mirror of https://github.com/opencv/opencv.git
Merge pull request #2034 from pentschev:ocl_features2d_orb_master
commit
80816f68f3
9 changed files with 1940 additions and 0 deletions
@ -0,0 +1,103 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
// Authors:
|
||||
// * Peter Andreas Entschev, peter@entschev.com
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "perf_precomp.hpp" |
||||
|
||||
using namespace perf; |
||||
|
||||
/////////////////// ORB ///////////////////
|
||||
|
||||
typedef std::tr1::tuple<std::string, int> Image_NFeatures_t; |
||||
typedef perf::TestBaseWithParam<Image_NFeatures_t> Image_NFeatures; |
||||
|
||||
PERF_TEST_P(Image_NFeatures, ORB, |
||||
testing::Combine(testing::Values<string>("gpu/perf/aloe.png"), |
||||
testing::Values(4000))) |
||||
{ |
||||
declare.time(300.0); |
||||
|
||||
const Image_NFeatures_t params = GetParam(); |
||||
const std::string imgFile = std::tr1::get<0>(params); |
||||
const int nFeatures = std::tr1::get<1>(params); |
||||
|
||||
const cv::Mat img = imread(getDataPath(imgFile), cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(img.empty()); |
||||
|
||||
if (RUN_OCL_IMPL) |
||||
{ |
||||
cv::ocl::ORB_OCL d_orb(nFeatures); |
||||
|
||||
const cv::ocl::oclMat d_img(img); |
||||
cv::ocl::oclMat d_keypoints, d_descriptors; |
||||
|
||||
TEST_CYCLE() d_orb(d_img, cv::ocl::oclMat(), d_keypoints, d_descriptors); |
||||
|
||||
std::vector<cv::KeyPoint> ocl_keypoints; |
||||
d_orb.downloadKeyPoints(d_keypoints, ocl_keypoints); |
||||
|
||||
cv::Mat ocl_descriptors(d_descriptors); |
||||
|
||||
ocl_keypoints.resize(10); |
||||
ocl_descriptors = ocl_descriptors.rowRange(0, 10); |
||||
|
||||
sortKeyPoints(ocl_keypoints, ocl_descriptors); |
||||
|
||||
SANITY_CHECK_KEYPOINTS(ocl_keypoints, 1e-4); |
||||
SANITY_CHECK(ocl_descriptors); |
||||
} |
||||
else if (RUN_PLAIN_IMPL) |
||||
{ |
||||
cv::ORB orb(nFeatures); |
||||
|
||||
std::vector<cv::KeyPoint> cpu_keypoints; |
||||
cv::Mat cpu_descriptors; |
||||
|
||||
TEST_CYCLE() orb(img, cv::noArray(), cpu_keypoints, cpu_descriptors); |
||||
|
||||
SANITY_CHECK_KEYPOINTS(cpu_keypoints); |
||||
SANITY_CHECK(cpu_descriptors); |
||||
} |
||||
else |
||||
OCL_PERF_ELSE; |
||||
} |
@ -0,0 +1,503 @@ |
||||
/*M/////////////////////////////////////////////////////////////////////////////////////// |
||||
// |
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. |
||||
// |
||||
// By downloading, copying, installing or using the software you agree to this license. |
||||
// If you do not agree to this license, do not download, install, |
||||
// copy or use the software. |
||||
// |
||||
// |
||||
// License Agreement |
||||
// For Open Source Computer Vision Library |
||||
// |
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved. |
||||
// Third party copyrights are property of their respective owners. |
||||
// |
||||
// Redistribution and use in source and binary forms, with or without modification, |
||||
// are permitted provided that the following conditions are met: |
||||
// |
||||
// * Redistribution's of source code must retain the above copyright notice, |
||||
// this list of conditions and the following disclaimer. |
||||
// |
||||
// * Redistribution's in binary form must reproduce the above copyright notice, |
||||
// this list of conditions and the following disclaimer in the documentation |
||||
// and/or other materials provided with the distribution. |
||||
// |
||||
// * The name of the copyright holders may not be used to endorse or promote products |
||||
// derived from this software without specific prior written permission. |
||||
// |
||||
// This software is provided by the copyright holders and contributors "as is" and |
||||
// any express or implied warranties, including, but not limited to, the implied |
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed. |
||||
// In no event shall the Intel Corporation or contributors be liable for any direct, |
||||
// indirect, incidental, special, exemplary, or consequential damages |
||||
// (including, but not limited to, procurement of substitute goods or services; |
||||
// loss of use, data, or profits; or business interruption) however caused |
||||
// and on any theory of liability, whether in contract, strict liability, |
||||
// or tort (including negligence or otherwise) arising in any way out of |
||||
// the use of this software, even if advised of the possibility of such damage. |
||||
// |
||||
// Authors: |
||||
// * Peter Andreas Entschev, peter@entschev.com |
||||
// |
||||
//M*/ |
||||
|
||||
#ifdef DOUBLE_SUPPORT |
||||
#ifdef cl_amd_fp64 |
||||
#pragma OPENCL EXTENSION cl_amd_fp64:enable |
||||
#elif defined (cl_khr_fp64) |
||||
#pragma OPENCL EXTENSION cl_khr_fp64:enable |
||||
#endif |
||||
#define CV_PI M_PI |
||||
#else |
||||
#define CV_PI M_PI_F |
||||
#endif |
||||
|
||||
#define X_ROW 0 |
||||
#define Y_ROW 1 |
||||
#define RESPONSE_ROW 2 |
||||
#define ANGLE_ROW 3 |
||||
#define OCTAVE_ROW 4 |
||||
#define SIZE_ROW 5 |
||||
#define ROWS_COUNT 6 |
||||
|
||||
|
||||
#ifdef CPU |
||||
void reduce_32(volatile __local int* smem, volatile int* val, int tid) |
||||
{ |
||||
#define op(A, B) (*A)+(B) |
||||
|
||||
smem[tid] = *val; |
||||
barrier(CLK_LOCAL_MEM_FENCE); |
||||
|
||||
for(int i = 16; i > 0; i >>= 1) |
||||
{ |
||||
if(tid < i) |
||||
{ |
||||
smem[tid] = *val = op(val, smem[tid + i]); |
||||
} |
||||
barrier(CLK_LOCAL_MEM_FENCE); |
