Merge pull request #7163 from savuor:openvx_sample

pull/7726/head
Alexander Alekhin 8 years ago
commit 8151be9abc
  1. 106
      3rdparty/openvx/include/ivx.hpp
  2. 4
      samples/CMakeLists.txt
  3. 37
      samples/openvx/CMakeLists.txt
  4. 385
      samples/openvx/no_wrappers.cpp
  5. 214
      samples/openvx/wrappers.cpp
  6. 250
      samples/openvx/wrappers_video.cpp

@ -58,6 +58,11 @@ Details: TBD
#ifndef IVX_USE_CXX98
#include <type_traits>
namespace ivx
{
using std::is_same;
using std::is_pointer;
}
#else
namespace ivx
{
@ -76,6 +81,21 @@ Details: TBD
#include "opencv2/core.hpp"
#endif
// disabling false alarm warnings
#if defined(_MSC_VER)
#pragma warning(push)
//#pragma warning( disable : 4??? )
#elif defined(__clang__)
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wunused-local-typedef"
#pragma clang diagnostic ignored "-Wmissing-prototypes"
#elif defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-local-typedefs"
#pragma GCC diagnostic ignored "-Wunused-value"
#pragma GCC diagnostic ignored "-Wmissing-declarations"
#endif // compiler macro
namespace ivx
{
@ -84,8 +104,8 @@ class RuntimeError : public std::runtime_error
{
public:
/// Constructor
explicit RuntimeError(vx_status status, const std::string& msg = "")
: runtime_error(msg), _status(status)
explicit RuntimeError(vx_status st, const std::string& msg = "")
: runtime_error(msg), _status(st)
{}
/// OpenVX error code
@ -137,7 +157,7 @@ template <vx_enum E> using EnumToType_t = typename EnumToType<E>::type;
#endif
/// Gets size in bytes for the provided OpenVX type enum
vx_size enumToTypeSize(vx_enum type)
inline vx_size enumToTypeSize(vx_enum type)
{
switch (type)
{
@ -268,12 +288,12 @@ template <> struct RefTypeTraits <vx_threshold>
/// Casting to vx_reference with compile-time check
// takes 'vx_reference' itself and RefWrapper<T> via 'operator vx_reference()'
vx_reference castToReference(vx_reference ref)
inline vx_reference castToReference(vx_reference ref)
{ return ref; }
// takes vx_reference extensions that have RefTypeTraits<T> specializations
template<typename T>
vx_reference castToReference(const T& ref, typename RefTypeTraits<T>::vxType dummy = 0)
inline vx_reference castToReference(const T& ref, typename RefTypeTraits<T>::vxType dummy = 0)
{ (void)dummy; return (vx_reference)ref; }
#else
@ -297,7 +317,7 @@ struct is_ref<T, decltype(RefTypeTraits<T>::vxTypeEnum, void())> : std::true_typ
/// Casting to vx_reference with compile-time check
template<typename T>
vx_reference castToReference(const T& obj)
inline vx_reference castToReference(const T& obj)
{
static_assert(is_ref<T>::value, "unsupported conversion");
return (vx_reference) obj;
@ -405,7 +425,6 @@ public:
{ return ref != 0; }
#endif
#ifdef IVX_USE_CXX98
/// Getting a context that is kept in each OpenVX 'object' (call get<Context>())
template<typename C>
C get() const
@ -415,7 +434,8 @@ public:
// vxGetContext doesn't increment ref count, let do it in wrapper c-tor
return C(c, true);
}
#else
#ifndef IVX_USE_CXX98
/// Getting a context that is kept in each OpenVX 'object'
template<typename C = Context, typename = typename std::enable_if<std::is_same<C, Context>::value>::type>
C getContext() const
@ -527,7 +547,6 @@ public:
operator vx_reference() const
{ return castToReference(ref); }
#ifdef IVX_USE_CXX98
/// Getting a context that is kept in each OpenVX 'object' (call get<Context>())
template<typename C>
C get() const
@ -537,7 +556,8 @@ public:
// vxGetContext doesn't increment ref count, let do it in wrapper c-tor
return C(c, true);
}
#else
#ifndef IVX_USE_CXX98
/// Getting a context that is kept in each OpenVX 'object'
template<typename C = Context, typename = typename std::enable_if<std::is_same<C, Context>::value>::type>
C getContext() const
@ -866,6 +886,16 @@ public:
static Image createVirtual(vx_graph graph, vx_uint32 width = 0, vx_uint32 height = 0, vx_df_image format = VX_DF_IMAGE_VIRT)
{ return Image(vxCreateVirtualImage(graph, width, height, format)); }
#ifdef VX_VERSION_1_1
/// vxCreateUniformImage() wrapper
static Image createUniform(vx_context context, vx_uint32 width, vx_uint32 height, vx_df_image format, const vx_pixel_value_t& value)
