fixed gpu tests (BruteForceMatcher_GPU, divide, phase, cartToPolar, async)

minor code refactoring
pull/13383/head
Vladislav Vinogradov 14 years ago
parent 7a29d96cf4
commit 8274ed22e4
  1. 10
      modules/gpu/include/opencv2/gpu/gpu.hpp
  2. 38
      modules/gpu/src/brute_force_matcher.cpp
  3. 525
      modules/gpu/src/cuda/brute_force_matcher.cu
  4. 87
      modules/gpu/src/imgproc_gpu.cpp
  5. 41
      tests/gpu/src/arithm.cpp
  6. 59
      tests/gpu/src/brute_force_matcher.cpp
  7. 1
      tests/gpu/src/gputest_main.cpp
  8. 50
      tests/gpu/src/imgproc_gpu.cpp
  9. 139
      tests/gpu/src/operator_async_call.cpp

@ -671,10 +671,12 @@ namespace cv
//! output will have CV_32FC1 type
CV_EXPORTS void rectStdDev(const GpuMat& src, const GpuMat& sqr, GpuMat& dst, const Rect& rect);
//! applies Canny edge detector and produces the edge map
//! supprots only CV_8UC1 source type
//! disabled until fix crash
CV_EXPORTS void Canny(const GpuMat& image, GpuMat& edges, double threshold1, double threshold2, int apertureSize = 3);
// applies Canny edge detector and produces the edge map
// disabled until fix crash
//CV_EXPORTS void Canny(const GpuMat& image, GpuMat& edges, double threshold1, double threshold2, int apertureSize = 3);
//CV_EXPORTS void Canny(const GpuMat& image, GpuMat& edges, GpuMat& buffer, double threshold1, double threshold2, int apertureSize = 3);
//CV_EXPORTS void Canny(const GpuMat& srcDx, const GpuMat& srcDy, GpuMat& edges, double threshold1, double threshold2, int apertureSize = 3);
//CV_EXPORTS void Canny(const GpuMat& srcDx, const GpuMat& srcDy, GpuMat& edges, GpuMat& buffer, double threshold1, double threshold2, int apertureSize = 3);
//! computes Harris cornerness criteria at each image pixel
CV_EXPORTS void cornerHarris(const GpuMat& src, GpuMat& dst, int blockSize, int ksize, double k, int borderType=BORDER_REFLECT101);

@ -104,6 +104,18 @@ namespace cv { namespace gpu { namespace bfmatcher
const DevMem2D& mask, const DevMem2Di& trainIdx, unsigned int* nMatches, const DevMem2Df& distance);
}}}
namespace
{
class ImgIdxSetter
{
public:
ImgIdxSetter(int imgIdx_) : imgIdx(imgIdx_) {}
void operator()(DMatch& m) const {m.imgIdx = imgIdx;}
private:
int imgIdx;
};
}
cv::gpu::BruteForceMatcher_GPU_base::BruteForceMatcher_GPU_base(DistType distType_) : distType(distType_)
{
}
@ -185,7 +197,7 @@ void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat& trainIdx,
return;
CV_Assert(trainIdx.type() == CV_32SC1 && trainIdx.isContinuous());
CV_Assert(distance.type() == CV_32FC1 && distance.isContinuous() && distance.size().area() == trainIdx.size().area());
CV_Assert(distance.type() == CV_32FC1 && distance.isContinuous() && distance.cols == trainIdx.cols);
const int nQuery = trainIdx.cols;
@ -309,8 +321,8 @@ void cv::gpu::BruteForceMatcher_GPU_base::matchDownload(const GpuMat& trainIdx,
return;
CV_Assert(trainIdx.type() == CV_32SC1 && trainIdx.isContinuous());
CV_Assert(imgIdx.type() == CV_32SC1 && imgIdx.isContinuous());
CV_Assert(distance.type() == CV_32FC1 && distance.isContinuous());
CV_Assert(imgIdx.type() == CV_32SC1 && imgIdx.isContinuous() && imgIdx.cols == trainIdx.cols);
CV_Assert(distance.type() == CV_32FC1 && distance.isContinuous() && imgIdx.cols == trainIdx.cols);
const int nQuery = trainIdx.cols;
@ -390,7 +402,7 @@ void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat& queryDescs, con
trainIdx.setTo(Scalar::all(-1));
distance.create(nQuery, k, CV_32F);
allDist.create(nQuery, nTrain, CV_32F);
ensureSizeIsEnough(nQuery, nTrain, CV_32FC1, allDist);
match_caller_t func = match_callers[distType][queryDescs.depth()];
CV_Assert(func != 0);
@ -451,18 +463,6 @@ void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat& queryDescs, con
knnMatchDownload(trainIdx, distance, matches, compactResult);
}
namespace
{
class ImgIdxSetter
{
public:
ImgIdxSetter(int imgIdx_) : imgIdx(imgIdx_) {}
void operator()(DMatch& m) const {m.imgIdx = imgIdx;}
private:
int imgIdx;
};
}
void cv::gpu::BruteForceMatcher_GPU_base::knnMatch(const GpuMat& queryDescs,
vector< vector<DMatch> >& matches, int knn, const vector<GpuMat>& masks, bool compactResult)
{
@ -538,9 +538,9 @@ void cv::gpu::BruteForceMatcher_GPU_base::radiusMatch(const GpuMat& queryDescs,
CV_Assert(queryDescs.channels() == 1 && queryDescs.depth() < CV_64F);
CV_Assert(trainDescs.type() == queryDescs.type() && trainDescs.cols == queryDescs.cols);
CV_Assert(trainIdx.empty() || trainIdx.rows == nQuery);
CV_Assert(trainIdx.empty() || (trainIdx.rows == nQuery && trainIdx.size() == distance.size()));
nMatches.create(1, nQuery, CV_32SC1);
ensureSizeIsEnough(1, nQuery, CV_32SC1, nMatches);
nMatches.setTo(Scalar::all(0));
if (trainIdx.empty())
{
@ -561,7 +561,7 @@ void cv::gpu::BruteForceMatcher_GPU_base::radiusMatchDownload(const GpuMat& trai
return;
CV_Assert(trainIdx.type() == CV_32SC1);
CV_Assert(nMatches.type() == CV_32SC1 && nMatches.isContinuous() && nMatches.size().area() == trainIdx.rows);
CV_Assert(nMatches.type() == CV_32SC1 && nMatches.isContinuous() && nMatches.cols >= trainIdx.rows);
CV_Assert(distance.type() == CV_32FC1 && distance.size() == trainIdx.size());
const int nQuery = trainIdx.rows;

@ -64,6 +64,7 @@ namespace cv { namespace gpu { namespace bfmatcher
{
return mask.ptr(queryIdx)[trainIdx] != 0;
}
private:
PtrStep mask;
};
@ -82,6 +83,7 @@ namespace cv { namespace gpu { namespace bfmatcher
{
return curMask.data == 0 || curMask.ptr(queryIdx)[trainIdx] != 0;
}
private:
PtrStep* maskCollection;
PtrStep curMask;
@ -102,172 +104,55 @@ namespace cv { namespace gpu { namespace bfmatcher
///////////////////////////////////////////////////////////////////////////////
// Reduce Sum
template <int BLOCK_DIM_X>
__device__ void reduceSum(float* sdiff, float mySum, int tid)
{
sdiff[tid] = mySum;
__syncthreads();
template <int BLOCK_DIM_X> __device__ void reduceSum(float* sdiff_row, float& mySum);
if (BLOCK_DIM_X == 512)
{
if (tid < 256)
{
sdiff[tid] = mySum += sdiff[tid + 256]; __syncthreads();
sdiff[tid] = mySum += sdiff[tid + 128]; __syncthreads();
sdiff[tid] = mySum += sdiff[tid + 64]; __syncthreads();
}
volatile float* smem = sdiff;
smem[tid] = mySum += smem[tid + 32];
smem[tid] = mySum += smem[tid + 16];
smem[tid] = mySum += smem[tid + 8];
smem[tid] = mySum += smem[tid + 4];
smem[tid] = mySum += smem[tid + 2];