||||
} |
||||
#undef op |
||||
} |
||||
#else |
||||
void reduce_32(volatile __local int* smem, volatile int* val, int tid) |
||||
{ |
||||
#define op(A, B) (*A)+(B) |
||||
|
||||
smem[tid] = *val; |
||||
barrier(CLK_LOCAL_MEM_FENCE); |
||||
|
||||
#ifndef WAVE_SIZE |
||||
#define WAVE_SIZE 1 |
||||
#endif |
||||
if (tid < 16) |
||||
{ |
||||
smem[tid] = *val = op(val, smem[tid + 16]); |
||||
#if WAVE_SIZE < 16 |
||||
} |
||||
barrier(CLK_LOCAL_MEM_FENCE); |
||||
if (tid < 8) |
||||
{ |
||||
#endif |
||||
smem[tid] = *val = op(val, smem[tid + 8]); |
||||
#if WAVE_SIZE < 8 |
||||
} |
||||
barrier(CLK_LOCAL_MEM_FENCE); |
||||
if (tid < 4) |
||||
{ |
||||
#endif |
||||
smem[tid] = *val = op(val, smem[tid + 4]); |
||||
#if WAVE_SIZE < 4 |
||||
} |
||||
barrier(CLK_LOCAL_MEM_FENCE); |
||||
if (tid < 2) |
||||
{ |
||||
#endif |
||||
smem[tid] = *val = op(val, smem[tid + 2]); |
||||
#if WAVE_SIZE < 2 |
||||
} |
||||
barrier(CLK_LOCAL_MEM_FENCE); |
||||
if (tid < 1) |
||||
{ |
||||
#endif |
||||
smem[tid] = *val = op(val, smem[tid + 1]); |
||||
} |
||||
#undef WAVE_SIZE |
||||
#undef op |
||||
} |
||||
#endif |
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////// |
||||
// HarrisResponses |
||||
|
||||
__kernel |
||||
void HarrisResponses(__global const uchar* img, |
||||
__global float* keypoints, |
||||
const int npoints, |
||||
const int blockSize, |
||||
const float harris_k, |
||||
const int img_step, |
||||
const int keypoints_step) |
||||
{ |
||||
__local int smem0[8 * 32]; |
||||
__local int smem1[8 * 32]; |
||||
__local int smem2[8 * 32]; |
||||
|
||||
const int ptidx = mad24(get_group_id(0), get_local_size(1), get_local_id(1)); |
||||
|
||||
if (ptidx < npoints) |
||||
{ |
||||
const int pt_x = keypoints[mad24(keypoints_step, X_ROW, ptidx)]; |
||||
const int pt_y = keypoints[mad24(keypoints_step, Y_ROW, ptidx)]; |
||||
|
||||
const int r = blockSize / 2; |
||||
const int x0 = pt_x - r; |
||||
const int y0 = pt_y - r; |
||||
|
||||
int a = 0, b = 0, c = 0; |
||||
|
||||
for (int ind = get_local_id(0); ind < blockSize * blockSize; ind += get_local_size(0)) |
||||
{ |
||||
const int i = ind / blockSize; |
||||
const int j = ind % blockSize; |
||||
|
||||
int center = mad24(y0+i, img_step, x0+j); |
||||
|
||||
int Ix = (img[center+1] - img[center-1]) * 2 + |
||||
(img[center-img_step+1] - img[center-img_step-1]) + |
||||
(img[center+img_step+1] - img[center+img_step-1]); |
||||
|
||||
int Iy = (img[center+img_step] - img[center-img_step]) * 2 + |
||||
(img[center+img_step-1] - img[center-img_step-1]) + |
||||
(img[center+img_step+1] - img[center-img_step+1]); |
||||
|
||||
a += Ix * Ix; |
||||
b += Iy * Iy; |
||||
c += Ix * Iy; |
||||
} |
||||
|
||||
__local int* srow0 = smem0 + get_local_id(1) * get_local_size(0); |
||||
__local int* srow1 = smem1 + get_local_id(1) * get_local_size(0); |
||||
__local int* srow2 = smem2 + get_local_id(1) * get_local_size(0); |
||||
|
||||
reduce_32(srow0, &a, get_local_id(0)); |
||||
reduce_32(srow1, &b, get_local_id(0)); |
||||
reduce_32(srow2, &c, get_local_id(0)); |
||||
|
||||
if (get_local_id(0) == 0) |
||||
{ |
||||
float scale = (1 << 2) * blockSize * 255.0f; |
||||
scale = 1.0f / scale; |
||||
const float scale_sq_sq = scale * scale * scale * scale; |
||||
|
||||
float response = ((float)a * b - (float)c * c - harris_k * ((float)a + b) * ((float)a + b)) * scale_sq_sq; |
||||
keypoints[mad24(keypoints_step, RESPONSE_ROW, ptidx)] = response; |
||||
} |
||||
} |
||||
} |
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////// |
||||
// IC_Angle |
||||
|
||||
__kernel |
||||
void IC_Angle(__global const uchar* img, |
||||
__global float* keypoints_, |
||||
__global const int* u_max, |
||||
const int npoints, |
||||
const int half_k, |
||||
const int img_step, |
||||
const int keypoints_step) |
||||
{ |
||||
__local int smem0[8 * 32]; |
||||
__local int smem1[8 * 32]; |
||||
|
||||
__local int* srow0 = smem0 + get_local_id(1) * get_local_size(0); |
||||
__local int* srow1 = smem1 + get_local_id(1) * get_local_size(0); |
||||
|
||||
const int ptidx = mad24(get_group_id(0), get_local_size(1), get_local_id(1)); |
||||
|
||||
if (ptidx < npoints) |
||||
{ |
||||
int m_01 = 0, m_10 = 0; |
||||
|
||||
const int pt_x = keypoints_[mad24(keypoints_step, X_ROW, ptidx)]; |
||||
const int pt_y = keypoints_[mad24(keypoints_step, Y_ROW, ptidx)]; |
||||
|
||||
// Treat the center line differently, v=0 |
||||
for (int u = get_local_id(0) - half_k; u <= half_k; u += get_local_size(0)) |
||||
m_10 += u * img[mad24(pt_y, img_step, pt_x+u)]; |
||||
|
||||
reduce_32(srow0, &m_10, get_local_id(0)); |
||||
|
||||
for (int v = 1; v <= half_k; ++v) |
||||
{ |
||||
// Proceed over the two lines |
||||
int v_sum = 0; |
||||
int m_sum = 0; |
||||
const int d = u_max[v]; |
||||
|
||||
for (int u = get_local_id(0) - d; u <= d; u += get_local_size(0)) |
||||
{ |
||||
int val_plus = img[mad24(pt_y+v, img_step, pt_x+u)]; |
||||
int val_minus = img[mad24(pt_y-v, img_step, pt_x+u)]; |
||||
|
||||
v_sum += (val_plus - val_minus); |
||||
m_sum += u * (val_plus + val_minus); |
||||
} |
||||
|
||||
reduce_32(srow0, &v_sum, get_local_id(0)); |
||||
reduce_32(srow1, &m_sum, get_local_id(0)); |
||||
|
||||
m_10 += m_sum; |
||||
m_01 += v * v_sum; |
||||
} |
||||
|
||||
if (get_local_id(0) == 0) |
||||
{ |
||||
float kp_dir = atan2((float)m_01, (float)m_10); |
||||
kp_dir += (kp_dir < 0) * (2.0f * CV_PI); |