{ return Image(vxCreateUniformImage(context, width, height, format, &value)); }
#else
/// vxCreateUniformImage() wrapper
static Image createUniform(vx_context context, vx_uint32 width, vx_uint32 height, vx_df_image format, const void* value)
{ return Image(vxCreateUniformImage(context, width, height, format, value)); }
#endif
/// Planes number for the specified image format (fourcc)
/// \return 0 for unknown formats
static vx_size planes(vx_df_image format)
@ -949,6 +979,13 @@ public:
#endif
}
/// vxCreateImageFromHandle() wrapper for a single plane image
static Image createFromHandle(vx_context context, vx_df_image format,const vx_imagepatch_addressing_t& addr, void* ptr)
{
if(planes(format) != 1) throw WrapperError(std::string(__func__)+"(): not a single plane format");
return Image(vxCreateImageFromHandle(context, format, const_cast<vx_imagepatch_addressing_t*> (&addr), &ptr, VX_MEMORY_TYPE_HOST));
}
#ifdef VX_VERSION_1_1
/// vxSwapImageHandle() wrapper
/// \param newPtrs keeps addresses of new image planes data, can be of image planes size or empty when new pointers are not provided
@ -968,6 +1005,17 @@ public:
num ) );
}
/// vxSwapImageHandle() wrapper for a single plane image
/// \param newPtr an address of new image data, can be zero when new pointer is not provided
/// \return the previuos address of image data
void* swapHandle(void* newPtr)
{
if(planes() != 1) throw WrapperError(std::string(__func__)+"(): not a single plane image");
void* prevPtr = 0;
IVX_CHECK_STATUS( vxSwapImageHandle(ref, &newPtr, &prevPtr, 1) );
return prevPtr;
}
/// vxSwapImageHandle() wrapper for the case when no new pointers provided and previous ones are not needed (retrive memory back)
void swapHandle()
{ IVX_CHECK_STATUS( vxSwapImageHandle(ref, 0, 0, 0) ); }
@ -1129,12 +1177,12 @@ static const vx_enum
/// vxCopyImagePatch() wrapper (or vxAccessImagePatch() + vxCommitImagePatch() for OpenVX 1.0)
void copy( vx_uint32 planeIdx, vx_rectangle_t rect,
const vx_imagepatch_addressing_t& addr, void* data,
vx_enum usage, vx_enum memType = VX_MEMORY_TYPE_HOST )
vx_enum usage, vx_enum memoryType = VX_MEMORY_TYPE_HOST )
{
#ifdef VX_VERSION_1_1
IVX_CHECK_STATUS(vxCopyImagePatch(ref, &rect, planeIdx, &addr, (void*)data, usage, memType));
IVX_CHECK_STATUS(vxCopyImagePatch(ref, &rect, planeIdx, &addr, (void*)data, usage, memoryType));
#else
(void)memType;
(void)memoryType;
vx_imagepatch_addressing_t* a = const_cast<vx_imagepatch_addressing_t*>(&addr);
IVX_CHECK_STATUS(vxAccessImagePatch(ref, &rect, planeIdx, a, &data, usage));
IVX_CHECK_STATUS(vxCommitImagePatch(ref, &rect, planeIdx, a, data));
@ -1246,6 +1294,14 @@ static const vx_enum
//vx_rectangle_t r = getValidRegion();
copyFrom(planeIdx, createAddressing((vx_uint32)m.cols, (vx_uint32)m.rows, (vx_int32)m.elemSize(), (vx_int32)m.step), m.ptr());
}
/*
static Image createFromHandle(vx_context context, const cv::Mat& mat)
{ throw WrapperError(std::string(__func__)+"(): NYI"); }
cv::Mat swapHandle(const cv::Mat& newMat)
{ throw WrapperError(std::string(__func__)+"(): NYI"); }
*/
#endif //IVX_USE_OPENCV
struct Patch;
@ -1273,16 +1329,16 @@ public:
{ return _mapId; }
#else
/// reference to vx_rectangle_t for the current mapping
const vx_rectangle_t& rect() const
const vx_rectangle_t& rectangle() const
{ return _rect; }
/// Image plane index for the current mapping
vx_uint32 planeIdx() const
vx_uint32 planeIndex() const
{ return _planeIdx; }
#endif // VX_VERSION_1_1
/// vx_image for the current mapping
vx_image img() const
vx_image image() const
{ return _img; }
/// where this patch is mapped
@ -1352,6 +1408,7 @@ public:
IVX_CHECK_STATUS(vxMapImagePatch(img, &rect, planeIdx, &_mapId, &_addr, &_data, usage, _memType, flags) );
#else
IVX_CHECK_STATUS(vxAccessImagePatch(img, &rect, planeIdx, &_addr, &_data, usage));
(void)flags;
_rect = rect;
_planeIdx = planeIdx;
#endif
@ -1517,15 +1574,15 @@ static const vx_enum
static Threshold createRange(vx_context c, vx_enum dataType, vx_int32 valLower, vx_int32 valUpper)
{
Threshold thr = create(c, VX_THRESHOLD_TYPE_RANGE, dataType);
IVX_CHECK_STATUS( vxSetThresholdAttribute(thr.ref, VX_THRESHOLD_THRESHOLD_LOWER, &val1, sizeof(val1)) );
