diff --git a/doc/opencv_cheatsheet.pdf b/doc/opencv_cheatsheet.pdf index 3118199073..ca763b0b83 100644 Binary files a/doc/opencv_cheatsheet.pdf and b/doc/opencv_cheatsheet.pdf differ diff --git a/doc/opencv_cheatsheet.tex b/doc/opencv_cheatsheet.tex index 09ebeeb317..a7482fdf54 100644 --- a/doc/opencv_cheatsheet.tex +++ b/doc/opencv_cheatsheet.tex @@ -204,9 +204,8 @@ \> \texttt{IplImage oldC1 = newC; CvMat oldC2 = newC;}\\ \textbf{... (with copying the data)}\\ -\> \texttt{Mat image\_copy = image.clone();}\\ -\> \texttt{Mat P(10, 1, CV\_32FC2, Scalar(1, 1));}\\ -\> \texttt{vector ptvec = Mat\_(P);}\\ +\> \texttt{Mat newC2 = cvarrToMat(oldC0).clone();}\\ +\> \texttt{vector ptvec = Mat\_(iP);}\\ \>\\ \textbf{Access matrix elements}\\ @@ -387,7 +386,7 @@ implements the core of Levenberg-Marquardt optimization algorithm. \end{tabular} \begin{tabbing} -Exa\=mple. Filter image in-place with a 3x3 high-pass filter\\ +Exa\=mple. Filter image in-place with a 3x3 high-pass kernel\\ \> (preserve negative responses by shifting the result by 128):\\ \texttt{filter2D(image, image, image.depth(), (Mat\_(3,3)<<}\\ \> \texttt{-1, -1, -1, -1, 9, -1, -1, -1, -1), Point(1,1), 128);}\\