||||
kp_dir *= 180.0f / CV_PI; |
||||
|
||||
keypoints_[mad24(keypoints_step, ANGLE_ROW, ptidx)] = kp_dir; |
||||
} |
||||
} |
||||
} |
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////// |
||||
// computeOrbDescriptor |
||||
|
||||
#define GET_VALUE(idx) \ |
||||
img[mad24(loc.y + (int)round(pattern[idx] * sina + pattern[pattern_step+idx] * cosa), img_step, \ |
||||
loc.x + (int)round(pattern[idx] * cosa - pattern[pattern_step+idx] * sina))] |
||||
|
||||
int calcOrbDescriptor_2(__global const uchar* img, |
||||
__global const int* pattern, |
||||
const int2 loc, |
||||
const float sina, |
||||
const float cosa, |
||||
const int i, |
||||
const int img_step, |
||||
const int pattern_step) |
||||
{ |
||||
pattern += 16 * i; |
||||
|
||||
int t0, t1, val; |
||||
|
||||
t0 = GET_VALUE(0); t1 = GET_VALUE(1); |
||||
val = t0 < t1; |
||||
|
||||
t0 = GET_VALUE(2); t1 = GET_VALUE(3); |
||||
val |= (t0 < t1) << 1; |
||||
|
||||
t0 = GET_VALUE(4); t1 = GET_VALUE(5); |
||||
val |= (t0 < t1) << 2; |
||||
|
||||
t0 = GET_VALUE(6); t1 = GET_VALUE(7); |
||||
val |= (t0 < t1) << 3; |
||||
|
||||
t0 = GET_VALUE(8); t1 = GET_VALUE(9); |
||||
val |= (t0 < t1) << 4; |
||||
|
||||
t0 = GET_VALUE(10); t1 = GET_VALUE(11); |
||||
val |= (t0 < t1) << 5; |
||||
|
||||
t0 = GET_VALUE(12); t1 = GET_VALUE(13); |
||||
val |= (t0 < t1) << 6; |
||||
|
||||
t0 = GET_VALUE(14); t1 = GET_VALUE(15); |
||||
val |= (t0 < t1) << 7; |
||||
|
||||
return val; |
||||
} |
||||
|
||||
int calcOrbDescriptor_3(__global const uchar* img, |
||||
__global const int* pattern, |
||||
const int2 loc, |
||||
const float sina, |
||||
const float cosa, |
||||
const int i, |
||||
const int img_step, |
||||
const int pattern_step) |
||||
{ |
||||
pattern += 12 * i; |
||||
|
||||
int t0, t1, t2, val; |
||||
|
||||
t0 = GET_VALUE(0); t1 = GET_VALUE(1); t2 = GET_VALUE(2); |
||||
val = t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0); |
||||
|
||||
t0 = GET_VALUE(3); t1 = GET_VALUE(4); t2 = GET_VALUE(5); |
||||
val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 2; |
||||
|
||||
t0 = GET_VALUE(6); t1 = GET_VALUE(7); t2 = GET_VALUE(8); |
||||
val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 4; |
||||
|
||||
t0 = GET_VALUE(9); t1 = GET_VALUE(10); t2 = GET_VALUE(11); |
||||
val |= (t2 > t1 ? (t2 > t0 ? 2 : 0) : (t1 > t0)) << 6; |
||||
|
||||
return val; |
||||
} |
||||
|
||||
int calcOrbDescriptor_4(__global const uchar* img, |
||||
__global const int* pattern, |
||||
const int2 loc, |
||||
const float sina, |
||||
const float cosa, |
||||
const int i, |
||||
const int img_step, |
||||
const int pattern_step) |
||||
{ |
||||
pattern += 16 * i; |
||||
|
||||
int t0, t1, t2, t3, k, val; |
||||
int a, b; |
||||
|
||||
t0 = GET_VALUE(0); t1 = GET_VALUE(1); |
||||
t2 = GET_VALUE(2); t3 = GET_VALUE(3); |
||||
a = 0, b = 2; |
||||
if( t1 > t0 ) t0 = t1, a = 1; |
||||
if( t3 > t2 ) t2 = t3, b = 3; |
||||
k = t0 > t2 ? a : b; |
||||
val = k; |
||||
|
||||
t0 = GET_VALUE(4); t1 = GET_VALUE(5); |
||||
t2 = GET_VALUE(6); t3 = GET_VALUE(7); |
||||
a = 0, b = 2; |
||||
if( t1 > t0 ) t0 = t1, a = 1; |
||||
if( t3 > t2 ) t2 = t3, b = 3; |
||||
k = t0 > t2 ? a : b; |
||||
val |= k << 2; |
||||
|
||||
t0 = GET_VALUE(8); t1 = GET_VALUE(9); |
||||
t2 = GET_VALUE(10); t3 = GET_VALUE(11); |
||||
a = 0, b = 2; |
||||
if( t1 > t0 ) t0 = t1, a = 1; |
||||
if( t3 > t2 ) t2 = t3, b = 3; |
||||
k = t0 > t2 ? a : b; |
||||
val |= k << 4; |
||||
|
||||
t0 = GET_VALUE(12); t1 = GET_VALUE(13); |
||||
t2 = GET_VALUE(14); t3 = GET_VALUE(15); |
||||
a = 0, b = 2; |
||||
if( t1 > t0 ) t0 = t1, a = 1; |
||||
if( t3 > t2 ) t2 = t3, b = 3; |
||||
k = t0 > t2 ? a : b; |
||||
val |= k << 6; |
||||
|
||||
return val; |
||||
} |
||||
|
||||
#undef GET_VALUE |
||||
|
||||
__kernel |
||||
void computeOrbDescriptor(__global const uchar* img, |
||||
__global const float* keypoints, |
||||
__global const int* pattern, |
||||
__global uchar* desc, |
||||
const int npoints, |
||||
const int dsize, |
||||
const int WTA_K, |
||||
const int offset, |
||||
const int img_step, |
||||
const int keypoints_step, |
||||
const int pattern_step, |
||||
const int desc_step) |
||||
{ |
||||
const int descidx = mad24(get_group_id(0), get_local_size(0), get_local_id(0)); |
||||
const int ptidx = mad24(get_group_id(1), get_local_size(1), get_local_id(1)); |
||||
|
||||
if (ptidx < npoints && descidx < dsize) |
||||
{ |
||||
int2 loc = {(int)keypoints[mad24(keypoints_step, X_ROW, ptidx)], |
||||
(int)keypoints[mad24(keypoints_step, Y_ROW, ptidx)]}; |
||||
|
||||
float angle = keypoints[mad24(keypoints_step, ANGLE_ROW, ptidx)]; |
||||
angle *= (float)(CV_PI / 180.f); |
||||
|
||||
float sina = sin(angle); |
||||
float cosa = cos(angle); |
||||
|
||||
if (WTA_K == 2) |
||||
desc[mad24(ptidx+offset, desc_step, descidx)] = calcOrbDescriptor_2(img, pattern, loc, sina, cosa, descidx, img_step, pattern_step); |
||||
else if (WTA_K == 3) |
||||
desc[mad24(ptidx+offset, desc_step, descidx)] = calcOrbDescriptor_3(img, pattern, loc, sina, cosa, descidx, img_step, pattern_step); |
||||
else if (WTA_K == 4) |
||||
desc[mad24(ptidx+offset, desc_step, descidx)] = calcOrbDescriptor_4(img, pattern, loc, sina, cosa, descidx, img_step, pattern_step); |
||||
} |
||||
} |
||||
|
||||
//////////////////////////////////////////////////////////////////////////////////////////////////////// |
||||
// mergeLocation |
||||
|
||||
__kernel |
||||