IVX_CHECK_STATUS( vxSetThresholdAttribute(thr.ref, VX_THRESHOLD_THRESHOLD_UPPER, &val2, sizeof(val2)) );
IVX_CHECK_STATUS( vxSetThresholdAttribute(thr.ref, VX_THRESHOLD_THRESHOLD_LOWER, &valLower, sizeof(valLower)) );
IVX_CHECK_STATUS( vxSetThresholdAttribute(thr.ref, VX_THRESHOLD_THRESHOLD_UPPER, &valUpper, sizeof(valUpper)) );
return thr;
}
/// vxQueryThreshold() wrapper
template<typename T>
void query(vx_enum att, T& value) const
{ IVX_CHECK_STATUS( vxQueryThreshold(ref, att, &value, sizeof(value)) ); }
void query(vx_enum att, T& val) const
{ IVX_CHECK_STATUS( vxQueryThreshold(ref, att, &val, sizeof(val)) ); }
/// vxQueryThreshold(VX_THRESHOLD_TYPE) wrapper
vx_enum type() const
@ -1611,4 +1668,13 @@ Node gaussian3x3(vx_graph graph, vx_image inImg, vx_image outImg)
} // namespace ivx
// restore warnings
#if defined(_MSC_VER)
#pragma warning(pop)
#elif defined(__clang__)
#pragma clang diagnostic pop
#elif defined(__GNUC__)
#pragma GCC diagnostic pop
#endif // compiler macro
#endif //IVX_HPP

@ -22,6 +22,10 @@ if((NOT ANDROID) AND HAVE_OPENGL)
add_subdirectory(opengl)
endif()
if(HAVE_OPENVX)
add_subdirectory(openvx)
endif()
if(UNIX AND NOT ANDROID AND (HAVE_VA OR HAVE_VA_INTEL))
add_subdirectory(va_intel)
endif()

@ -0,0 +1,37 @@
cmake_minimum_required(VERSION 2.8.9)
set(OPENCV_OPENVX_SAMPLE_REQUIRED_DEPS opencv_core opencv_imgproc opencv_imgcodecs opencv_videoio opencv_highgui)
ocv_check_dependencies(${OPENCV_OPENVX_SAMPLE_REQUIRED_DEPS})
if(BUILD_EXAMPLES AND OCV_DEPENDENCIES_FOUND)
set(group "openvx")
set(name_wrapped "interop")
set(name_orig "interop_orig")
set(name_video "interop_video")
project("${group}_sample")
ocv_include_modules_recurse(${OPENCV_OPENVX_SAMPLE_REQUIRED_DEPS})
add_definitions(-DIVX_USE_OPENCV)
add_definitions(-DIVX_HIDE_INFO_WARNINGS)
file(GLOB srcs_wrapped wrappers.cpp *.hpp)
file(GLOB srcs_orig no_wrappers.cpp *.hpp)
file(GLOB srcs_video wrappers_video.cpp *.hpp)
MACRO(OPENVX_DEFINE_SAMPLE name srcs)
set(target "example_${group}_${name}")
add_executable(${target} ${srcs})
ocv_target_link_libraries(${target} ${OPENCV_LINKER_LIBS} ${OPENCV_OPENVX_SAMPLE_REQUIRED_DEPS} ${OPENVX_LIBRARIES})
if(ENABLE_SOLUTION_FOLDERS)
set_target_properties(${target} PROPERTIES FOLDER "samples//${group}")
endif()
ENDMACRO()
OPENVX_DEFINE_SAMPLE(${name_wrapped} ${srcs_wrapped})
OPENVX_DEFINE_SAMPLE(${name_orig} ${srcs_orig})
OPENVX_DEFINE_SAMPLE(${name_video} ${srcs_video})
endif()

@ -0,0 +1,385 @@
#include <iostream>
#include <stdexcept>
//OpenVX includes
#include <VX/vx.h>
//OpenCV includes
#include "opencv2/core.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
#ifndef VX_VERSION_1_1
const vx_enum VX_IMAGE_FORMAT = VX_IMAGE_ATTRIBUTE_FORMAT;
const vx_enum VX_IMAGE_WIDTH = VX_IMAGE_ATTRIBUTE_WIDTH;
const vx_enum VX_IMAGE_HEIGHT = VX_IMAGE_ATTRIBUTE_HEIGHT;
const vx_enum VX_MEMORY_TYPE_HOST = VX_IMPORT_TYPE_HOST;
const vx_enum VX_MEMORY_TYPE_NONE = VX_IMPORT_TYPE_NONE;
const vx_enum VX_THRESHOLD_THRESHOLD_VALUE = VX_THRESHOLD_ATTRIBUTE_THRESHOLD_VALUE;
const vx_enum VX_THRESHOLD_THRESHOLD_LOWER = VX_THRESHOLD_ATTRIBUTE_THRESHOLD_LOWER;
const vx_enum VX_THRESHOLD_THRESHOLD_UPPER = VX_THRESHOLD_ATTRIBUTE_THRESHOLD_UPPER;
typedef uintptr_t vx_map_id;
#endif
enum UserMemoryMode
{
COPY, USER_MEM
};
vx_image convertCvMatToVxImage(vx_context context, cv::Mat image, bool toCopy);
cv::Mat copyVxImageToCvMat(vx_image ovxImage);
void swapVxImage(vx_image ovxImage);
vx_status createProcessingGraph(vx_image inputImage, vx_image outputImage, vx_graph& graph);
int ovxDemo(std::string inputPath, UserMemoryMode mode);
vx_image convertCvMatToVxImage(vx_context context, cv::Mat image, bool toCopy)
{
if (!(!image.empty() && image.dims <= 2 && image.channels() == 1))
throw std::runtime_error("Invalid format");
vx_uint32 width = image.cols;
vx_uint32 height = image.rows;
vx_df_image color;
switch (image.depth())
{
case CV_8U:
color = VX_DF_IMAGE_U8;
break;
case CV_16U:
color = VX_DF_IMAGE_U16;
break;
case CV_16S:
color = VX_DF_IMAGE_S16;
break;
case CV_32S:
color = VX_DF_IMAGE_S32;
break;
default:
throw std::runtime_error("Invalid format");
break;
}
vx_imagepatch_addressing_t addr;
addr.dim_x = width;
