_16U ? std::numeric_limits<ushort>::max() : 1.0f); |
||||||
|
|
||||||
|
fgmask.create(frameSize_, CV_8UC1); |
||||||
|
if (stream) |
||||||
|
stream.enqueueMemSet(fgmask, cv::Scalar::all(0)); |
||||||
|
else |
||||||
|
fgmask.setTo(cv::Scalar::all(0)); |
||||||
|
|
||||||
|
funcs[frame.depth()][frame.channels() - 1](frame, fgmask, colors_, weights_, nfeatures_, frameNum_, learningRate, updateBackgroundModel, cv::gpu::StreamAccessor::getStream(stream)); |
||||||
|
|
||||||
|
// medianBlur
|
||||||
|
if (smoothingRadius > 0) |
||||||
|
{ |
||||||
|
boxFilter_->apply(fgmask, buf_, cv::Rect(0,0,-1,-1), stream); |
||||||
|
int minCount = (smoothingRadius * smoothingRadius + 1) / 2; |
||||||
|
double thresh = 255.0 * minCount / (smoothingRadius * smoothingRadius); |
||||||
|
cv::gpu::threshold(buf_, fgmask, thresh, 255.0, cv::THRESH_BINARY, stream); |
||||||
|
} |
||||||
|
|
||||||
|
// keep track of how many frames we have processed
|
||||||
|
++frameNum_; |
||||||
|
} |
||||||
|
|
||||||
|
void cv::gpu::GMG_GPU::release() |
||||||
|
{ |
||||||
|
frameSize_ = Size(); |
||||||
|
|
||||||
|
nfeatures_.release(); |
||||||
|
colors_.release(); |
||||||
|
weights_.release(); |
||||||
|
boxFilter_.release(); |
||||||
|
buf_.release(); |
||||||
|
} |
||||||
|
|
||||||
|
#endif |
@ -0,0 +1,253 @@ |
|||||||
|
/*M/////////////////////////////////////////////////////////////////////////////////////// |
||||||
|
// |
||||||
|
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
||||||
|
// |
||||||
|
// By downloading, copying, installing or using the software you agree to this license. |
||||||
|
// If you do not agree to this license, do not download, install, |
||||||
|
// copy or use the software. |
||||||
|
// |
||||||
|
// |
||||||
|
// License Agreement |
||||||
|
// For Open Source Computer Vision Library |
||||||
|
// |
||||||
|
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. |
||||||
|
// Copyright (C) 2009, Willow Garage Inc., all rights reserved. |
||||||
|
// Third party copyrights are property of their respective owners. |
||||||
|
// |
||||||
|
// Redistribution and use in source and binary forms, with or without modification, |
||||||
|
// are permitted provided that the following conditions are met: |
||||||
|
// |
||||||
|
// * Redistribution's of source code must retain the above copyright notice, |
||||||
|
// this list of conditions and the following disclaimer. |
||||||
|
// |
||||||
|
// * Redistribution's in binary form must reproduce the above copyright notice, |
||||||
|
// this list of conditions and the following disclaimer in the documentation |
||||||
|
// and/or other materials provided with the distribution. |
||||||
|
// |
||||||
|
// * The name of the copyright holders may not be used to endorse or promote products |
||||||
|
// derived from this software without specific prior written permission. |
||||||
|
// |
||||||
|
// This software is provided by the copyright holders and contributors "as is" and |
||||||
|
// any express or bpied warranties, including, but not limited to, the bpied |
||||||
|
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||||
|
// In no event shall the Intel Corporation or contributors be liable for any direct, |
||||||
|
// indirect, incidental, special, exemplary, or consequential damages |
||||||
|
// (including, but not limited to, procurement of substitute goods or services; |
||||||
|