void mergeLocation(__global const float* keypoints_in, |
||||
__global float* keypoints_out, |
||||
const int npoints, |
||||
const int offset, |
||||
const float scale, |
||||
const int octave, |
||||
const float size, |
||||
const int keypoints_in_step, |
||||
const int keypoints_out_step) |
||||
{ |
||||
//const int ptidx = blockIdx.x * blockDim.x + threadIdx.x; |
||||
const int ptidx = mad24(get_group_id(0), get_local_size(0), get_local_id(0)); |
||||
|
||||
if (ptidx < npoints) |
||||
{ |
||||
float pt_x = keypoints_in[mad24(keypoints_in_step, X_ROW, ptidx)] * scale; |
||||
float pt_y = keypoints_in[mad24(keypoints_in_step, Y_ROW, ptidx)] * scale; |
||||
float response = keypoints_in[mad24(keypoints_in_step, RESPONSE_ROW, ptidx)]; |
||||
float angle = keypoints_in[mad24(keypoints_in_step, ANGLE_ROW, ptidx)]; |
||||
|
||||
keypoints_out[mad24(keypoints_out_step, X_ROW, ptidx+offset)] = pt_x; |
||||
keypoints_out[mad24(keypoints_out_step, Y_ROW, ptidx+offset)] = pt_y; |
||||
keypoints_out[mad24(keypoints_out_step, RESPONSE_ROW, ptidx+offset)] = response; |
||||
keypoints_out[mad24(keypoints_out_step, ANGLE_ROW, ptidx+offset)] = angle; |
||||
keypoints_out[mad24(keypoints_out_step, OCTAVE_ROW, ptidx+offset)] = (float)octave; |
||||
keypoints_out[mad24(keypoints_out_step, SIZE_ROW, ptidx+offset)] = size; |
||||
} |
||||
} |
||||
|
||||
__kernel |
||||
void convertRowsToChannels(__global const float* keypoints_in, |
||||
__global float* keypoints_out, |
||||
const int npoints, |
||||
const int keypoints_in_step, |
||||
const int keypoints_out_step) |
||||
{ |
||||
const int ptidx = mad24(get_group_id(0), get_local_size(0), get_local_id(0)); |
||||
|
||||
if (ptidx < npoints) |
||||
{ |
||||
const int pt_x = keypoints_in[mad24(keypoints_in_step, X_ROW, ptidx)]; |
||||
const int pt_y = keypoints_in[mad24(keypoints_in_step, Y_ROW, ptidx)]; |
||||
|
||||
keypoints_out[ptidx*2] = pt_x; |
||||
keypoints_out[ptidx*2+1] = pt_y; |
||||
} |
||||
} |
||||
|
||||
__kernel |
||||
void convertChannelsToRows(__global const float* keypoints_pos, |
||||
__global const float* keypoints_resp, |
||||
__global float* keypoints_out, |
||||
const int npoints, |
||||
const int keypoints_pos_step, |
||||
const int keypoints_resp_step, |
||||
const int keypoints_out_step) |
||||
{ |
||||
const int ptidx = mad24(get_group_id(0), get_local_size(0), get_local_id(0)); |
||||
|
||||
if (ptidx < npoints) |
||||
{ |
||||
const float pt_x = keypoints_pos[ptidx*2]; |
||||
const float pt_y = keypoints_pos[ptidx*2+1]; |
||||
const float resp = keypoints_resp[ptidx]; |
||||
|
||||
keypoints_out[mad24(keypoints_out_step, X_ROW, ptidx)] = pt_x; |
||||
keypoints_out[mad24(keypoints_out_step, Y_ROW, ptidx)] = pt_y; |
||||
keypoints_out[mad24(keypoints_out_step, RESPONSE_ROW, ptidx)] = resp; |
||||
} |
||||
} |
@ -0,0 +1,916 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
// Authors:
|
||||
// * Peter Andreas Entschev, peter@entschev.com
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp" |
||||
#include "opencl_kernels.hpp" |
||||
|
||||
using namespace cv; |
||||
using namespace cv::ocl; |
||||
|
||||
namespace |
||||
{ |
||||
const float HARRIS_K = 0.04f; |
||||
const int DESCRIPTOR_SIZE = 32; |
||||
|
||||
const int bit_pattern_31_[256 * 4] = |
||||
{ |
||||
8,-3, 9,5/*mean (0), correlation (0)*/, |
||||
4,2, 7,-12/*mean (1.12461e-05), correlation (0.0437584)*/, |
||||
-11,9, -8,2/*mean (3.37382e-05), correlation (0.0617409)*/, |
||||
7,-12, 12,-13/*mean (5.62303e-05), correlation (0.0636977)*/, |
||||
2,-13, 2,12/*mean (0.000134953), correlation (0.085099)*/, |
||||
1,-7, 1,6/*mean (0.000528565), correlation (0.0857175)*/, |
||||
-2,-10, -2,-4/*mean (0.0188821), correlation (0.0985774)*/, |
||||
-13,-13, -11,-8/*mean (0.0363135), correlation (0.0899616)*/, |
||||
-13,-3, -12,-9/*mean (0.121806), correlation (0.099849)*/, |
||||
10,4, 11,9/*mean (0.122065), correlation (0.093285)*/, |
||||
-13,-8, -8,-9/*mean (0.162787), correlation (0.0942748)*/, |
||||
-11,7, -9,12/*mean (0.21561), correlation (0.0974438)*/, |
||||
7,7, 12,6/*mean (0.160583), correlation (0.130064)*/, |
||||
-4,-5, -3,0/*mean (0.228171), correlation (0.132998)*/, |
||||
-13,2, -12,-3/*mean (0.00997526), correlation (0.145926)*/, |
||||
-9,0, -7,5/*mean (0.198234), correlation (0.143636)*/, |
||||
12,-6, 12,-1/*mean (0.0676226), correlation (0.16689)*/, |
||||
-3,6, -2,12/*mean (0.166847), correlation (0.171682)*/, |
||||
-6,-13, -4,-8/*mean (0.101215), correlation (0.179716)*/, |
||||
11,-13, 12,-8/*mean (0.200641), correlation (0.192279)*/, |
||||
4,7, 5,1/*mean (0.205106), correlation (0.186848)*/, |
||||
5,-3, 10,-3/*mean (0.234908), correlation (0.192319)*/, |
||||
3,-7, 6,12/*mean (0.0709964), correlation (0.210872)*/, |
||||
-8,-7, -6,-2/*mean (0.0939834), correlation (0.212589)*/, |
||||
-2,11, -1,-10/*mean (0.127778), correlation (0.20866)*/, |
||||
-13,12, -8,10/*mean (0.14783), correlation (0.206356)*/, |
||||
-7,3, -5,-3/*mean (0.182141), correlation (0.198942)*/, |
||||
-4,2, -3,7/*mean (0.188237), correlation (0.21384)*/, |
||||
-10,-12, -6,11/*mean (0.14865), correlation (0.23571)*/, |
||||
5,-12, 6,-7/*mean (0.222312), correlation (0.23324)*/, |
||||
5,-6, 7,-1/*mean (0.229082), correlation (0.23389)*/, |
||||
1,0, 4,-5/*mean (0.241577), correlation (0.215286)*/, |
||||
9,11, 11,-13/*mean (0.00338507), correlation (0.251373)*/, |
||||
4,7, 4,12/*mean (0.131005), correlation (0.257622)*/, |