smem[tid] = mySum += smem[tid + 1];
}
if (BLOCK_DIM_X == 256)
{
if (tid < 128)
{
sdiff[tid] = mySum += sdiff[tid + 128]; __syncthreads();
sdiff[tid] = mySum += sdiff[tid + 64]; __syncthreads();
}
volatile float* smem = sdiff;
smem[tid] = mySum += smem[tid + 32];
smem[tid] = mySum += smem[tid + 16];
smem[tid] = mySum += smem[tid + 8];
smem[tid] = mySum += smem[tid + 4];
smem[tid] = mySum += smem[tid + 2];
smem[tid] = mySum += smem[tid + 1];
}
if (BLOCK_DIM_X == 128)
{
if (tid < 64)
{
sdiff[tid] = mySum += sdiff[tid + 64]; __syncthreads();
}
volatile float* smem = sdiff;
smem[tid] = mySum += smem[tid + 32];
smem[tid] = mySum += smem[tid + 16];
smem[tid] = mySum += smem[tid + 8];
smem[tid] = mySum += smem[tid + 4];
smem[tid] = mySum += smem[tid + 2];
smem[tid] = mySum += smem[tid + 1];
}
volatile float* smem = sdiff;
if (BLOCK_DIM_X == 64)
{
if (tid < 32)
{
smem[tid] = mySum += smem[tid + 32];
smem[tid] = mySum += smem[tid + 16];
smem[tid] = mySum += smem[tid + 8];
smem[tid] = mySum += smem[tid + 4];
smem[tid] = mySum += smem[tid + 2];
smem[tid] = mySum += smem[tid + 1];
}
}
if (BLOCK_DIM_X == 32)
{
if (tid < 16)
{
smem[tid] = mySum += smem[tid + 16];
smem[tid] = mySum += smem[tid + 8];
smem[tid] = mySum += smem[tid + 4];
smem[tid] = mySum += smem[tid + 2];
smem[tid] = mySum += smem[tid + 1];
}
}
if (BLOCK_DIM_X == 16)
{
if (tid < 8)
{
smem[tid] = mySum += smem[tid + 8];
smem[tid] = mySum += smem[tid + 4];
smem[tid] = mySum += smem[tid + 2];
smem[tid] = mySum += smem[tid + 1];
}
}
if (BLOCK_DIM_X == 8)
{
if (tid < 4)
{
smem[tid] = mySum += smem[tid + 4];
smem[tid] = mySum += smem[tid + 2];
smem[tid] = mySum += smem[tid + 1];
}
}
if (BLOCK_DIM_X == 4)
{
if (tid < 2)
{
smem[tid] = mySum += smem[tid + 2];
smem[tid] = mySum += smem[tid + 1];
}
}
if (BLOCK_DIM_X == 2)
{
if (tid < 1)
{
smem[tid] = mySum += smem[tid + 1];
}
}
}
///////////////////////////////////////////////////////////////////////////////
// loadDescsVals
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, int MAX_DESCRIPTORS_LEN, typename T>
__device__ void loadDescsVals(const T* descs, int desc_len, float* smem, float* queryVals)
template <> __device__ void reduceSum<16>(float* sdiff_row, float& mySum)
{
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
volatile float* smem = sdiff_row;
if (tid < desc_len)
smem[threadIdx.x] = mySum;
if (threadIdx.x < 8)
{
smem[tid] = (float)descs[tid];
}
__syncthreads();
#pragma unroll
for (int i = threadIdx.x; i < MAX_DESCRIPTORS_LEN; i += BLOCK_DIM_X)
{
*queryVals = smem[i];
++queryVals;
smem[threadIdx.x] = mySum += smem[threadIdx.x + 8];
smem[threadIdx.x] = mySum += smem[threadIdx.x + 4];
smem[threadIdx.x] = mySum += smem[threadIdx.x + 2];
smem[threadIdx.x] = mySum += smem[threadIdx.x + 1];
}
}
///////////////////////////////////////////////////////////////////////////////
// Distance
template <int BLOCK_DIM_X>
class L1Dist
{
public:
__device__ L1Dist() : mySum(0) {}
__device__ L1Dist() : mySum(0.0f) {}
__device__ void reduceIter(float val1, float val2)
{
mySum += fabs(val1 - val2);
}
__device__ void reduceAll(float* sdiff, int tid)
template <int BLOCK_DIM_X>
__device__ void reduceAll(float* sdiff_row)
{
reduceSum<BLOCK_DIM_X>(sdiff, mySum, tid);
reduceSum<BLOCK_DIM_X>(sdiff_row, mySum);
}
static __device__ float finalResult(float res)
__device__ operator float() const
{
return res;
return mySum;
}
private:
float mySum;
};
template <int BLOCK_DIM_X>
class L2Dist
{
public:
__device__ L2Dist() : mySum(0) {}
__device__ L2Dist() : mySum(0.0f) {}
__device__ void reduceIter(float val1, float val2)
{
@ -275,15 +160,17 @@ namespace cv { namespace gpu { namespace bfmatcher
mySum += reg * reg;
}
__device__ void reduceAll(float* sdiff, int tid)
template <int BLOCK_DIM_X>
__device__ void reduceAll(float* sdiff_row)
{
reduceSum<BLOCK_DIM_X>(sdiff, mySum, tid);
reduceSum<BLOCK_DIM_X>(sdiff_row, mySum);
}
static __device__ float finalResult(float res)
__device__ operator float() const
{
return sqrtf(res);
return sqrtf(mySum);
}
private:
float mySum;
};
@ -292,56 +179,81 @@ namespace cv { namespace gpu { namespace bfmatcher
// reduceDescDiff
template <int BLOCK_DIM_X, typename Dist, typename T>
__device__ void reduceDescDiff(const T* queryDescs, const T* trainDescs, int desc_len, float* sdiff)
__device__ void reduceDescDiff(const T* queryDescs, const T* trainDescs, int desc_len, Dist& dist,
float* sdiff_row)
{
const int tid = threadIdx.x;
for (int i = threadIdx.x; i < desc_len; i += BLOCK_DIM_X)
dist.reduceIter(queryDescs[i], trainDescs[i]);
Dist dist;
dist.reduceAll<BLOCK_DIM_X>(sdiff_row);
}
for (int i = tid; i < desc_len; i += BLOCK_DIM_X)
dist.reduceIter(queryDescs[i], trainDescs[i]);
///////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////// Match //////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// loadDescsVals
template <int BLOCK_DIM_X, int MAX_DESCRIPTORS_LEN, typename T>
__device__ void loadDescsVals(const T* descs, int desc_len, float* queryVals, float* smem)
{
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
if (tid < desc_len)
{
smem[tid] = (float)descs[tid];
}
__syncthreads();
dist.reduceAll(sdiff, tid);
#pragma unroll
for (int i = threadIdx.x; i < MAX_DESCRIPTORS_LEN; i += BLOCK_DIM_X)
{
*queryVals = smem[i];
++queryVals;
}
}
///////////////////////////////////////////////////////////////////////////////
// reduceDescDiff_smem
// reduceDescDiffCached
template <int N> struct UnrollDescDiff
{
template <typename Dist, typename T>
static __device__ void calcCheck(Dist& dist, const float* queryVals, const T* trainDescs,
int ind, int desc_len)
static __device__ void calcCheck(const float* queryVals, const T* trainDescs, int desc_len,
Dist& dist, int ind)
{
if (ind < desc_len)
{
dist.reduceIter(*queryVals, trainDescs[ind]);
++queryVals;
++queryVals;
UnrollDescDiff<N - 1>::calcCheck(dist, queryVals, trainDescs, ind + blockDim.x, desc_len);
UnrollDescDiff<N - 1>::calcCheck(queryVals, trainDescs, desc_len, dist, ind + blockDim.x);
}
}
template <typename Dist, typename T>
static __device__ void calcWithoutCheck(Dist& dist, const float* queryVals, const T* trainDescs)
static __device__ void calcWithoutCheck(const float* queryVals, const T* trainDescs, Dist& dist)
{
dist.reduceIter(*queryVals, *trainDescs);
++queryVals;
trainDescs += blockDim.x;