addr.dim_y = height;
addr.stride_x = (vx_uint32)image.elemSize();
addr.stride_y = (vx_uint32)image.step.p[0];
vx_uint8* ovxData = image.data;
vx_image ovxImage;
if (toCopy)
{
ovxImage = vxCreateImage(context, width, height, color);
if (vxGetStatus((vx_reference)ovxImage) != VX_SUCCESS)
throw std::runtime_error("Failed to create image");
vx_rectangle_t rect;
vx_status status = vxGetValidRegionImage(ovxImage, &rect);
if (status != VX_SUCCESS)
throw std::runtime_error("Failed to get valid region");
#ifdef VX_VERSION_1_1
status = vxCopyImagePatch(ovxImage, &rect, 0, &addr, ovxData, VX_WRITE_ONLY, VX_MEMORY_TYPE_HOST);
if (status != VX_SUCCESS)
throw std::runtime_error("Failed to copy image patch");
#else
status = vxAccessImagePatch(ovxImage, &rect, 0, &addr, (void**)&ovxData, VX_WRITE_ONLY);
if (status != VX_SUCCESS)
throw std::runtime_error("Failed to access image patch");
status = vxCommitImagePatch(ovxImage, &rect, 0, &addr, ovxData);
if (status != VX_SUCCESS)
throw std::runtime_error("Failed to commit image patch");
#endif
}
else
{
ovxImage = vxCreateImageFromHandle(context, color, &addr, (void**)&ovxData, VX_MEMORY_TYPE_HOST);
if (vxGetStatus((vx_reference)ovxImage) != VX_SUCCESS)
throw std::runtime_error("Failed to create image from handle");
}
return ovxImage;
}
cv::Mat copyVxImageToCvMat(vx_image ovxImage)
{
vx_status status;
vx_df_image df_image = 0;
vx_uint32 width, height;
status = vxQueryImage(ovxImage, VX_IMAGE_FORMAT, &df_image, sizeof(vx_df_image));
if (status != VX_SUCCESS)
throw std::runtime_error("Failed to query image");
status = vxQueryImage(ovxImage, VX_IMAGE_WIDTH, &width, sizeof(vx_uint32));
if (status != VX_SUCCESS)
throw std::runtime_error("Failed to query image");
status = vxQueryImage(ovxImage, VX_IMAGE_HEIGHT, &height, sizeof(vx_uint32));
if (status != VX_SUCCESS)
throw std::runtime_error("Failed to query image");
if (!(width > 0 && height > 0)) throw std::runtime_error("Invalid format");
int depth;
switch (df_image)
{
case VX_DF_IMAGE_U8:
depth = CV_8U;
break;
case VX_DF_IMAGE_U16:
depth = CV_16U;
break;
case VX_DF_IMAGE_S16:
depth = CV_16S;
break;
case VX_DF_IMAGE_S32:
depth = CV_32S;
break;
default:
throw std::runtime_error("Invalid format");
break;
}
cv::Mat image(height, width, CV_MAKE_TYPE(depth, 1));
vx_rectangle_t rect;
rect.start_x = rect.start_y = 0;
rect.end_x = width; rect.end_y = height;
vx_imagepatch_addressing_t addr;
addr.dim_x = width;
addr.dim_y = height;
addr.stride_x = (vx_uint32)image.elemSize();
addr.stride_y = (vx_uint32)image.step.p[0];
vx_uint8* matData = image.data;
#ifdef VX_VERSION_1_1
status = vxCopyImagePatch(ovxImage, &rect, 0, &addr, matData, VX_READ_ONLY, VX_MEMORY_TYPE_HOST);
if (status != VX_SUCCESS)
throw std::runtime_error("Failed to copy image patch");
#else
status = vxAccessImagePatch(ovxImage, &rect, 0, &addr, (void**)&matData, VX_READ_ONLY);
if (status != VX_SUCCESS)
throw std::runtime_error("Failed to access image patch");
status = vxCommitImagePatch(ovxImage, &rect, 0, &addr, matData);
if (status != VX_SUCCESS)
throw std::runtime_error("Failed to commit image patch");
#endif
return image;
}
void swapVxImage(vx_image ovxImage)
{
#ifdef VX_VERSION_1_1
vx_status status;
vx_memory_type_e memType;
status = vxQueryImage(ovxImage, VX_IMAGE_MEMORY_TYPE, &memType, sizeof(vx_memory_type_e));
if (status != VX_SUCCESS)
throw std::runtime_error("Failed to query image");
if (memType == VX_MEMORY_TYPE_NONE)
{
//was created by copying user data
throw std::runtime_error("Image wasn't created from user handle");
}
else
{
//was created from user handle
status = vxSwapImageHandle(ovxImage, NULL, NULL, 0);
if (status != VX_SUCCESS)
throw std::runtime_error("Failed to swap image handle");
}
#else
//not supported until OpenVX 1.1
(void) ovxImage;
#endif
}
vx_status createProcessingGraph(vx_image inputImage, vx_image outputImage, vx_graph& graph)
{
vx_status status;
vx_context context = vxGetContext((vx_reference)inputImage);
status = vxGetStatus((vx_reference)context);
if(status != VX_SUCCESS) return status;
graph = vxCreateGraph(context);
status = vxGetStatus((vx_reference)graph);
if (status != VX_SUCCESS) return status;
vx_uint32 width, height;