// loss of use, data, or profits; or business interruption) however caused |
||||||
|
// and on any theory of liability, whether in contract, strict liability, |
||||||
|
// or tort (including negligence or otherwise) arising in any way out of |
||||||
|
// the use of this software, even if advised of the possibility of such damage. |
||||||
|
// |
||||||
|
//M*/ |
||||||
|
|
||||||
|
#include "opencv2/gpu/device/common.hpp" |
||||||
|
#include "opencv2/gpu/device/vec_traits.hpp" |
||||||
|
#include "opencv2/gpu/device/limits.hpp" |
||||||
|
|
||||||
|
namespace cv { namespace gpu { namespace device { |
||||||
|
namespace bgfg_gmg |
||||||
|
{ |
||||||
|
__constant__ int c_width; |
||||||
|
__constant__ int c_height; |
||||||
|
__constant__ float c_minVal; |
||||||
|
__constant__ float c_maxVal; |
||||||
|
__constant__ int c_quantizationLevels; |
||||||
|
__constant__ float c_backgroundPrior; |
||||||
|
__constant__ float c_decisionThreshold; |
||||||
|
__constant__ int c_maxFeatures; |
||||||
|
__constant__ int c_numInitializationFrames; |
||||||
|
|
||||||
|
void loadConstants(int width, int height, float minVal, float maxVal, int quantizationLevels, float backgroundPrior, |
||||||
|
float decisionThreshold, int maxFeatures, int numInitializationFrames) |
||||||
|
{ |
||||||
|
cudaSafeCall( cudaMemcpyToSymbol(c_width, &width, sizeof(width)) ); |
||||||
|
cudaSafeCall( cudaMemcpyToSymbol(c_height, &height, sizeof(height)) ); |
||||||
|
cudaSafeCall( cudaMemcpyToSymbol(c_minVal, &minVal, sizeof(minVal)) ); |
||||||
|
cudaSafeCall( cudaMemcpyToSymbol(c_maxVal, &maxVal, sizeof(maxVal)) ); |
||||||
|
cudaSafeCall( cudaMemcpyToSymbol(c_quantizationLevels, &quantizationLevels, sizeof(quantizationLevels)) ); |
||||||
|
cudaSafeCall( cudaMemcpyToSymbol(c_backgroundPrior, &backgroundPrior, sizeof(backgroundPrior)) ); |
||||||
|
cudaSafeCall( cudaMemcpyToSymbol(c_decisionThreshold, &decisionThreshold, sizeof(decisionThreshold)) ); |
||||||
|
cudaSafeCall( cudaMemcpyToSymbol(c_maxFeatures, &maxFeatures, sizeof(maxFeatures)) ); |
||||||
|
cudaSafeCall( cudaMemcpyToSymbol(c_numInitializationFrames, &numInitializationFrames, sizeof(numInitializationFrames)) ); |
||||||
|
} |
||||||
|
|
||||||
|
__device__ float findFeature(const int color, const PtrStepi& colors, const PtrStepf& weights, const int x, const int y, const int nfeatures) |
||||||
|
{ |
||||||
|
for (int i = 0, fy = y; i < nfeatures; ++i, fy += c_height) |
||||||
|
{ |
||||||
|
if (color == colors(fy, x)) |
||||||
|
return weights(fy, x); |
||||||
|
} |
||||||
|
|
||||||
|
// not in histogram, so return 0. |
||||||
|
return 0.0f; |
||||||
|
} |
||||||
|
|
||||||
|
__device__ void normalizeHistogram(PtrStepf weights, const int x, const int y, const int nfeatures) |
||||||
|
{ |
||||||
|
float total = 0.0f; |
||||||
|
for (int i = 0, fy = y; i < nfeatures; ++i, fy += c_height) |
||||||
|
total += weights(fy, x); |
||||||
|
|
||||||
|
if (total != 0.0f) |
||||||
|
{ |
||||||
|
for (int i = 0, fy = y; i < nfeatures; ++i, fy += c_height) |
||||||
|
weights(fy, x) /= total; |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
__device__ bool insertFeature(const int color, const float weight, PtrStepi colors, PtrStepf weights, const int x, const int y, int& nfeatures) |
||||||
|
{ |
||||||
|
for (int i = 0, fy = y; i < nfeatures; ++i, fy += c_height) |
||||||
|
{ |
||||||
|
if (color == colors(fy, x)) |
||||||