UnrollDescDiff<N - 1>::calcWithoutCheck(dist, queryVals, trainDescs);
UnrollDescDiff<N - 1>::calcWithoutCheck(queryVals, trainDescs, dist);
}
};
template <> struct UnrollDescDiff<0>
{
template <typename Dist, typename T>
static __device__ void calcCheck(Dist& dist, const float* queryVals, const T* trainDescs,
int ind, int desc_len)
static __device__ void calcCheck(const float* queryVals, const T* trainDescs, int desc_len,
Dist& dist, int ind)
{
}
template <typename Dist, typename T>
static __device__ void calcWithoutCheck(Dist& dist, const float* queryVals, const T* trainDescs)
static __device__ void calcWithoutCheck(const float* queryVals, const T* trainDescs, Dist& dist)
{
}
};
@ -351,106 +263,82 @@ namespace cv { namespace gpu { namespace bfmatcher
struct DescDiffCalculator<BLOCK_DIM_X, MAX_DESCRIPTORS_LEN, false>
{
template <typename Dist, typename T>
static __device__ void calc(Dist& dist, const float* queryVals, const T* trainDescs, int desc_len)
static __device__ void calc(const float* queryVals, const T* trainDescs, int desc_len, Dist& dist)
{
UnrollDescDiff<MAX_DESCRIPTORS_LEN / BLOCK_DIM_X>::calcCheck(dist, queryVals, trainDescs,
threadIdx.x, desc_len);
UnrollDescDiff<MAX_DESCRIPTORS_LEN / BLOCK_DIM_X>::calcCheck(queryVals, trainDescs, desc_len,
dist, threadIdx.x);
}
};
template <int BLOCK_DIM_X, int MAX_DESCRIPTORS_LEN>
struct DescDiffCalculator<BLOCK_DIM_X, MAX_DESCRIPTORS_LEN, true>
{
template <typename Dist, typename T>
static __device__ void calc(Dist& dist, const float* queryVals, const T* trainDescs, int desc_len)
static __device__ void calc(const float* queryVals, const T* trainDescs, int desc_len, Dist& dist)
{
UnrollDescDiff<MAX_DESCRIPTORS_LEN / BLOCK_DIM_X>::calcWithoutCheck(dist, queryVals,
trainDescs + threadIdx.x);
UnrollDescDiff<MAX_DESCRIPTORS_LEN / BLOCK_DIM_X>::calcWithoutCheck(queryVals,
trainDescs + threadIdx.x, dist);
}
};
template <int BLOCK_DIM_X, int MAX_DESCRIPTORS_LEN, bool DESC_LEN_EQ_MAX_LEN, typename Dist, typename T>
__device__ void reduceDescDiff_smem(const float* queryVals, const T* trainDescs, int desc_len, float* sdiff)
{
const int tid = threadIdx.x;
__device__ void reduceDescDiffCached(const float* queryVals, const T* trainDescs, int desc_len, Dist& dist,
float* sdiff_row)
{
DescDiffCalculator<BLOCK_DIM_X, MAX_DESCRIPTORS_LEN, DESC_LEN_EQ_MAX_LEN>::calc(queryVals,
trainDescs, desc_len, dist);
Dist dist;
DescDiffCalculator<BLOCK_DIM_X, MAX_DESCRIPTORS_LEN, DESC_LEN_EQ_MAX_LEN>::calc(dist, queryVals,
trainDescs, desc_len);
dist.reduceAll(sdiff, tid);
dist.reduceAll<BLOCK_DIM_X>(sdiff_row);
}
///////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////// Match //////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
// warpReduceMin
// warpReduceMinIdxIdx
template <int BLOCK_DIM_Y>
__device__ void warpReduceMin(int tid, volatile float* sdata, volatile int* strainIdx, volatile int* simgIdx)
__device__ void warpReduceMinIdxIdx(float& myMin, int& myBestTrainIdx, int& myBestImgIdx,
volatile float* sdata, volatile int* strainIdx, volatile int* simgIdx);
template <>
__device__ void warpReduceMinIdxIdx<16>(float& myMin, int& myBestTrainIdx, int& myBestImgIdx,
volatile float* smin, volatile int* strainIdx, volatile int* simgIdx)
{
float minSum = sdata[tid];
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
if (BLOCK_DIM_Y >= 64)
{
float reg = sdata[tid + 32];
if (reg < minSum)
{
sdata[tid] = minSum = reg;
strainIdx[tid] = strainIdx[tid + 32];
simgIdx[tid] = simgIdx[tid + 32];
}
}
if (BLOCK_DIM_Y >= 32)
if (tid < 8)
{
float reg = sdata[tid + 16];
if (reg < minSum)
{
sdata[tid] = minSum = reg;
strainIdx[tid] = strainIdx[tid + 16];
simgIdx[tid] = simgIdx[tid + 16];
}
}
if (BLOCK_DIM_Y >= 16)
{
float reg = sdata[tid + 8];
if (reg < minSum)
myMin = smin[tid];
myBestTrainIdx = strainIdx[tid];
myBestImgIdx = simgIdx[tid];
float reg = smin[tid + 8];
if (reg < myMin)
{
sdata[tid] = minSum = reg;
strainIdx[tid] = strainIdx[tid + 8];
simgIdx[tid] = simgIdx[tid + 8];
smin[tid] = myMin = reg;
strainIdx[tid] = myBestTrainIdx = strainIdx[tid + 8];
simgIdx[tid] = myBestImgIdx = simgIdx[tid + 8];
}
}
if (BLOCK_DIM_Y >= 8)
{
float reg = sdata[tid + 4];
if (reg < minSum)
reg = smin[tid + 4];
if (reg < myMin)
{
sdata[tid] = minSum = reg;
strainIdx[tid] = strainIdx[tid + 4];
simgIdx[tid] = simgIdx[tid + 4];
smin[tid] = myMin = reg;
strainIdx[tid] = myBestTrainIdx = strainIdx[tid + 4];
simgIdx[tid] = myBestImgIdx = simgIdx[tid + 4];
}
}
if (BLOCK_DIM_Y >= 4)
{
float reg = sdata[tid + 2];
if (reg < minSum)
reg = smin[tid + 2];
if (reg < myMin)
{
sdata[tid] = minSum = reg;
strainIdx[tid] = strainIdx[tid + 2];
simgIdx[tid] = simgIdx[tid + 2];
smin[tid] = myMin = reg;
strainIdx[tid] = myBestTrainIdx = strainIdx[tid + 2];
simgIdx[tid] = myBestImgIdx = simgIdx[tid + 2];
}
}
if (BLOCK_DIM_Y >= 2)
{
float reg = sdata[tid + 1];
if (reg < minSum)
reg = smin[tid + 1];
if (reg < myMin)
{
sdata[tid] = minSum = reg;
strainIdx[tid] = strainIdx[tid + 1];
simgIdx[tid] = simgIdx[tid + 1];
smin[tid] = myMin = reg;
strainIdx[tid] = myBestTrainIdx = strainIdx[tid + 1];
simgIdx[tid] = myBestImgIdx = simgIdx[tid + 1];
}
}
}
@ -458,9 +346,9 @@ namespace cv { namespace gpu { namespace bfmatcher
///////////////////////////////////////////////////////////////////////////////
// findBestMatch
template <int BLOCK_DIM_Y, typename Dist>
__device__ void findBestMatch(int queryIdx, float myMin, int myBestTrainIdx, int myBestImgIdx,
float* smin, int* strainIdx, int* simgIdx, int* trainIdx, int* imgIdx, float* distance)
template <int BLOCK_DIM_Y>
__device__ void findBestMatch(float& myMin, int& myBestTrainIdx, int& myBestImgIdx,
float* smin, int* strainIdx, int* simgIdx)
{
if (threadIdx.x == 0)
{
@ -470,27 +358,13 @@ namespace cv { namespace gpu { namespace bfmatcher
}
__syncthreads();
const int tid = threadIdx.y * blockDim.x + threadIdx.x;
if (tid < 32)
warpReduceMin<BLOCK_DIM_Y>(tid, smin, strainIdx, simgIdx);
if (threadIdx.x == 0 && threadIdx.y == 0)
{
float minSum = smin[0];
int bestTrainIdx = strainIdx[0];
int bestImgIdx = simgIdx[0];
imgIdx[queryIdx] = bestImgIdx;
trainIdx[queryIdx] = bestTrainIdx;
distance[queryIdx] = Dist::finalResult(minSum);
}
warpReduceMinIdxIdx<BLOCK_DIM_Y>(myMin, myBestTrainIdx, myBestImgIdx, smin, strainIdx, simgIdx);
}
///////////////////////////////////////////////////////////////////////////////