status = vxQueryImage(inputImage, VX_IMAGE_WIDTH, &width, sizeof(vx_uint32));
if (status != VX_SUCCESS) return status;
status = vxQueryImage(inputImage, VX_IMAGE_HEIGHT, &height, sizeof(vx_uint32));
if (status != VX_SUCCESS) return status;
// Intermediate images
vx_image
smoothed = vxCreateVirtualImage(graph, 0, 0, VX_DF_IMAGE_VIRT),
cannied = vxCreateVirtualImage(graph, 0, 0, VX_DF_IMAGE_VIRT),
halfImg = vxCreateImage(context, width, height, VX_DF_IMAGE_U8),
halfCanny = vxCreateImage(context, width, height, VX_DF_IMAGE_U8);
vx_image virtualImages[] = {smoothed, cannied, halfImg, halfCanny};
for(size_t i = 0; i < sizeof(virtualImages)/sizeof(vx_image); i++)
{
status = vxGetStatus((vx_reference)virtualImages[i]);
if (status != VX_SUCCESS) return status;
}
// Constants
vx_uint32 threshValue = 50;
vx_threshold thresh = vxCreateThreshold(context, VX_THRESHOLD_TYPE_BINARY, VX_TYPE_UINT8);
vxSetThresholdAttribute(thresh, VX_THRESHOLD_THRESHOLD_VALUE,
&threshValue, sizeof(threshValue));
vx_uint32 threshCannyMin = 127;
vx_uint32 threshCannyMax = 192;
vx_threshold threshCanny = vxCreateThreshold(context, VX_THRESHOLD_TYPE_RANGE, VX_TYPE_UINT8);
vxSetThresholdAttribute(threshCanny, VX_THRESHOLD_THRESHOLD_LOWER, &threshCannyMin,
sizeof(threshCannyMin));
vxSetThresholdAttribute(threshCanny, VX_THRESHOLD_THRESHOLD_UPPER, &threshCannyMax,
sizeof(threshCannyMax));
vx_float32 alphaValue = 0.5;
vx_scalar alpha = vxCreateScalar(context, VX_TYPE_FLOAT32, &alphaValue);
// Sequence of meaningless image operations
vx_node nodes[] = {
vxGaussian3x3Node(graph, inputImage, smoothed),
vxCannyEdgeDetectorNode(graph, smoothed, threshCanny, 3, VX_NORM_L2, cannied),
vxAccumulateWeightedImageNode(graph, inputImage, alpha, halfImg),
vxAccumulateWeightedImageNode(graph, cannied, alpha, halfCanny),
vxAddNode(graph, halfImg, halfCanny, VX_CONVERT_POLICY_SATURATE, outputImage)
};
for (size_t i = 0; i < sizeof(nodes) / sizeof(vx_node); i++)
{
status = vxGetStatus((vx_reference)nodes[i]);
if (status != VX_SUCCESS) return status;
}
status = vxVerifyGraph(graph);
return status;
}
int ovxDemo(std::string inputPath, UserMemoryMode mode)
{
cv::Mat image = cv::imread(inputPath, cv::IMREAD_GRAYSCALE);
if (image.empty()) return -1;
//check image format
if (image.depth() != CV_8U || image.channels() != 1) return -1;
vx_status status;
vx_context context = vxCreateContext();
status = vxGetStatus((vx_reference)context);
if (status != VX_SUCCESS) return status;
//put user data from cv::Mat to vx_image
vx_image ovxImage;
ovxImage = convertCvMatToVxImage(context, image, mode == COPY);
vx_uint32 width = image.cols, height = image.rows;
vx_image ovxResult;
cv::Mat output;
if (mode == COPY)
{
//we will copy data from vx_image to cv::Mat
ovxResult = vxCreateImage(context, width, height, VX_DF_IMAGE_U8);
if (vxGetStatus((vx_reference)ovxResult) != VX_SUCCESS)
throw std::runtime_error("Failed to create image");
}
else
{
//create vx_image based on user data, no copying required
output = cv::Mat(height, width, CV_8U, cv::Scalar(0));
ovxResult = convertCvMatToVxImage(context, output, false);
}
vx_graph graph;
status = createProcessingGraph(ovxImage, ovxResult, graph);
if (status != VX_SUCCESS) return status;
// Graph execution
status = vxProcessGraph(graph);
if (status != VX_SUCCESS) return status;
//getting resulting image in cv::Mat
if (mode == COPY)
{
output = copyVxImageToCvMat(ovxResult);
}
else
{
//we should take user memory back from vx_image before using it (even before reading)
swapVxImage(ovxResult);
}
//here output goes
cv::imshow("processing result", output);
cv::waitKey(0);
//we need to take user memory back before releasing the image
if (mode == USER_MEM)
swapVxImage(ovxImage);
cv::destroyAllWindows();
status = vxReleaseContext(&context);
return status;
}
int main(int argc, char *argv[])
{
const std::string keys =
"{help h usage ? | | }"
"{image | <none> | image to be processed}"
"{mode | copy | user memory interaction mode: \n"
"copy: create VX images and copy data to/from them\n"
"user_mem: use handles to user-allocated memory}"
;
cv::CommandLineParser parser(argc, argv, keys);
parser.about("OpenVX interoperability sample demonstrating standard OpenVX API."