||||
2,-1, 4,4/*mean (0.152755), correlation (0.255205)*/, |
||||
-4,-12, -2,7/*mean (0.182771), correlation (0.244867)*/, |
||||
-8,-5, -7,-10/*mean (0.186898), correlation (0.23901)*/, |
||||
4,11, 9,12/*mean (0.226226), correlation (0.258255)*/, |
||||
0,-8, 1,-13/*mean (0.0897886), correlation (0.274827)*/, |
||||
-13,-2, -8,2/*mean (0.148774), correlation (0.28065)*/, |
||||
-3,-2, -2,3/*mean (0.153048), correlation (0.283063)*/, |
||||
-6,9, -4,-9/*mean (0.169523), correlation (0.278248)*/, |
||||
8,12, 10,7/*mean (0.225337), correlation (0.282851)*/, |
||||
0,9, 1,3/*mean (0.226687), correlation (0.278734)*/, |
||||
7,-5, 11,-10/*mean (0.00693882), correlation (0.305161)*/, |
||||
-13,-6, -11,0/*mean (0.0227283), correlation (0.300181)*/, |
||||
10,7, 12,1/*mean (0.125517), correlation (0.31089)*/, |
||||
-6,-3, -6,12/*mean (0.131748), correlation (0.312779)*/, |
||||
10,-9, 12,-4/*mean (0.144827), correlation (0.292797)*/, |
||||
-13,8, -8,-12/*mean (0.149202), correlation (0.308918)*/, |
||||
-13,0, -8,-4/*mean (0.160909), correlation (0.310013)*/, |
||||
3,3, 7,8/*mean (0.177755), correlation (0.309394)*/, |
||||
5,7, 10,-7/*mean (0.212337), correlation (0.310315)*/, |
||||
-1,7, 1,-12/*mean (0.214429), correlation (0.311933)*/, |
||||
3,-10, 5,6/*mean (0.235807), correlation (0.313104)*/, |
||||
2,-4, 3,-10/*mean (0.00494827), correlation (0.344948)*/, |
||||
-13,0, -13,5/*mean (0.0549145), correlation (0.344675)*/, |
||||
-13,-7, -12,12/*mean (0.103385), correlation (0.342715)*/, |
||||
-13,3, -11,8/*mean (0.134222), correlation (0.322922)*/, |
||||
-7,12, -4,7/*mean (0.153284), correlation (0.337061)*/, |
||||
6,-10, 12,8/*mean (0.154881), correlation (0.329257)*/, |
||||
-9,-1, -7,-6/*mean (0.200967), correlation (0.33312)*/, |
||||
-2,-5, 0,12/*mean (0.201518), correlation (0.340635)*/, |
||||
-12,5, -7,5/*mean (0.207805), correlation (0.335631)*/, |
||||
3,-10, 8,-13/*mean (0.224438), correlation (0.34504)*/, |
||||
-7,-7, -4,5/*mean (0.239361), correlation (0.338053)*/, |
||||
-3,-2, -1,-7/*mean (0.240744), correlation (0.344322)*/, |
||||
2,9, 5,-11/*mean (0.242949), correlation (0.34145)*/, |
||||
-11,-13, -5,-13/*mean (0.244028), correlation (0.336861)*/, |
||||
-1,6, 0,-1/*mean (0.247571), correlation (0.343684)*/, |
||||
5,-3, 5,2/*mean (0.000697256), correlation (0.357265)*/, |
||||
-4,-13, -4,12/*mean (0.00213675), correlation (0.373827)*/, |
||||
-9,-6, -9,6/*mean (0.0126856), correlation (0.373938)*/, |
||||
-12,-10, -8,-4/*mean (0.0152497), correlation (0.364237)*/, |
||||
10,2, 12,-3/*mean (0.0299933), correlation (0.345292)*/, |
||||
7,12, 12,12/*mean (0.0307242), correlation (0.366299)*/, |
||||
-7,-13, -6,5/*mean (0.0534975), correlation (0.368357)*/, |
||||
-4,9, -3,4/*mean (0.099865), correlation (0.372276)*/, |
||||
7,-1, 12,2/*mean (0.117083), correlation (0.364529)*/, |
||||
-7,6, -5,1/*mean (0.126125), correlation (0.369606)*/, |
||||
-13,11, -12,5/*mean (0.130364), correlation (0.358502)*/, |
||||
-3,7, -2,-6/*mean (0.131691), correlation (0.375531)*/, |
||||
7,-8, 12,-7/*mean (0.160166), correlation (0.379508)*/, |
||||
-13,-7, -11,-12/*mean (0.167848), correlation (0.353343)*/, |
||||
1,-3, 12,12/*mean (0.183378), correlation (0.371916)*/, |
||||
2,-6, 3,0/*mean (0.228711), correlation (0.371761)*/, |
||||
-4,3, -2,-13/*mean (0.247211), correlation (0.364063)*/, |
||||
-1,-13, 1,9/*mean (0.249325), correlation (0.378139)*/, |
||||
7,1, 8,-6/*mean (0.000652272), correlation (0.411682)*/, |
||||
1,-1, 3,12/*mean (0.00248538), correlation (0.392988)*/, |
||||
9,1, 12,6/*mean (0.0206815), correlation (0.386106)*/, |
||||
-1,-9, -1,3/*mean (0.0364485), correlation (0.410752)*/, |
||||
-13,-13, -10,5/*mean (0.0376068), correlation (0.398374)*/, |
||||
7,7, 10,12/*mean (0.0424202), correlation (0.405663)*/, |
||||
12,-5, 12,9/*mean (0.0942645), correlation (0.410422)*/, |
||||
6,3, 7,11/*mean (0.1074), correlation (0.413224)*/, |
||||
5,-13, 6,10/*mean (0.109256), correlation (0.408646)*/, |
||||
2,-12, 2,3/*mean (0.131691), correlation (0.416076)*/, |
||||
3,8, 4,-6/*mean (0.165081), correlation (0.417569)*/, |
||||
2,6, 12,-13/*mean (0.171874), correlation (0.408471)*/, |
||||
9,-12, 10,3/*mean (0.175146), correlation (0.41296)*/, |
||||
-8,4, -7,9/*mean (0.183682), correlation (0.402956)*/, |
||||
-11,12, -4,-6/*mean (0.184672), correlation (0.416125)*/, |
||||
1,12, 2,-8/*mean (0.191487), correlation (0.386696)*/, |
||||
6,-9, 7,-4/*mean (0.192668), correlation (0.394771)*/, |
||||
2,3, 3,-2/*mean (0.200157), correlation (0.408303)*/, |
||||
6,3, 11,0/*mean (0.204588), correlation (0.411762)*/, |
||||
3,-3, 8,-8/*mean (0.205904), correlation (0.416294)*/, |
||||
7,8, 9,3/*mean (0.213237), correlation (0.409306)*/, |
||||
-11,-5, -6,-4/*mean (0.243444), correlation (0.395069)*/, |
||||
-10,11, -5,10/*mean (0.247672), correlation (0.413392)*/, |
||||
-5,-8, -3,12/*mean (0.24774), correlation (0.411416)*/, |
||||
-10,5, -9,0/*mean (0.00213675), correlation (0.454003)*/, |
||||
8,-1, 12,-6/*mean (0.0293635), correlation (0.455368)*/, |
||||
4,-6, 6,-11/*mean (0.0404971), correlation (0.457393)*/, |
||||
-10,12, -8,7/*mean (0.0481107), correlation (0.448364)*/, |
||||
4,-2, 6,7/*mean (0.050641), correlation (0.455019)*/, |
||||
-2,0, -2,12/*mean (0.0525978), correlation (0.44338)*/, |
||||
-5,-8, -5,2/*mean (0.0629667), correlation (0.457096)*/, |
||||
7,-6, 10,12/*mean (0.0653846), correlation (0.445623)*/, |