// ReduceDescCalculator
template <int BLOCK_DIM_X, typename Dist, typename T>
template <int BLOCK_DIM_X, typename T>
class ReduceDescCalculatorSimple
{
public:
@ -499,29 +373,30 @@ namespace cv { namespace gpu { namespace bfmatcher
queryDescs = queryDescs_;
}
__device__ void calc(const T* trainDescs, int desc_len, float* sdiff_row) const
template <typename Dist>
__device__ void calc(const T* trainDescs, int desc_len, Dist& dist, float* sdiff_row) const
{
reduceDescDiff<BLOCK_DIM_X, Dist>(queryDescs, trainDescs, desc_len, sdiff_row);
reduceDescDiff<BLOCK_DIM_X>(queryDescs, trainDescs, desc_len, dist, sdiff_row);
}
private:
const T* queryDescs;
};
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, int MAX_DESCRIPTORS_LEN, bool DESC_LEN_EQ_MAX_LEN,
typename Dist, typename T>
class ReduceDescCalculatorSmem
template <int BLOCK_DIM_X, int MAX_DESCRIPTORS_LEN, bool DESC_LEN_EQ_MAX_LEN, typename T>
class ReduceDescCalculatorCached
{
public:
__device__ void prepare(const T* queryDescs, int desc_len, float* smem)
{
loadDescsVals<BLOCK_DIM_X, BLOCK_DIM_Y, MAX_DESCRIPTORS_LEN>(queryDescs, desc_len, smem, queryVals);
loadDescsVals<BLOCK_DIM_X, MAX_DESCRIPTORS_LEN>(queryDescs, desc_len, queryVals, smem);
}
__device__ void calc(const T* trainDescs, int desc_len, float* sdiff_row) const
template <typename Dist>
__device__ void calc(const T* trainDescs, int desc_len, Dist& dist, float* sdiff_row) const
{
reduceDescDiff_smem<BLOCK_DIM_X, MAX_DESCRIPTORS_LEN, DESC_LEN_EQ_MAX_LEN, Dist>(queryVals, trainDescs,
desc_len, sdiff_row);
reduceDescDiffCached<BLOCK_DIM_X, MAX_DESCRIPTORS_LEN, DESC_LEN_EQ_MAX_LEN>(queryVals, trainDescs,
desc_len, dist, sdiff_row);
}
private:
@ -531,26 +406,26 @@ namespace cv { namespace gpu { namespace bfmatcher
///////////////////////////////////////////////////////////////////////////////
// matchDescs loop
template <typename ReduceDescCalculator, typename T, typename Mask>
__device__ void matchDescs(int queryIdx, const int imgIdx, const DevMem2D_<T>& trainDescs_,
template <typename Dist, typename ReduceDescCalculator, typename T, typename Mask>
__device__ void matchDescs(int queryIdx, int imgIdx, const DevMem2D_<T>& trainDescs_,
const Mask& m, const ReduceDescCalculator& reduceDescCalc,
float* sdiff_row, float& myMin, int& myBestTrainIdx, int& myBestImgIdx)
float& myMin, int& myBestTrainIdx, int& myBestImgIdx, float* sdiff_row)
{
const T* trainDescs = trainDescs_.ptr(threadIdx.y);
const int trainDescsStep = blockDim.y * trainDescs_.step / sizeof(T);
for (int trainIdx = threadIdx.y; trainIdx < trainDescs_.rows;
trainIdx += blockDim.y, trainDescs += trainDescsStep)
for (int trainIdx = threadIdx.y; trainIdx < trainDescs_.rows; trainIdx += blockDim.y)
{
if (m(queryIdx, trainIdx))
{
reduceDescCalc.calc(trainDescs, trainDescs_.cols, sdiff_row);
const T* trainDescs = trainDescs_.ptr(trainIdx);
Dist dist;
reduceDescCalc.calc(trainDescs, trainDescs_.cols, dist, sdiff_row);
if (threadIdx.x == 0)
{
float reg = sdiff_row[0];
if (reg < myMin)
if (dist < myMin)
{
myMin = reg;
myMin = dist;
myBestTrainIdx = trainIdx;
myBestImgIdx = imgIdx;
}
@ -570,18 +445,19 @@ namespace cv { namespace gpu { namespace bfmatcher
{
}
template <typename ReduceDescCalculator, typename Mask>
template <typename Dist, typename ReduceDescCalculator, typename Mask>
__device__ void loop(int queryIdx, Mask& m, const ReduceDescCalculator& reduceDescCalc,
float* sdiff_row, float& myMin, int& myBestTrainIdx, int& myBestImgIdx) const
float& myMin, int& myBestTrainIdx, int& myBestImgIdx, float* sdiff_row) const
{
matchDescs(queryIdx, 0, trainDescs, m, reduceDescCalc,
sdiff_row, myMin, myBestTrainIdx, myBestImgIdx);
matchDescs<Dist>(queryIdx, 0, trainDescs, m, reduceDescCalc,
myMin, myBestTrainIdx, myBestImgIdx, sdiff_row);
}
__device__ int desc_len() const
{
return trainDescs.cols;
}
private:
DevMem2D_<T> trainDescs;
};
@ -595,16 +471,16 @@ namespace cv { namespace gpu { namespace bfmatcher
{
}
template <typename ReduceDescCalculator, typename Mask>
template <typename Dist, typename ReduceDescCalculator, typename Mask>
__device__ void loop(int queryIdx, Mask& m, const ReduceDescCalculator& reduceDescCalc,
float* sdiff_row, float& myMin, int& myBestTrainIdx, int& myBestImgIdx) const
float& myMin, int& myBestTrainIdx, int& myBestImgIdx, float* sdiff_row) const
{
for (int imgIdx = 0; imgIdx < nImg; ++imgIdx)
{
DevMem2D_<T> trainDescs = trainCollection[imgIdx];
m.nextMask();
matchDescs(queryIdx, imgIdx, trainDescs, m, reduceDescCalc,
sdiff_row, myMin, myBestTrainIdx, myBestImgIdx);
matchDescs<Dist>(queryIdx, imgIdx, trainDescs, m, reduceDescCalc,
myMin, myBestTrainIdx, myBestImgIdx, sdiff_row);
}
}
@ -612,6 +488,7 @@ namespace cv { namespace gpu { namespace bfmatcher
{
return desclen;
}
private:
const DevMem2D_<T>* trainCollection;
int nImg;
@ -623,12 +500,10 @@ namespace cv { namespace gpu { namespace bfmatcher
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, typename ReduceDescCalculator, typename Dist, typename T,
typename Train, typename Mask>
__global__ void match(PtrStep_<T> queryDescs_, Train train, Mask mask, int* trainIdx, int* imgIdx, float* distance)
__global__ void match(const PtrStep_<T> queryDescs_, const Train train, const Mask mask,
int* trainIdx, int* imgIdx, float* distance)
{
__shared__ float sdiff[BLOCK_DIM_X * BLOCK_DIM_Y];
__shared__ float smin[64];
__shared__ int strainIdx[64];
__shared__ int simgIdx[64];
__shared__ float smem[BLOCK_DIM_X * BLOCK_DIM_Y];
const int queryIdx = blockIdx.x;
@ -637,24 +512,39 @@ namespace cv { namespace gpu { namespace bfmatcher
float myMin = numeric_limits_gpu<float>::max();
{
float* sdiff_row = sdiff + BLOCK_DIM_X * threadIdx.y;
float* sdiff_row = smem + BLOCK_DIM_X * threadIdx.y;
Mask m = mask;
ReduceDescCalculator reduceDescCalc;
reduceDescCalc.prepare(queryDescs_.ptr(queryIdx), train.desc_len(), sdiff);
reduceDescCalc.prepare(queryDescs_.ptr(queryIdx), train.desc_len(), smem);
train.loop(queryIdx, m, reduceDescCalc, sdiff_row, myMin, myBestTrainIdx, myBestImgIdx);
train.template loop<Dist>(queryIdx, m, reduceDescCalc, myMin, myBestTrainIdx, myBestImgIdx, sdiff_row);
}
__syncthreads();
float* smin = smem;
int* strainIdx = (int*)(smin + BLOCK_DIM_Y);
int* simgIdx = strainIdx + BLOCK_DIM_Y;