"The application loads an image, processes it with OpenVX graph and outputs result in a window");
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
std::string imgPath = parser.get<std::string>("image");
std::string modeString = parser.get<std::string>("mode");
UserMemoryMode mode;
if(modeString == "copy")
{
mode = COPY;
}
else if(modeString == "user_mem")
{
mode = USER_MEM;
}
else if(modeString == "map")
{
std::cerr << modeString << " is not implemented in this sample" << std::endl;
return -1;
}
else
{
std::cerr << modeString << ": unknown memory mode" << std::endl;
return -1;
}
if (!parser.check())
{
parser.printErrors();
return -1;
}
return ovxDemo(imgPath, mode);
}

@ -0,0 +1,214 @@
#include <iostream>
#include <stdexcept>
//wrappers
#include "ivx.hpp"
//OpenCV includes
#include "opencv2/core.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
enum UserMemoryMode
{
COPY, USER_MEM, MAP
};
ivx::Graph createProcessingGraph(ivx::Image& inputImage, ivx::Image& outputImage);
int ovxDemo(std::string inputPath, UserMemoryMode mode);
ivx::Graph createProcessingGraph(ivx::Image& inputImage, ivx::Image& outputImage)
{
using namespace ivx;
Context context = inputImage.get<Context>();
Graph graph = Graph::create(context);
vx_uint32 width = inputImage.width();
vx_uint32 height = inputImage.height();
// Intermediate images
Image
smoothed = Image::createVirtual(graph),
cannied = Image::createVirtual(graph),
halfImg = Image::create(context, width, height, VX_DF_IMAGE_U8),
halfCanny = Image::create(context, width, height, VX_DF_IMAGE_U8);
// Constants
vx_uint32 threshCannyMin = 127;
vx_uint32 threshCannyMax = 192;
Threshold threshCanny = Threshold::createRange(context, VX_TYPE_UINT8, threshCannyMin, threshCannyMax);
ivx::Scalar alpha = ivx::Scalar::create<VX_TYPE_FLOAT32>(context, 0.5);
// Sequence of some image operations
// Node can also be added in function-like style
nodes::gaussian3x3(graph, inputImage, smoothed);
Node::create(graph, VX_KERNEL_CANNY_EDGE_DETECTOR, smoothed, threshCanny,
ivx::Scalar::create<VX_TYPE_INT32>(context, 3),
ivx::Scalar::create<VX_TYPE_ENUM>(context, VX_NORM_L2), cannied);
Node::create(graph, VX_KERNEL_ACCUMULATE_WEIGHTED, inputImage, alpha, halfImg);
Node::create(graph, VX_KERNEL_ACCUMULATE_WEIGHTED, cannied, alpha, halfCanny);
Node::create(graph, VX_KERNEL_ADD, halfImg, halfCanny,
ivx::Scalar::create<VX_TYPE_ENUM>(context, VX_CONVERT_POLICY_SATURATE), outputImage);
graph.verify();
return graph;
}
int ovxDemo(std::string inputPath, UserMemoryMode mode)
{
using namespace cv;
using namespace ivx;
Mat image = imread(inputPath, IMREAD_GRAYSCALE);
if (image.empty()) return -1;
//check image format
if (image.depth() != CV_8U || image.channels() != 1) return -1;
try
{
Context context = Context::create();
//put user data from cv::Mat to vx_image
vx_df_image color = Image::matTypeToFormat(image.type());
vx_uint32 width = image.cols, height = image.rows;
Image ivxImage;
if (mode == COPY)
{
ivxImage = Image::create(context, width, height, color);
ivxImage.copyFrom(0, image);
}
else
{
ivxImage = Image::createFromHandle(context, color, Image::createAddressing(image), image.data);
}
Image ivxResult;
Image::Patch resultPatch;
Mat output;
if (mode == COPY || mode == MAP)
{
//we will copy or map data from vx_image to cv::Mat
ivxResult = ivx::Image::create(context, width, height, VX_DF_IMAGE_U8);
}
else // if (mode == MAP_TO_VX)
{
//create vx_image based on user data, no copying required
output = cv::Mat(height, width, CV_8U, cv::Scalar(0));
ivxResult = Image::createFromHandle(context, Image::matTypeToFormat(CV_8U),
Image::createAddressing(output), output.data);
}
Graph graph = createProcessingGraph(ivxImage, ivxResult);
// Graph execution
graph.process();
//getting resulting image in cv::Mat
if (mode == COPY)
{
ivxResult.copyTo(0, output);
}
else if (mode == MAP)
{
//create cv::Mat based on vx_image mapped data
resultPatch.map(ivxResult, 0, ivxResult.getValidRegion());
//generally this is very bad idea!