||||
-9,-13, -8,-8/*mean (0.0858749), correlation (0.449789)*/, |
||||
-5,-13, -5,-2/*mean (0.122402), correlation (0.450201)*/, |
||||
8,-8, 9,-13/*mean (0.125416), correlation (0.453224)*/, |
||||
-9,-11, -9,0/*mean (0.130128), correlation (0.458724)*/, |
||||
1,-8, 1,-2/*mean (0.132467), correlation (0.440133)*/, |
||||
7,-4, 9,1/*mean (0.132692), correlation (0.454)*/, |
||||
-2,1, -1,-4/*mean (0.135695), correlation (0.455739)*/, |
||||
11,-6, 12,-11/*mean (0.142904), correlation (0.446114)*/, |
||||
-12,-9, -6,4/*mean (0.146165), correlation (0.451473)*/, |
||||
3,7, 7,12/*mean (0.147627), correlation (0.456643)*/, |
||||
5,5, 10,8/*mean (0.152901), correlation (0.455036)*/, |
||||
0,-4, 2,8/*mean (0.167083), correlation (0.459315)*/, |
||||
-9,12, -5,-13/*mean (0.173234), correlation (0.454706)*/, |
||||
0,7, 2,12/*mean (0.18312), correlation (0.433855)*/, |
||||
-1,2, 1,7/*mean (0.185504), correlation (0.443838)*/, |
||||
5,11, 7,-9/*mean (0.185706), correlation (0.451123)*/, |
||||
3,5, 6,-8/*mean (0.188968), correlation (0.455808)*/, |
||||
-13,-4, -8,9/*mean (0.191667), correlation (0.459128)*/, |
||||
-5,9, -3,-3/*mean (0.193196), correlation (0.458364)*/, |
||||
-4,-7, -3,-12/*mean (0.196536), correlation (0.455782)*/, |
||||
6,5, 8,0/*mean (0.1972), correlation (0.450481)*/, |
||||
-7,6, -6,12/*mean (0.199438), correlation (0.458156)*/, |
||||
-13,6, -5,-2/*mean (0.211224), correlation (0.449548)*/, |
||||
1,-10, 3,10/*mean (0.211718), correlation (0.440606)*/, |
||||
4,1, 8,-4/*mean (0.213034), correlation (0.443177)*/, |
||||
-2,-2, 2,-13/*mean (0.234334), correlation (0.455304)*/, |
||||
2,-12, 12,12/*mean (0.235684), correlation (0.443436)*/, |
||||
-2,-13, 0,-6/*mean (0.237674), correlation (0.452525)*/, |
||||
4,1, 9,3/*mean (0.23962), correlation (0.444824)*/, |
||||
-6,-10, -3,-5/*mean (0.248459), correlation (0.439621)*/, |
||||
-3,-13, -1,1/*mean (0.249505), correlation (0.456666)*/, |
||||
7,5, 12,-11/*mean (0.00119208), correlation (0.495466)*/, |
||||
4,-2, 5,-7/*mean (0.00372245), correlation (0.484214)*/, |
||||
-13,9, -9,-5/*mean (0.00741116), correlation (0.499854)*/, |
||||
7,1, 8,6/*mean (0.0208952), correlation (0.499773)*/, |
||||
7,-8, 7,6/*mean (0.0220085), correlation (0.501609)*/, |
||||
-7,-4, -7,1/*mean (0.0233806), correlation (0.496568)*/, |
||||
-8,11, -7,-8/*mean (0.0236505), correlation (0.489719)*/, |
||||
-13,6, -12,-8/*mean (0.0268781), correlation (0.503487)*/, |
||||
2,4, 3,9/*mean (0.0323324), correlation (0.501938)*/, |
||||
10,-5, 12,3/*mean (0.0399235), correlation (0.494029)*/, |
||||
-6,-5, -6,7/*mean (0.0420153), correlation (0.486579)*/, |
||||
8,-3, 9,-8/*mean (0.0548021), correlation (0.484237)*/, |
||||
2,-12, 2,8/*mean (0.0616622), correlation (0.496642)*/, |
||||
-11,-2, -10,3/*mean (0.0627755), correlation (0.498563)*/, |
||||
-12,-13, -7,-9/*mean (0.0829622), correlation (0.495491)*/, |
||||
-11,0, -10,-5/*mean (0.0843342), correlation (0.487146)*/, |
||||
5,-3, 11,8/*mean (0.0929937), correlation (0.502315)*/, |
||||
-2,-13, -1,12/*mean (0.113327), correlation (0.48941)*/, |
||||
-1,-8, 0,9/*mean (0.132119), correlation (0.467268)*/, |
||||
-13,-11, -12,-5/*mean (0.136269), correlation (0.498771)*/, |
||||
-10,-2, -10,11/*mean (0.142173), correlation (0.498714)*/, |
||||
-3,9, -2,-13/*mean (0.144141), correlation (0.491973)*/, |
||||
2,-3, 3,2/*mean (0.14892), correlation (0.500782)*/, |
||||
-9,-13, -4,0/*mean (0.150371), correlation (0.498211)*/, |
||||
-4,6, -3,-10/*mean (0.152159), correlation (0.495547)*/, |
||||
-4,12, -2,-7/*mean (0.156152), correlation (0.496925)*/, |
||||
-6,-11, -4,9/*mean (0.15749), correlation (0.499222)*/, |
||||
6,-3, 6,11/*mean (0.159211), correlation (0.503821)*/, |
||||
-13,11, -5,5/*mean (0.162427), correlation (0.501907)*/, |
||||
11,11, 12,6/*mean (0.16652), correlation (0.497632)*/, |
||||
7,-5, 12,-2/*mean (0.169141), correlation (0.484474)*/, |
||||
-1,12, 0,7/*mean (0.169456), correlation (0.495339)*/, |
||||
-4,-8, -3,-2/*mean (0.171457), correlation (0.487251)*/, |
||||
-7,1, -6,7/*mean (0.175), correlation (0.500024)*/, |
||||
-13,-12, -8,-13/*mean (0.175866), correlation (0.497523)*/, |
||||
-7,-2, -6,-8/*mean (0.178273), correlation (0.501854)*/, |
||||
-8,5, -6,-9/*mean (0.181107), correlation (0.494888)*/, |
||||
-5,-1, -4,5/*mean (0.190227), correlation (0.482557)*/, |
||||
-13,7, -8,10/*mean (0.196739), correlation (0.496503)*/, |
||||
1,5, 5,-13/*mean (0.19973), correlation (0.499759)*/, |
||||
1,0, 10,-13/*mean (0.204465), correlation (0.49873)*/, |
||||
9,12, 10,-1/*mean (0.209334), correlation (0.49063)*/, |
||||
5,-8, 10,-9/*mean (0.211134), correlation (0.503011)*/, |
||||
-1,11, 1,-13/*mean (0.212), correlation (0.499414)*/, |
||||
-9,-3, -6,2/*mean (0.212168), correlation (0.480739)*/, |
||||
-1,-10, 1,12/*mean (0.212731), correlation (0.502523)*/, |
||||
-13,1, -8,-10/*mean (0.21327), correlation (0.489786)*/, |
||||
8,-11, 10,-6/*mean (0.214159), correlation (0.488246)*/, |
||||
2,-13, 3,-6/*mean (0.216993), correlation (0.50287)*/, |
||||
7,-13, 12,-9/*mean (0.223639), correlation (0.470502)*/, |
||||
-10,-10, -5,-7/*mean (0.224089), correlation (0.500852)*/, |
||||
-10,-8, -8,-13/*mean (0.228666), correlation (0.502629)*/, |
||||
4,-6, 8,5/*mean (0.22906), correlation (0.498305)*/, |
||||
3,12, 8,-13/*mean (0.233378), correlation (0.503825)*/, |
||||