findBestMatch<BLOCK_DIM_Y, Dist>(queryIdx, myMin, myBestTrainIdx, myBestImgIdx,
smin, strainIdx, simgIdx, trainIdx, imgIdx, distance);
findBestMatch<BLOCK_DIM_Y>(myMin, myBestTrainIdx, myBestImgIdx,
smin, strainIdx, simgIdx);
if (threadIdx.x == 0 && threadIdx.y == 0)
{
imgIdx[queryIdx] = myBestImgIdx;
trainIdx[queryIdx] = myBestTrainIdx;
distance[queryIdx] = myMin;
}
}
///////////////////////////////////////////////////////////////////////////////
// Match kernel callers
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, template <int> class Dist, typename T,
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, typename Dist, typename T,
typename Train, typename Mask>
void match_caller(const DevMem2D_<T>& queryDescs, const Train& train,
void matchSimple_caller(const DevMem2D_<T>& queryDescs, const Train& train,
const Mask& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance)
{
StaticAssert<BLOCK_DIM_Y <= 64>::check(); // blockDimY vals must reduce by warp
@ -662,15 +552,15 @@ namespace cv { namespace gpu { namespace bfmatcher
dim3 grid(queryDescs.rows, 1, 1);
dim3 threads(BLOCK_DIM_X, BLOCK_DIM_Y, 1);
match<BLOCK_DIM_X, BLOCK_DIM_Y, ReduceDescCalculatorSimple<BLOCK_DIM_X, Dist<BLOCK_DIM_X>, T>,
Dist<BLOCK_DIM_X>, T><<<grid, threads>>>(queryDescs, train, mask, trainIdx.data,
match<BLOCK_DIM_X, BLOCK_DIM_Y, ReduceDescCalculatorSimple<BLOCK_DIM_X, T>, Dist, T>
<<<grid, threads>>>(queryDescs, train, mask, trainIdx.data,
imgIdx.data, distance.data);
cudaSafeCall( cudaThreadSynchronize() );
}
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, int MAX_DESCRIPTORS_LEN, bool DESC_LEN_EQ_MAX_LEN,
template <int> class Dist, typename T, typename Train, typename Mask>
void match_smem_caller(const DevMem2D_<T>& queryDescs, const Train& train,
typename Dist, typename T, typename Train, typename Mask>
void matchCached_caller(const DevMem2D_<T>& queryDescs, const Train& train,
const Mask& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance)
{
StaticAssert<BLOCK_DIM_Y <= 64>::check(); // blockDimY vals must reduce by warp
@ -680,9 +570,10 @@ namespace cv { namespace gpu { namespace bfmatcher
dim3 grid(queryDescs.rows, 1, 1);
dim3 threads(BLOCK_DIM_X, BLOCK_DIM_Y, 1);
match<BLOCK_DIM_X, BLOCK_DIM_Y, ReduceDescCalculatorSmem<BLOCK_DIM_X, BLOCK_DIM_Y,
MAX_DESCRIPTORS_LEN, DESC_LEN_EQ_MAX_LEN, Dist<BLOCK_DIM_X>, T>,
Dist<BLOCK_DIM_X>, T><<<grid, threads>>>(queryDescs, train, mask, trainIdx.data,
match<BLOCK_DIM_X, BLOCK_DIM_Y,
ReduceDescCalculatorCached<BLOCK_DIM_X, MAX_DESCRIPTORS_LEN, DESC_LEN_EQ_MAX_LEN, T>,
Dist, T>
<<<grid, threads>>>(queryDescs, train, mask, trainIdx.data,
imgIdx.data, distance.data);
cudaSafeCall( cudaThreadSynchronize() );
@ -691,24 +582,24 @@ namespace cv { namespace gpu { namespace bfmatcher
///////////////////////////////////////////////////////////////////////////////
// Match kernel chooser
template <template <int> class Dist, typename T, typename Train, typename Mask>
template <typename Dist, typename T, typename Train, typename Mask>
void match_chooser(const DevMem2D_<T>& queryDescs, const Train& train,
const Mask& mask, const DevMem2Di& trainIdx, const DevMem2Di& imgIdx, const DevMem2Df& distance)
{
if (queryDescs.cols < 64)
match_smem_caller<16, 16, 64, false, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance);
matchCached_caller<16, 16, 64, false, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance);
else if (queryDescs.cols == 64)
match_smem_caller<16, 16, 64, true, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance);
matchCached_caller<16, 16, 64, true, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance);
else if (queryDescs.cols < 128)
match_smem_caller<16, 16, 128, false, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance);
matchCached_caller<16, 16, 128, false, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance);
else if (queryDescs.cols == 128)
match_smem_caller<16, 16, 128, true, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance);
matchCached_caller<16, 16, 128, true, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance);
else if (queryDescs.cols < 256)
match_smem_caller<16, 16, 256, false, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance);
matchCached_caller<16, 16, 256, false, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance);
else if (queryDescs.cols == 256)
match_smem_caller<16, 16, 256, true, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance);
matchCached_caller<16, 16, 256, true, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance);
else
match_caller<16, 16, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance);
matchSimple_caller<16, 16, Dist>(queryDescs, train, mask, trainIdx, imgIdx, distance);
cudaSafeCall( cudaThreadSynchronize() );
}
@ -828,41 +719,41 @@ namespace cv { namespace gpu { namespace bfmatcher
{
const T* trainDescs = trainDescs_.ptr(trainIdx);
float dist = numeric_limits_gpu<float>::max();
float myDist = numeric_limits_gpu<float>::max();
if (mask(queryIdx, trainIdx))
{
reduceDescDiff<BLOCK_DIM_X, Dist>(queryDescs, trainDescs, trainDescs_.cols, sdiff_row);
Dist dist;
reduceDescDiff<BLOCK_DIM_X>(queryDescs, trainDescs, trainDescs_.cols, dist, sdiff_row);
if (threadIdx.x == 0)
{
dist = Dist::finalResult(sdiff_row[0]);
}
myDist = dist;
}
if (threadIdx.x == 0)
distance.ptr(queryIdx)[trainIdx] = dist;
distance.ptr(queryIdx)[trainIdx] = myDist;
}
}
///////////////////////////////////////////////////////////////////////////////
// Calc distance kernel caller
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, template <int> class Dist, typename T, typename Mask>
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, typename Dist, typename T, typename Mask>
void calcDistance_caller(const DevMem2D_<T>& queryDescs, const DevMem2D_<T>& trainDescs,
const Mask& mask, const DevMem2Df& distance)
{
dim3 threads(BLOCK_DIM_X, BLOCK_DIM_Y, 1);
dim3 grid(queryDescs.rows, divUp(trainDescs.rows, BLOCK_DIM_Y), 1);
calcDistance<BLOCK_DIM_X, BLOCK_DIM_Y, Dist<BLOCK_DIM_X>, T><<<grid, threads>>>(
calcDistance<BLOCK_DIM_X, BLOCK_DIM_Y, Dist, T><<<grid, threads>>>(
queryDescs, trainDescs, mask, distance);
cudaSafeCall( cudaThreadSynchronize() );
}
///////////////////////////////////////////////////////////////////////////////
// reduceMin
// warpReduceMinIdx
template <int BLOCK_SIZE>