|
{ |
||||||
|
// feature in histogram |
||||||
|
|
||||||
|
weights(fy, x) += weight; |
||||||
|
|
||||||
|
return false; |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
if (nfeatures == c_maxFeatures) |
||||||
|
{ |
||||||
|
// discard oldest feature |
||||||
|
|
||||||
|
int idx = -1; |
||||||
|
float minVal = numeric_limits<float>::max(); |
||||||
|
for (int i = 0, fy = y; i < nfeatures; ++i, fy += c_height) |
||||||
|
{ |
||||||
|
const float w = weights(fy, x); |
||||||
|
if (w < minVal) |
||||||
|
{ |
||||||
|
minVal = w; |
||||||
|
idx = fy; |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
colors(idx, x) = color; |
||||||
|
weights(idx, x) = weight; |
||||||
|
|
||||||
|
return false; |
||||||
|
} |
||||||
|
|
||||||
|
colors(nfeatures * c_height + y, x) = color; |
||||||
|
weights(nfeatures * c_height + y, x) = weight; |
||||||
|
|
||||||
|
++nfeatures; |
||||||
|
|
||||||
|
return true; |
||||||
|
} |
||||||
|
|
||||||
|
namespace detail |
||||||
|
{ |
||||||
|
template <int cn> struct Quantization |
||||||
|
{ |
||||||
|
template <typename T> |
||||||
|
__device__ static int apply(const T& val) |
||||||
|
{ |
||||||
|
int res = 0; |
||||||
|
res |= static_cast<int>((val.x - c_minVal) * c_quantizationLevels / (c_maxVal - c_minVal)); |
||||||
|
res |= static_cast<int>((val.y - c_minVal) * c_quantizationLevels / (c_maxVal - c_minVal)) << 8; |
||||||
|
res |= static_cast<int>((val.z - c_minVal) * c_quantizationLevels / (c_maxVal - c_minVal)) << 16; |
||||||
|
return res; |
||||||
|
} |
||||||
|
}; |
||||||
|
|
||||||
|
template <> struct Quantization<1> |
||||||
|
{ |
||||||
|
template <typename T> |
||||||
|
__device__ static int apply(T val) |
||||||
|
{ |
||||||
|
return static_cast<int>((val - c_minVal) * c_quantizationLevels / (c_maxVal - c_minVal)); |
||||||
|
} |
||||||
|
}; |
||||||
|
} |
||||||
|
|
||||||
|
template <typename T> struct Quantization : detail::Quantization<VecTraits<T>::cn> {}; |
||||||
|
|
||||||
|
template <typename SrcT> |
||||||
|
__global__ void update(const PtrStep_<SrcT> frame, PtrStepb fgmask, PtrStepi colors_, PtrStepf weights_, PtrStepi nfeatures_, |
||||||
|
const int frameNum, const float learningRate, const bool updateBackgroundModel) |
||||||
|
{ |
||||||
|
const int x = blockIdx.x * blockDim.x + threadIdx.x; |
||||||
|
const int y = blockIdx.y * blockDim.y + threadIdx.y; |
||||||
|
|
||||||
|
if (x >= c_width || y >= c_height) |
||||||
|
return; |
||||||
|
|
||||||
|
const SrcT pix = frame(y, x); |
||||||
|
const int newFeatureColor = Quantization<SrcT>::apply(pix); |
||||||
|
|
||||||
|
int nfeatures = nfeatures_(y, x); |
||||||
|
|
||||||
|
if (frameNum >= c_numInitializationFrames) |
||||||
|
{ |
||||||
|
// typical operation |
||||||
|
|
||||||
|
const float weight = findFeature(newFeatureColor, colors_, weights_, x, y, nfeatures); |
||||||
|
|
||||||
|
// see Godbehere, Matsukawa, Goldberg (2012) for reasoning behind this implementation of Bayes rule |
||||||
|
const float posterior = (weight * c_backgroundPrior) / (weight * c_backgroundPrior + (1.0f - weight) * (1.0f - c_backgroundPrior)); |
||||||
|
|
||||||
|
const bool isForeground = ((1.0f - posterior) > c_decisionThreshold); |
||||||
|
fgmask(y, x) = (uchar)(-isForeground); |
||||||
|
|
||||||
|
// update histogram. |
||||||
|
|
||||||
|
if (updateBackgroundModel) |
||||||
|
{ |
||||||
|
for (int i = 0, fy = y; i < nfeatures; ++i, fy += c_height) |