//but in our case unmap() won't happen until output is in use
output = resultPatch.getMat();
}
else // if (mode == MAP_TO_VX)
{
#ifdef VX_VERSION_1_1
//we should take user memory back from vx_image before using it (even before reading)
ivxResult.swapHandle();
#endif
}
//here output goes
cv::imshow("processing result", output);
cv::waitKey(0);
cv::destroyAllWindows();
#ifdef VX_VERSION_1_1
if (mode != COPY)
{
//we should take user memory back before release
//(it's not done automatically according to standard)
ivxImage.swapHandle();
if (mode == USER_MEM) ivxResult.swapHandle();
}
#endif
//the line is unnecessary since unmapping is done on destruction of patch
//resultPatch.unmap();
}
catch (const ivx::RuntimeError& e)
{
std::cerr << "Error: code = " << e.status() << ", message = " << e.what() << std::endl;
return e.status();
}
catch (const ivx::WrapperError& e)
{
std::cerr << "Error: message = " << e.what() << std::endl;
return -1;
}
return 0;
}
int main(int argc, char *argv[])
{
const std::string keys =
"{help h usage ? | | }"
"{image | <none> | image to be processed}"
"{mode | copy | user memory interaction mode: \n"
"copy: create VX images and copy data to/from them\n"
"user_mem: use handles to user-allocated memory\n"
"map: map resulting VX image to user memory}"
;
cv::CommandLineParser parser(argc, argv, keys);
parser.about("OpenVX interoperability sample demonstrating OpenVX wrappers usage."
"The application loads an image, processes it with OpenVX graph and outputs result in a window");
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
std::string imgPath = parser.get<std::string>("image");
std::string modeString = parser.get<std::string>("mode");
UserMemoryMode mode;
if(modeString == "copy")
{
mode = COPY;
}
else if(modeString == "user_mem")
{
mode = USER_MEM;
}
else if(modeString == "map")
{
mode = MAP;
}
else
{
std::cerr << modeString << ": unknown memory mode" << std::endl;
return -1;
}
if (!parser.check())
{
parser.printErrors();
return -1;
}
return ovxDemo(imgPath, mode);
}

@ -0,0 +1,250 @@
#include <iostream>
#include <stdexcept>
//wrappers
#include "ivx.hpp"
//OpenCV includes
#include "opencv2/core.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/highgui.hpp"
enum UserMemoryMode
{
COPY, USER_MEM, MAP
};
ivx::Graph createProcessingGraph(ivx::Image& inputImage, ivx::Image& outputImage);
int ovxDemo(std::string inputPath, UserMemoryMode mode);
ivx::Graph createProcessingGraph(ivx::Image& inputImage, ivx::Image& outputImage)
{
using namespace ivx;
Context context = inputImage.get<Context>();
Graph graph = Graph::create(context);
vx_uint32 width = inputImage.width();
vx_uint32 height = inputImage.height();
// Intermediate images
Image
yuv = Image::createVirtual(graph, 0, 0, VX_DF_IMAGE_YUV4),
gray = Image::createVirtual(graph),
smoothed = Image::createVirtual(graph),
cannied = Image::createVirtual(graph),
halfImg = Image::create(context, width, height, VX_DF_IMAGE_U8),
halfCanny = Image::create(context, width, height, VX_DF_IMAGE_U8);
// Constants
vx_uint32 threshCannyMin = 127;
vx_uint32 threshCannyMax = 192;
Threshold threshCanny = Threshold::createRange(context, VX_TYPE_UINT8, threshCannyMin, threshCannyMax);
ivx::Scalar alpha = ivx::Scalar::create<VX_TYPE_FLOAT32>(context, 0.5);
// Sequence of some image operations
Node::create(graph, VX_KERNEL_COLOR_CONVERT, inputImage, yuv);
Node::create(graph, VX_KERNEL_CHANNEL_EXTRACT, yuv,
ivx::Scalar::create<VX_TYPE_ENUM>(context, VX_CHANNEL_Y), gray);
//node can also be added in function-like style
nodes::gaussian3x3(graph, gray, smoothed);
Node::create(graph, VX_KERNEL_CANNY_EDGE_DETECTOR, smoothed, threshCanny,
ivx::Scalar::create<VX_TYPE_INT32>(context, 3),
ivx::Scalar::create<VX_TYPE_ENUM>(context, VX_NORM_L2), cannied);
Node::create(graph, VX_KERNEL_ACCUMULATE_WEIGHTED, gray, alpha, halfImg);
Node::create(graph, VX_KERNEL_ACCUMULATE_WEIGHTED, cannied, alpha, halfCanny);
Node::create(graph, VX_KERNEL_ADD, halfImg, halfCanny,
ivx::Scalar::create<VX_TYPE_ENUM>(context, VX_CONVERT_POLICY_SATURATE), outputImage);
graph.verify();
return graph;
}