__device__ void warpReduceMinIdx(volatile float* sdist, volatile int* strainIdx, float& myMin, int tid)
@ -1103,25 +994,27 @@ namespace cv { namespace gpu { namespace bfmatcher
{
#if defined (__CUDA_ARCH__) && __CUDA_ARCH__ >= 110
__shared__ float sdiff[BLOCK_DIM_X * BLOCK_DIM_Y];
__shared__ float smem[BLOCK_DIM_X * BLOCK_DIM_Y];
float* sdiff_row = sdiff + BLOCK_DIM_X * threadIdx.y;
float* sdiff_row = smem + BLOCK_DIM_X * threadIdx.y;
const int queryIdx = blockIdx.x;
const T* queryDescs = queryDescs_.ptr(queryIdx);
const int trainIdx = blockIdx.y * BLOCK_DIM_Y + threadIdx.y;
if (trainIdx < trainDescs_.rows)
{
const T* trainDescs = trainDescs_.ptr(trainIdx);
if (mask(queryIdx, trainIdx))
{
reduceDescDiff<BLOCK_DIM_X, Dist>(queryDescs, trainDescs, trainDescs_.cols, sdiff_row);
Dist dist;
reduceDescDiff<BLOCK_DIM_X>(queryDescs, trainDescs, trainDescs_.cols, dist, sdiff_row);
if (threadIdx.x == 0)
{
float dist = Dist::finalResult(sdiff_row[0]);
if (dist < maxDistance)
{
unsigned int i = atomicInc(nMatches + queryIdx, (unsigned int) -1);
@ -1141,7 +1034,7 @@ namespace cv { namespace gpu { namespace bfmatcher
///////////////////////////////////////////////////////////////////////////////
// Radius Match kernel caller
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, template <int> class Dist, typename T, typename Mask>
template <int BLOCK_DIM_X, int BLOCK_DIM_Y, typename Dist, typename T, typename Mask>
void radiusMatch_caller(const DevMem2D_<T>& queryDescs, const DevMem2D_<T>& trainDescs,
float maxDistance, const Mask& mask, const DevMem2Di& trainIdx, unsigned int* nMatches,
const DevMem2Df& distance)
@ -1149,7 +1042,7 @@ namespace cv { namespace gpu { namespace bfmatcher
dim3 threads(BLOCK_DIM_X, BLOCK_DIM_Y, 1);
dim3 grid(queryDescs.rows, divUp(trainDescs.rows, BLOCK_DIM_Y), 1);
radiusMatch<BLOCK_DIM_X, BLOCK_DIM_Y, Dist<BLOCK_DIM_X>, T><<<grid, threads>>>(
radiusMatch<BLOCK_DIM_X, BLOCK_DIM_Y, Dist, T><<<grid, threads>>>(
queryDescs, trainDescs, maxDistance, mask, trainIdx, nMatches, distance);
cudaSafeCall( cudaThreadSynchronize() );

@ -66,7 +66,10 @@ void cv::gpu::integral(const GpuMat&, GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::sqrIntegral(const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::columnSum(const GpuMat&, GpuMat&) { throw_nogpu(); }
void cv::gpu::rectStdDev(const GpuMat&, const GpuMat&, GpuMat&, const Rect&) { throw_nogpu(); }
void cv::gpu::Canny(const GpuMat&, GpuMat&, double, double, int) { throw_nogpu(); }
//void cv::gpu::Canny(const GpuMat&, GpuMat&, double, double, int) { throw_nogpu(); }
//void cv::gpu::Canny(const GpuMat&, GpuMat&, GpuMat&, double, double, int) { throw_nogpu(); }
//void cv::gpu::Canny(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, double, double, int) { throw_nogpu(); }
//void cv::gpu::Canny(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&, GpuMat&, double, double, int) { throw_nogpu(); }
void cv::gpu::evenLevels(GpuMat&, int, int, int) { throw_nogpu(); }
void cv::gpu::histEven(const GpuMat&, GpuMat&, int, int, int) { throw_nogpu(); }
void cv::gpu::histEven(const GpuMat&, GpuMat*, int*, int*, int*) { throw_nogpu(); }
@ -655,34 +658,60 @@ void cv::gpu::rectStdDev(const GpuMat& src, const GpuMat& sqr, GpuMat& dst, cons
////////////////////////////////////////////////////////////////////////
// Canny
void cv::gpu::Canny(const GpuMat& image, GpuMat& edges, double threshold1, double threshold2, int apertureSize)
{
CV_Assert(!"disabled until fix crash");
CV_Assert(image.type() == CV_8UC1);
GpuMat srcDx, srcDy;
Sobel(image, srcDx, -1, 1, 0, apertureSize);
Sobel(image, srcDy, -1, 0, 1, apertureSize);
srcDx.convertTo(srcDx, CV_32F);
srcDy.convertTo(srcDy, CV_32F);
edges.create(image.size(), CV_8UC1);
NppiSize sz;
sz.height = image.rows;
sz.width = image.cols;
int bufsz;
nppSafeCall( nppiCannyGetBufferSize(sz, &bufsz) );
GpuMat buf(1, bufsz, CV_8UC1);
nppSafeCall( nppiCanny_32f8u_C1R(srcDx.ptr<Npp32f>(), srcDx.step, srcDy.ptr<Npp32f>(), srcDy.step,
edges.ptr<Npp8u>(), edges.step, sz, (Npp32f)threshold1, (Npp32f)threshold2, buf.ptr<Npp8u>()) );
cudaSafeCall( cudaThreadSynchronize() );
}
//void cv::gpu::Canny(const GpuMat& image, GpuMat& edges, double threshold1, double threshold2, int apertureSize)
//{
// CV_Assert(!"disabled until fix crash");
//
// GpuMat srcDx, srcDy;
//
// Sobel(image, srcDx, CV_32F, 1, 0, apertureSize);
// Sobel(image, srcDy, CV_32F, 0, 1, apertureSize);
//
// GpuMat buf;
//
// Canny(srcDx, srcDy, edges, buf, threshold1, threshold2, apertureSize);
//}
//
//void cv::gpu::Canny(const GpuMat& image, GpuMat& edges, GpuMat& buf, double threshold1, double threshold2, int apertureSize)
//{
// CV_Assert(!"disabled until fix crash");
//
// GpuMat srcDx, srcDy;
//
// Sobel(image, srcDx, CV_32F, 1, 0, apertureSize);
// Sobel(image, srcDy, CV_32F, 0, 1, apertureSize);
//
// Canny(srcDx, srcDy, edges, buf, threshold1, threshold2, apertureSize);
//}
//
//void cv::gpu::Canny(const GpuMat& srcDx, const GpuMat& srcDy, GpuMat& edges, double threshold1, double threshold2, int apertureSize)
//{
// CV_Assert(!"disabled until fix crash");
//
// GpuMat buf;
// Canny(srcDx, srcDy, edges, buf, threshold1, threshold2, apertureSize);
//}
//
//void cv::gpu::Canny(const GpuMat& srcDx, const GpuMat& srcDy, GpuMat& edges, GpuMat& buf, double threshold1, double threshold2, int apertureSize)
//{
// CV_Assert(!"disabled until fix crash");
// CV_Assert(srcDx.type() == CV_32FC1 && srcDy.type() == CV_32FC1 && srcDx.size() == srcDy.size());
//
// edges.create(srcDx.size(), CV_8UC1);
//
// NppiSize sz;
// sz.height = srcDx.rows;
// sz.width = srcDx.cols;
//
// int bufsz;
// nppSafeCall( nppiCannyGetBufferSize(sz, &bufsz) );
// ensureSizeIsEnough(1, bufsz, CV_8UC1, buf);
//
// nppSafeCall( nppiCanny_32f8u_C1R(srcDx.ptr<Npp32f>(), srcDx.step, srcDy.ptr<Npp32f>(), srcDy.step,
// edges.ptr<Npp8u>(), edges.step, sz, (Npp32f)threshold1, (Npp32f)threshold2, buf.ptr<Npp8u>()) );
//
// cudaSafeCall( cudaThreadSynchronize() );
//}
////////////////////////////////////////////////////////////////////////
// Histogram

@ -66,45 +66,58 @@ protected:
virtual int test(const Mat& mat1, const Mat& mat2) = 0;
int CheckNorm(const Mat& m1, const Mat& m2);
int CheckNorm(const Scalar& s1, const Scalar& s2);
int CheckNorm(double d1, double d2);