||||||
|
weights_(fy, x) *= 1.0f - learningRate; |
||||||
|
|
||||||
|
bool inserted = insertFeature(newFeatureColor, learningRate, colors_, weights_, x, y, nfeatures); |
||||||
|
|
||||||
|
if (inserted) |
||||||
|
{ |
||||||
|
normalizeHistogram(weights_, x, y, nfeatures); |
||||||
|
nfeatures_(y, x) = nfeatures; |
||||||
|
} |
||||||
|
} |
||||||
|
} |
||||||
|
else if (updateBackgroundModel) |
||||||
|
{ |
||||||
|
// training-mode update |
||||||
|
|
||||||
|
insertFeature(newFeatureColor, 1.0f, colors_, weights_, x, y, nfeatures); |
||||||
|
|
||||||
|
if (frameNum == c_numInitializationFrames - 1) |
||||||
|
normalizeHistogram(weights_, x, y, nfeatures); |
||||||
|
} |
||||||
|
} |
||||||
|
|
||||||
|
template <typename SrcT> |
||||||
|
void update_gpu(DevMem2Db frame, PtrStepb fgmask, DevMem2Di colors, PtrStepf weights, PtrStepi nfeatures, |
||||||
|
int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream) |
||||||
|
{ |
||||||
|
const dim3 block(32, 8); |
||||||
|
const dim3 grid(divUp(frame.cols, block.x), divUp(frame.rows, block.y)); |
||||||
|
|
||||||
|
cudaSafeCall( cudaFuncSetCacheConfig(update<SrcT>, cudaFuncCachePreferL1) ); |
||||||
|
|
||||||
|
update<SrcT><<<grid, block, 0, stream>>>((DevMem2D_<SrcT>) frame, fgmask, colors, weights, nfeatures, frameNum, learningRate, updateBackgroundModel); |
||||||
|
|
||||||
|
cudaSafeCall( cudaGetLastError() ); |
||||||
|
|
||||||
|
if (stream == 0) |
||||||
|
cudaSafeCall( cudaDeviceSynchronize() ); |
||||||
|
} |
||||||
|
|
||||||
|
template void update_gpu<uchar >(DevMem2Db frame, PtrStepb fgmask, DevMem2Di colors, PtrStepf weights, PtrStepi nfeatures, int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream); |
||||||
|
template void update_gpu<uchar3 >(DevMem2Db frame, PtrStepb fgmask, DevMem2Di colors, PtrStepf weights, PtrStepi nfeatures, int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream); |
||||||
|
template void update_gpu<uchar4 >(DevMem2Db frame, PtrStepb fgmask, DevMem2Di colors, PtrStepf weights, PtrStepi nfeatures, int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream); |
||||||
|
|
||||||
|
template void update_gpu<ushort >(DevMem2Db frame, PtrStepb fgmask, DevMem2Di colors, PtrStepf weights, PtrStepi nfeatures, int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream); |
||||||
|
template void update_gpu<ushort3>(DevMem2Db frame, PtrStepb fgmask, DevMem2Di colors, PtrStepf weights, PtrStepi nfeatures, int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream); |
||||||
|
template void update_gpu<ushort4>(DevMem2Db frame, PtrStepb fgmask, DevMem2Di colors, PtrStepf weights, PtrStepi nfeatures, int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream); |
||||||
|
|
||||||
|
template void update_gpu<float >(DevMem2Db frame, PtrStepb fgmask, DevMem2Di colors, PtrStepf weights, PtrStepi nfeatures, int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream); |
||||||
|
template void update_gpu<float3 >(DevMem2Db frame, PtrStepb fgmask, DevMem2Di colors, PtrStepf weights, PtrStepi nfeatures, int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream); |
||||||
|
template void update_gpu<float4 >(DevMem2Db frame, PtrStepb fgmask, DevMem2Di colors, PtrStepf weights, PtrStepi nfeatures, int frameNum, float learningRate, bool updateBackgroundModel, cudaStream_t stream); |
||||||
|
} |
||||||
|
}}} |
Loading…
Reference in new issue