-4,2, -3,-3/*mean (0.234323), correlation (0.476692)*/, |
||||
5,-13, 10,-12/*mean (0.236392), correlation (0.475462)*/, |
||||
4,-13, 5,-1/*mean (0.236842), correlation (0.504132)*/, |
||||
-9,9, -4,3/*mean (0.236977), correlation (0.497739)*/, |
||||
0,3, 3,-9/*mean (0.24314), correlation (0.499398)*/, |
||||
-12,1, -6,1/*mean (0.243297), correlation (0.489447)*/, |
||||
3,2, 4,-8/*mean (0.00155196), correlation (0.553496)*/, |
||||
-10,-10, -10,9/*mean (0.00239541), correlation (0.54297)*/, |
||||
8,-13, 12,12/*mean (0.0034413), correlation (0.544361)*/, |
||||
-8,-12, -6,-5/*mean (0.003565), correlation (0.551225)*/, |
||||
2,2, 3,7/*mean (0.00835583), correlation (0.55285)*/, |
||||
10,6, 11,-8/*mean (0.00885065), correlation (0.540913)*/, |
||||
6,8, 8,-12/*mean (0.0101552), correlation (0.551085)*/, |
||||
-7,10, -6,5/*mean (0.0102227), correlation (0.533635)*/, |
||||
-3,-9, -3,9/*mean (0.0110211), correlation (0.543121)*/, |
||||
-1,-13, -1,5/*mean (0.0113473), correlation (0.550173)*/, |
||||
-3,-7, -3,4/*mean (0.0140913), correlation (0.554774)*/, |
||||
-8,-2, -8,3/*mean (0.017049), correlation (0.55461)*/, |
||||
4,2, 12,12/*mean (0.01778), correlation (0.546921)*/, |
||||
2,-5, 3,11/*mean (0.0224022), correlation (0.549667)*/, |
||||
6,-9, 11,-13/*mean (0.029161), correlation (0.546295)*/, |
||||
3,-1, 7,12/*mean (0.0303081), correlation (0.548599)*/, |
||||
11,-1, 12,4/*mean (0.0355151), correlation (0.523943)*/, |
||||
-3,0, -3,6/*mean (0.0417904), correlation (0.543395)*/, |
||||
4,-11, 4,12/*mean (0.0487292), correlation (0.542818)*/, |
||||
2,-4, 2,1/*mean (0.0575124), correlation (0.554888)*/, |
||||
-10,-6, -8,1/*mean (0.0594242), correlation (0.544026)*/, |
||||
-13,7, -11,1/*mean (0.0597391), correlation (0.550524)*/, |
||||
-13,12, -11,-13/*mean (0.0608974), correlation (0.55383)*/, |
||||
6,0, 11,-13/*mean (0.065126), correlation (0.552006)*/, |
||||
0,-1, 1,4/*mean (0.074224), correlation (0.546372)*/, |
||||
-13,3, -9,-2/*mean (0.0808592), correlation (0.554875)*/, |
||||
-9,8, -6,-3/*mean (0.0883378), correlation (0.551178)*/, |
||||
-13,-6, -8,-2/*mean (0.0901035), correlation (0.548446)*/, |
||||
5,-9, 8,10/*mean (0.0949843), correlation (0.554694)*/, |
||||
2,7, 3,-9/*mean (0.0994152), correlation (0.550979)*/, |
||||
-1,-6, -1,-1/*mean (0.10045), correlation (0.552714)*/, |
||||
9,5, 11,-2/*mean (0.100686), correlation (0.552594)*/, |
||||
11,-3, 12,-8/*mean (0.101091), correlation (0.532394)*/, |
||||
3,0, 3,5/*mean (0.101147), correlation (0.525576)*/, |
||||
-1,4, 0,10/*mean (0.105263), correlation (0.531498)*/, |
||||
3,-6, 4,5/*mean (0.110785), correlation (0.540491)*/, |
||||
-13,0, -10,5/*mean (0.112798), correlation (0.536582)*/, |
||||
5,8, 12,11/*mean (0.114181), correlation (0.555793)*/, |
||||
8,9, 9,-6/*mean (0.117431), correlation (0.553763)*/, |
||||
7,-4, 8,-12/*mean (0.118522), correlation (0.553452)*/, |
||||
-10,4, -10,9/*mean (0.12094), correlation (0.554785)*/, |
||||
7,3, 12,4/*mean (0.122582), correlation (0.555825)*/, |
||||
9,-7, 10,-2/*mean (0.124978), correlation (0.549846)*/, |
||||
7,0, 12,-2/*mean (0.127002), correlation (0.537452)*/, |
||||
-1,-6, 0,-11/*mean (0.127148), correlation (0.547401)*/ |
||||
}; |
||||
|
||||
void initializeOrbPattern(const Point* pattern0, Mat& pattern, int ntuples, int tupleSize, int poolSize) |
||||
{ |
||||
RNG rng(0x12345678); |
||||
|
||||
pattern.create(2, ntuples * tupleSize, CV_32SC1); |
||||
pattern.setTo(Scalar::all(0)); |
||||
|
||||
int* pattern_x_ptr = pattern.ptr<int>(0); |
||||
int* pattern_y_ptr = pattern.ptr<int>(1); |
||||
|
||||
for (int i = 0; i < ntuples; i++) |
||||
{ |
||||
for (int k = 0; k < tupleSize; k++) |
||||
{ |
||||
for(;;) |
||||
{ |
||||
int idx = rng.uniform(0, poolSize); |
||||
Point pt = pattern0[idx]; |
||||
|
||||
int k1; |
||||
for (k1 = 0; k1 < k; k1++) |
||||
if (pattern_x_ptr[tupleSize * i + k1] == pt.x && pattern_y_ptr[tupleSize * i + k1] == pt.y) |
||||
break; |
||||
|
||||
if (k1 == k) |
||||
{ |
||||
pattern_x_ptr[tupleSize * i + k] = pt.x; |
||||
pattern_y_ptr[tupleSize * i + k] = pt.y; |
||||
break; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
void makeRandomPattern(int patchSize, Point* pattern, int npoints) |
||||
{ |
||||
// we always start with a fixed seed,
|
||||
// to make patterns the same on each run
|
||||
RNG rng(0x34985739); |
||||
|
||||
for (int i = 0; i < npoints; i++) |
||||
{ |
||||
pattern[i].x = rng.uniform(-patchSize / 2, patchSize / 2 + 1); |
||||
pattern[i].y = rng.uniform(-patchSize / 2, patchSize / 2 + 1); |
||||
} |
||||
} |
||||
} |
||||
|
||||
cv::ocl::ORB_OCL::ORB_OCL(int nFeatures, float scaleFactor, int nLevels, int edgeThreshold, int firstLevel, int WTA_K, int scoreType, int patchSize) : |
||||
nFeatures_(nFeatures), scaleFactor_(scaleFactor), nLevels_(nLevels), edgeThreshold_(edgeThreshold), firstLevel_(firstLevel), WTA_K_(WTA_K), |
||||
scoreType_(scoreType), patchSize_(patchSize), |
||||
fastDetector_(DEFAULT_FAST_THRESHOLD) |
||||
{ |
||||
CV_Assert(patchSize_ >= 2); |
||||
|
||||
// fill the extractors and descriptors for the corresponding scales
|
||||
float factor = 1.0f / scaleFactor_; |
||||
float n_desired_features_per_scale = nFeatures_ * (1.0f - factor) / (1.0f - std::pow(factor, nLevels_)); |
||||
|
||||
n_features_per_level_.resize(nLevels_); |
||||
size_t sum_n_features = 0; |
||||
for (int level = 0; level < nLevels_ - 1; ++level) |
||||
{ |
||||