int CheckNorm(const Mat& m1, const Mat& m2, double eps = 1e-5);
int CheckNorm(const Scalar& s1, const Scalar& s2, double eps = 1e-5);
int CheckNorm(double d1, double d2, double eps = 1e-5);
};
int CV_GpuArithmTest::test(int type)
{
cv::Size sz(200, 200);
cv::Mat mat1(sz, type), mat2(sz, type);
cv::RNG rng(*ts->get_rng());
rng.fill(mat1, cv::RNG::UNIFORM, cv::Scalar::all(1), cv::Scalar::all(20));
rng.fill(mat2, cv::RNG::UNIFORM, cv::Scalar::all(1), cv::Scalar::all(20));
if (type != CV_32FC1)
{
rng.fill(mat1, cv::RNG::UNIFORM, cv::Scalar::all(1), cv::Scalar::all(20));
rng.fill(mat2, cv::RNG::UNIFORM, cv::Scalar::all(1), cv::Scalar::all(20));
}
else
{
rng.fill(mat1, cv::RNG::UNIFORM, cv::Scalar::all(0.1), cv::Scalar::all(1.0));
rng.fill(mat2, cv::RNG::UNIFORM, cv::Scalar::all(0.1), cv::Scalar::all(1.0));
}
return test(mat1, mat2);
}
int CV_GpuArithmTest::CheckNorm(const Mat& m1, const Mat& m2)
int CV_GpuArithmTest::CheckNorm(const Mat& m1, const Mat& m2, double eps)
{
double ret = norm(m1, m2, NORM_INF);
if (ret < 1e-5)
if (ret < eps)
return CvTS::OK;
ts->printf(CvTS::LOG, "\nNorm: %f\n", ret);
return CvTS::FAIL_GENERIC;
}
int CV_GpuArithmTest::CheckNorm(const Scalar& s1, const Scalar& s2)
int CV_GpuArithmTest::CheckNorm(const Scalar& s1, const Scalar& s2, double eps)
{
double ret0 = CheckNorm(s1[0], s2[0]), ret1 = CheckNorm(s1[1], s2[1]), ret2 = CheckNorm(s1[2], s2[2]), ret3 = CheckNorm(s1[3], s2[3]);
int ret0 = CheckNorm(s1[0], s2[0], eps),
ret1 = CheckNorm(s1[1], s2[1], eps),
ret2 = CheckNorm(s1[2], s2[2], eps),
ret3 = CheckNorm(s1[3], s2[3], eps);
return (ret0 == CvTS::OK && ret1 == CvTS::OK && ret2 == CvTS::OK && ret3 == CvTS::OK) ? CvTS::OK : CvTS::FAIL_GENERIC;
}
int CV_GpuArithmTest::CheckNorm(double d1, double d2)
int CV_GpuArithmTest::CheckNorm(double d1, double d2, double eps)
{
double ret = ::fabs(d1 - d2);
if (ret < 1e-5)
if (ret < eps)
return CvTS::OK;
ts->printf(CvTS::LOG, "\nNorm: %f\n", ret);
@ -245,7 +258,7 @@ struct CV_GpuNppImageDivideTest : public CV_GpuArithmTest
GpuMat gpuRes;
cv::gpu::divide(gpu1, gpu2, gpuRes);
return CheckNorm(cpuRes, gpuRes);
return CheckNorm(cpuRes, gpuRes, 1.01f);
}
};
@ -584,7 +597,7 @@ struct CV_GpuNppImagePhaseTest : public CV_GpuArithmTest
GpuMat gpuRes;
cv::gpu::phase(gpu1, gpu2, gpuRes, true);
return CheckNorm(cpuRes, gpuRes);
return CheckNorm(cpuRes, gpuRes, 0.3f);
}
};
@ -611,7 +624,7 @@ struct CV_GpuNppImageCartToPolarTest : public CV_GpuArithmTest
cv::gpu::cartToPolar(gpu1, gpu2, gpuMag, gpuAngle);
int magRes = CheckNorm(cpuMag, gpuMag);
int angleRes = CheckNorm(cpuAngle, gpuAngle);
int angleRes = CheckNorm(cpuAngle, gpuAngle, 0.005f);
return magRes == CvTS::OK && angleRes == CvTS::OK ? CvTS::OK : CvTS::FAIL_GENERIC;
}

@ -51,24 +51,27 @@ class CV_GpuBruteForceMatcherTest : public CvTest
{
public:
CV_GpuBruteForceMatcherTest() :
CvTest( "GPU-BruteForceMatcher", "BruteForceMatcher" ), badPart(0.01f)
CvTest( "GPU-BruteForceMatcher", "BruteForceMatcher" )
{
}
protected:
static const int dim = 500;
static const int queryDescCount = 300; // must be even number because we split train data in some cases in two
static const int countFactor = 4; // do not change it
const float badPart;
protected:
virtual void run(int);
void generateData(GpuMat& query, GpuMat& train);
void emptyDataTest();
void dataTest(int dim);
void generateData(GpuMat& query, GpuMat& train, int dim);
void matchTest(const GpuMat& query, const GpuMat& train);
void knnMatchTest(const GpuMat& query, const GpuMat& train);
void radiusMatchTest(const GpuMat& query, const GpuMat& train);
private:
BruteForceMatcher_GPU< L2<float> > dmatcher;
static const int queryDescCount = 300; // must be even number because we split train data in some cases in two
static const int countFactor = 4; // do not change it
};
void CV_GpuBruteForceMatcherTest::emptyDataTest()
@ -150,7 +153,7 @@ void CV_GpuBruteForceMatcherTest::emptyDataTest()
}
void CV_GpuBruteForceMatcherTest::generateData( GpuMat& queryGPU, GpuMat& trainGPU )
void CV_GpuBruteForceMatcherTest::generateData( GpuMat& queryGPU, GpuMat& trainGPU, int dim )
{
Mat query, train;
RNG rng(*ts->get_rng());
@ -209,7 +212,7 @@ void CV_GpuBruteForceMatcherTest::matchTest( const GpuMat& query, const GpuMat&
if( (match.queryIdx != (int)i) || (match.trainIdx != (int)i*countFactor) || (match.imgIdx != 0) )
badCount++;
}
if( (float)badCount > (float)queryDescCount*badPart )
if (badCount > 0)
{
ts->printf( CvTS::LOG, "%f - too large bad matches part while test match() function (1).\n",
(float)badCount/(float)queryDescCount );
@ -260,7 +263,7 @@ void CV_GpuBruteForceMatcherTest::matchTest( const GpuMat& query, const GpuMat&
}
}
}
if( (float)badCount > (float)queryDescCount*badPart )
if (badCount > 0)
{
ts->printf( CvTS::LOG, "%f - too large bad matches part while test match() function (2).\n",
(float)badCount/(float)queryDescCount );
@ -305,7 +308,7 @@ void CV_GpuBruteForceMatcherTest::knnMatchTest( const GpuMat& query, const GpuMa
badCount += localBadCount > 0 ? 1 : 0;
}
}
if( (float)badCount > (float)queryDescCount*badPart )
if (badCount > 0)
{
ts->printf( CvTS::LOG, "%f - too large bad matches part while test knnMatch() function (1).\n",
(float)badCount/(float)queryDescCount );
@ -369,7 +372,7 @@ void CV_GpuBruteForceMatcherTest::knnMatchTest( const GpuMat& query, const GpuMa
badCount += localBadCount > 0 ? 1 : 0;
}
}
if( (float)badCount > (float)queryDescCount*badPart )
if (badCount > 0)
{
ts->printf( CvTS::LOG, "%f - too large bad matches part while test knnMatch() function (2).\n",
(float)badCount/(float)queryDescCount );
@ -407,7 +410,7 @@ void CV_GpuBruteForceMatcherTest::radiusMatchTest( const GpuMat& query, const Gp
badCount++;
}
}
if( (float)badCount > (float)queryDescCount*badPart )
if (badCount > 0)
{
ts->printf( CvTS::LOG, "%f - too large bad matches part while test radiusMatch() function (1).\n",
(float)badCount/(float)queryDescCount );
@ -473,7 +476,8 @@ void CV_GpuBruteForceMatcherTest::radiusMatchTest( const GpuMat& query, const Gp
badCount += localBadCount > 0 ? 1 : 0;
}
}
if( (float)badCount > (float)queryDescCount*badPart )
if (badCount > 0)
{
curRes = CvTS::FAIL_INVALID_OUTPUT;
ts->printf( CvTS::LOG, "%f - too large bad matches part while test radiusMatch() function (2).\n",
@ -483,20 +487,29 @@ void CV_GpuBruteForceMatcherTest::radiusMatchTest( const GpuMat& query, const Gp