int ovxDemo(std::string inputPath, UserMemoryMode mode)
{
using namespace cv;
using namespace ivx;
Mat frame;
VideoCapture vc(inputPath);
if (!vc.isOpened())
return -1;
vc >> frame;
if (frame.empty()) return -1;
//check frame format
if (frame.type() != CV_8UC3) return -1;
try
{
Context context = Context::create();
//put user data from cv::Mat to vx_image
vx_df_image color = Image::matTypeToFormat(frame.type());
vx_uint32 width = frame.cols, height = frame.rows;
Image ivxImage;
if (mode == COPY)
{
ivxImage = Image::create(context, width, height, color);
}
else
{
ivxImage = Image::createFromHandle(context, color, Image::createAddressing(frame), frame.data);
}
Image ivxResult;
Mat output;
if (mode == COPY || mode == MAP)
{
//we will copy or map data from vx_image to cv::Mat
ivxResult = ivx::Image::create(context, width, height, VX_DF_IMAGE_U8);
}
else // if (mode == MAP_TO_VX)
{
//create vx_image based on user data, no copying required
output = cv::Mat(height, width, CV_8U, cv::Scalar(0));
ivxResult = Image::createFromHandle(context, Image::matTypeToFormat(CV_8U),
Image::createAddressing(output), output.data);
}
Graph graph = createProcessingGraph(ivxImage, ivxResult);
bool stop = false;
while (!stop)
{
if (mode == COPY) ivxImage.copyFrom(0, frame);
// Graph execution
graph.process();
//getting resulting image in cv::Mat
Image::Patch resultPatch;
std::vector<void*> ptrs;
std::vector<void*> prevPtrs(ivxResult.planes());
if (mode == COPY)
{
ivxResult.copyTo(0, output);
}
else if (mode == MAP)
{
//create cv::Mat based on vx_image mapped data
resultPatch.map(ivxResult, 0, ivxResult.getValidRegion(), VX_READ_AND_WRITE);
//generally this is very bad idea!
//but in our case unmap() won't happen until output is in use
output = resultPatch.getMat();
}
else // if(mode == MAP_TO_VX)
{
#ifdef VX_VERSION_1_1
//we should take user memory back from vx_image before using it (even before reading)
ivxResult.swapHandle(ptrs, prevPtrs);
#endif
}
//here output goes
imshow("press q to quit", output);
if ((char)waitKey(1) == 'q') stop = true;
#ifdef VX_VERSION_1_1
//restore handle
if (mode == USER_MEM)
{
ivxResult.swapHandle(prevPtrs, ptrs);
}
#endif
//this line is unnecessary since unmapping is done on destruction of patch
//resultPatch.unmap();
//grab next frame
Mat temp = frame;
vc >> frame;
if (frame.empty()) stop = true;
if (mode != COPY && frame.data != temp.data)
{
//frame was reallocated, pointer to data changed
frame.copyTo(temp);
}
}
destroyAllWindows();
#ifdef VX_VERSION_1_1
if (mode != COPY)
{
//we should take user memory back before release
//(it's not done automatically according to standard)
ivxImage.swapHandle();
if (mode == USER_MEM) ivxResult.swapHandle();
}
#endif
}
catch (const ivx::RuntimeError& e)
{
std::cerr << "Error: code = " << e.status() << ", message = " << e.what() << std::endl;
return e.status();
}
catch (const ivx::WrapperError& e)
{
std::cerr << "Error: message = " << e.what() << std::endl;
return -1;
}
return 0;
}
int main(int argc, char *argv[])
{
const std::string keys =
"{help h usage ? | | }"
"{video | <none> | video file to be processed}"
"{mode | copy | user memory interaction mode: \n"
"copy: create VX images and copy data to/from them\n"
"user_mem: use handles to user-allocated memory\n"
"map: map resulting VX image to user memory}"
;
cv::CommandLineParser parser(argc, argv, keys);
parser.about("OpenVX interoperability sample demonstrating OpenVX wrappers usage."
"The application opens a video and processes it with OpenVX graph while outputting result in a window");
if (parser.has("help"))
{
parser.printMessage();
return 0;
}
std::string videoPath = parser.get<std::string>("video");
std::string modeString = parser.get<std::string>("mode");
UserMemoryMode mode;
if(modeString == "copy")
{
mode = COPY;
}
else if(modeString == "user_mem")
{
mode = USER_MEM;
}
else if(modeString == "map")
{
mode = MAP;
}
else
{
std::cerr << modeString << ": unknown memory mode" << std::endl;
return -1;
}
if (!parser.check())
{
parser.printErrors();
return -1;
}
return ovxDemo(videoPath, mode);
}
Loading…
Cancel
Save