}
}
void CV_GpuBruteForceMatcherTest::run( int )
void CV_GpuBruteForceMatcherTest::dataTest(int dim)
{
emptyDataTest();
GpuMat query, train;
generateData( query, train );
generateData(query, train, dim);
matchTest( query, train );
matchTest(query, train);
knnMatchTest(query, train);
radiusMatchTest(query, train);
knnMatchTest( query, train );
dmatcher.clear();
}
radiusMatchTest( query, train );
void CV_GpuBruteForceMatcherTest::run(int)
{
emptyDataTest();
dmatcher.clear();
dataTest(50);
dataTest(64);
dataTest(100);
dataTest(128);
dataTest(200);
dataTest(256);
dataTest(300);
}
CV_GpuBruteForceMatcherTest CV_GpuBruteForceMatcher_test;

@ -45,7 +45,6 @@ CvTS test_system("gpu");
const char* blacklist[] =
{
"GPU-AsyncGpuMatOperator", // crash
"GPU-NppImageCanny", // NPP_TEXTURE_BIND_ERROR
0
};

@ -408,30 +408,30 @@ struct CV_GpuNppImageIntegralTest : public CV_GpuImageProcTest
////////////////////////////////////////////////////////////////////////////////
// Canny
struct CV_GpuNppImageCannyTest : public CV_GpuImageProcTest
{
CV_GpuNppImageCannyTest() : CV_GpuImageProcTest( "GPU-NppImageCanny", "Canny" ) {}
int test(const Mat& img)
{
if (img.type() != CV_8UC1)
{
ts->printf(CvTS::LOG, "\nUnsupported type\n");
return CvTS::OK;
}
const double threshold1 = 1.0, threshold2 = 10.0;
Mat cpudst;
cv::Canny(img, cpudst, threshold1, threshold2);
GpuMat gpu1(img);
GpuMat gpudst;
cv::gpu::Canny(gpu1, gpudst, threshold1, threshold2);
return CheckNorm(cpudst, gpudst);
}
};
//struct CV_GpuNppImageCannyTest : public CV_GpuImageProcTest
//{
// CV_GpuNppImageCannyTest() : CV_GpuImageProcTest( "GPU-NppImageCanny", "Canny" ) {}
//
// int test(const Mat& img)
// {
// if (img.type() != CV_8UC1)
// {
// ts->printf(CvTS::LOG, "\nUnsupported type\n");
// return CvTS::OK;
// }
//
// const double threshold1 = 1.0, threshold2 = 10.0;
//
// Mat cpudst;
// cv::Canny(img, cpudst, threshold1, threshold2);
//
// GpuMat gpu1(img);
// GpuMat gpudst;
// cv::gpu::Canny(gpu1, gpudst, threshold1, threshold2);
//
// return CheckNorm(cpudst, gpudst);
// }
//};
////////////////////////////////////////////////////////////////////////////////
// cvtColor
@ -839,7 +839,7 @@ CV_GpuNppImageCopyMakeBorderTest CV_GpuNppImageCopyMakeBorder_test;
CV_GpuNppImageWarpAffineTest CV_GpuNppImageWarpAffine_test;
CV_GpuNppImageWarpPerspectiveTest CV_GpuNppImageWarpPerspective_test;
CV_GpuNppImageIntegralTest CV_GpuNppImageIntegral_test;
CV_GpuNppImageCannyTest CV_GpuNppImageCanny_test;
//CV_GpuNppImageCannyTest CV_GpuNppImageCanny_test;
CV_GpuCvtColorTest CV_GpuCvtColor_test;
CV_GpuHistogramsTest CV_GpuHistograms_test;
CV_GpuCornerHarrisTest CV_GpuCornerHarris_test;

@ -40,119 +40,54 @@
//M*/
#include "gputest.hpp"
#include <string>
#include <iostream>
#include <fstream>
#include <iterator>
#include <limits>
#include <numeric>
#include <iomanip> // for cout << setw()
using namespace cv;
using namespace std;
using namespace gpu;
class CV_AsyncGpuMatTest : public CvTest
{
public:
CV_AsyncGpuMatTest() : CvTest( "GPU-AsyncGpuMatOperator", "async" )
{
rows = 234;
cols = 123;
}
~CV_AsyncGpuMatTest() {}
protected:
void run(int);
template <typename T>
void print_mat(const T & mat, const std::string & name) const;
bool compare_matrix(cv::Mat & cpumat);
private:
int rows;
int cols;
};
template<typename T>
void CV_AsyncGpuMatTest::print_mat(const T & mat, const std::string & name) const { cv::imshow(name, mat); }
using namespace cv;
using namespace cv::gpu;
bool CV_AsyncGpuMatTest::compare_matrix(cv::Mat & cpumat)
struct CV_AsyncGpuMatTest : public CvTest
{
Mat cmat(cpumat.size(), cpumat.type(), Scalar::all(0));
GpuMat gmat0(cmat);
GpuMat gmat1;
GpuMat gmat2;
GpuMat gmat3;
//int64 time = getTickCount();
Stream stream;
stream.enqueueMemSet(gmat0, cv::Scalar::all(1), gmat1);
stream.enqueueMemSet(gmat0, cv::Scalar::all(1), gmat2);
stream.enqueueMemSet(gmat0, cv::Scalar::all(1), gmat3);
stream.waitForCompletion();
//int64 time1 = getTickCount();
gmat1.copyTo(gmat0);
gmat2.copyTo(gmat0);
gmat3.copyTo(gmat0);
//int64 time2 = getTickCount();
//std::cout << "\ntime async: " << std::fixed << std::setprecision(12) << double((time1 - time) / (double)getTickFrequency());
//std::cout << "\ntime sync: " << std::fixed << std::setprecision(12) << double((time2 - time1) / (double)getTickFrequency());
//std::cout << "\n";
#ifdef PRINT_MATRIX
print_mat(cmat, "cpu mat");
print_mat(gmat0, "gpu mat 0");
print_mat(gmat1, "gpu mat 1");
print_mat(gmat2, "gpu mat 2");
print_mat(gmat3, "gpu mat 3");
cv::waitKey(0);
#endif
double ret = norm(cmat, gmat0) + norm(cmat, gmat1) + norm(cmat, gmat2) + norm(cmat, gmat3);
if (ret < 1.0)
return true;
else
CV_AsyncGpuMatTest() : CvTest( "GPU-AsyncGpuMatOperator", "async" )
{
ts->printf(CvTS::LOG, "\nNorm: %f\n", ret);
return false;
}
}
void CV_AsyncGpuMatTest::run( int /* start_from */)
{
bool is_test_good = true;
void run(int)
{
try
{
CudaMem src(Mat::zeros(100, 100, CV_8UC1));
Mat cpumat(rows, cols, CV_8U);
cpumat.setTo(Scalar::all(127));
GpuMat gpusrc;
GpuMat gpudst0, gpudst1(100, 100, CV_8UC1);
try
{
is_test_good &= compare_matrix(cpumat);
}
catch(cv::Exception& e)
{
if (!check_and_treat_gpu_exception(e, ts))
throw;
return;
}
CudaMem cpudst0;
CudaMem cpudst1;
if (is_test_good == true)
ts->set_failed_test_info(CvTS::OK);
else
ts->set_failed_test_info(CvTS::FAIL_GENERIC);
}
Stream stream0, stream1;
stream0.enqueueUpload(src, gpusrc);
bitwise_not(gpusrc, gpudst0, GpuMat(), stream0);
stream0.enqueueDownload(gpudst0, cpudst0);
/////////////////////////////////////////////////////////////////////////////
/////////////////// tests registration /////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////
stream1.enqueueMemSet(gpudst1, Scalar::all(128));
stream1.enqueueDownload(gpudst1, cpudst1);
stream0.waitForCompletion();
stream1.waitForCompletion();
Mat cpu_gold0(100, 100, CV_8UC1, Scalar::all(255));
Mat cpu_gold1(100, 100, CV_8UC1, Scalar::all(128));
CV_AsyncGpuMatTest CV_AsyncGpuMatTest_test;
if (norm(cpudst0, cpu_gold0, NORM_INF) > 0 || norm(cpudst1, cpu_gold1, NORM_INF) > 0)
ts->set_failed_test_info(CvTS::FAIL_GENERIC);
else
ts->set_failed_test_info(CvTS::OK);
}
catch(cv::Exception& e)
{
if (!check_and_treat_gpu_exception(e, ts))
throw;
return;
}
}
} CV_AsyncGpuMatTest_test;

Loading…
Cancel
Save