n_features_per_level_[level] = cvRound(n_desired_features_per_scale); |
||||
sum_n_features += n_features_per_level_[level]; |
||||
n_desired_features_per_scale *= factor; |
||||
} |
||||
n_features_per_level_[nLevels_ - 1] = nFeatures - sum_n_features; |
||||
|
||||
// pre-compute the end of a row in a circular patch
|
||||
int half_patch_size = patchSize_ / 2; |
||||
std::vector<int> u_max(half_patch_size + 2); |
||||
for (int v = 0; v <= half_patch_size * std::sqrt(2.f) / 2 + 1; ++v) |
||||
u_max[v] = cvRound(std::sqrt(static_cast<float>(half_patch_size * half_patch_size - v * v))); |
||||
|
||||
// Make sure we are symmetric
|
||||
for (int v = half_patch_size, v_0 = 0; v >= half_patch_size * std::sqrt(2.f) / 2; --v) |
||||
{ |
||||
while (u_max[v_0] == u_max[v_0 + 1]) |
||||
++v_0; |
||||
u_max[v] = v_0; |
||||
++v_0; |
||||
} |
||||
CV_Assert(u_max.size() < 32); |
||||
//cv::cuda::device::orb::loadUMax(&u_max[0], static_cast<int>(u_max.size()));
|
||||
uMax_ = oclMat(1, u_max.size(), CV_32SC1, &u_max[0]); |
||||
|
||||
// Calc pattern
|
||||
const int npoints = 512; |
||||
Point pattern_buf[npoints]; |
||||
const Point* pattern0 = (const Point*)bit_pattern_31_; |
||||
if (patchSize_ != 31) |
||||
{ |
||||
pattern0 = pattern_buf; |
||||
makeRandomPattern(patchSize_, pattern_buf, npoints); |
||||
} |
||||
|
||||
CV_Assert(WTA_K_ == 2 || WTA_K_ == 3 || WTA_K_ == 4); |
||||
|
||||
Mat h_pattern; |
||||
|
||||
if (WTA_K_ == 2) |
||||
{ |
||||
h_pattern.create(2, npoints, CV_32SC1); |
||||
|
||||
int* pattern_x_ptr = h_pattern.ptr<int>(0); |
||||
int* pattern_y_ptr = h_pattern.ptr<int>(1); |
||||
|
||||
for (int i = 0; i < npoints; ++i) |
||||
{ |
||||
pattern_x_ptr[i] = pattern0[i].x; |
||||
pattern_y_ptr[i] = pattern0[i].y; |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
int ntuples = descriptorSize() * 4; |
||||
initializeOrbPattern(pattern0, h_pattern, ntuples, WTA_K_, npoints); |
||||
} |
||||
|
||||
pattern_.upload(h_pattern); |
||||
|
||||
//blurFilter = ocl::createGaussianFilter(CV_8UC1, -1, Size(7, 7), 2, 2, BORDER_REFLECT_101);
|
||||
blurFilter = ocl::createGaussianFilter_GPU(CV_8UC1, Size(7, 7), 2, 2, BORDER_REFLECT_101); |
||||
|
||||
blurForDescriptor = true; |
||||
} |
||||
|
||||
namespace |
||||
{ |
||||
inline float getScale(float scaleFactor, int firstLevel, int level) |
||||
{ |
||||
return pow(scaleFactor, level - firstLevel); |
||||
} |
||||
} |
||||
|
||||
void cv::ocl::ORB_OCL::buildScalePyramids(const oclMat& image, const oclMat& mask) |
||||
{ |
||||
CV_Assert(image.type() == CV_8UC1); |
||||
CV_Assert(mask.empty() || (mask.type() == CV_8UC1 && mask.size() == image.size())); |
||||
|
||||
imagePyr_.resize(nLevels_); |
||||
maskPyr_.resize(nLevels_); |
||||
|
||||
for (int level = 0; level < nLevels_; ++level) |
||||
{ |
||||
float scale = 1.0f / getScale(scaleFactor_, firstLevel_, level); |
||||
|
||||
Size sz(cvRound(image.cols * scale), cvRound(image.rows * scale)); |
||||
|
||||
ensureSizeIsEnough(sz, image.type(), imagePyr_[level]); |
||||
ensureSizeIsEnough(sz, CV_8UC1, maskPyr_[level]); |
||||
maskPyr_[level].setTo(Scalar::all(255)); |
||||
|
||||
// Compute the resized image
|
||||
if (level != firstLevel_) |
||||
{ |
||||
if (level < firstLevel_) |
||||
{ |
||||
ocl::resize(image, imagePyr_[level], sz, 0, 0, INTER_LINEAR); |
||||
|
||||
if (!mask.empty()) |
||||
ocl::resize(mask, maskPyr_[level], sz, 0, 0, INTER_LINEAR); |
||||
} |
||||
else |
||||
{ |
||||
ocl::resize(imagePyr_[level - 1], imagePyr_[level], sz, 0, 0, INTER_LINEAR); |
||||
|
||||
if (!mask.empty()) |
||||
{ |
||||
ocl::resize(maskPyr_[level - 1], maskPyr_[level], sz, 0, 0, INTER_LINEAR); |
||||
ocl::threshold(maskPyr_[level], maskPyr_[level], 254, 0, THRESH_TOZERO); |
||||
} |
||||
} |
||||
} |
||||
else |
||||
{ |
||||
image.copyTo(imagePyr_[level]); |
||||
|
||||
if (!mask.empty()) |
||||
mask.copyTo(maskPyr_[level]); |
||||
} |
||||
|
||||
// Filter keypoints by image border
|
||||
ensureSizeIsEnough(sz, CV_8UC1, buf_); |
||||
buf_.setTo(Scalar::all(0)); |
||||
Rect inner(edgeThreshold_, edgeThreshold_, sz.width - 2 * edgeThreshold_, sz.height - 2 * edgeThreshold_); |
||||
buf_(inner).setTo(Scalar::all(255)); |
||||
|
||||
ocl::bitwise_and(maskPyr_[level], buf_, maskPyr_[level]); |
||||
} |
||||
} |
||||
|
||||
static void HarrisResponses_OCL(const oclMat& img, oclMat& keypoints, const int npoints, int blockSize, float harris_k) |
||||
{ |
||||
size_t localThreads[3] = {32, 8, 1}; |
||||
size_t globalThreads[3] = {divUp(npoints, localThreads[1]) * localThreads[1] * localThreads[0], |
||||
1, |
||||
1}; |
||||
|
||||
Context *clCxt = Context::getContext(); |
||||
String kernelName = "HarrisResponses"; |
||||
std::vector< std::pair<size_t, const void *> > args; |
||||
|
||||
int imgStep = img.step / img.elemSize(); |
||||
int keypointsStep = keypoints.step / keypoints.elemSize(); |
||||
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&img.data)); |
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&keypoints.data)); |
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&npoints)); |
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&blockSize)); |
||||
args.push_back( std::make_pair( sizeof(cl_float), (void *)&harris_k)); |
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&imgStep)); |
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&keypointsStep)); |
||||
|
||||
bool is_cpu = isCpuDevice(); |
||||
if (is_cpu) |
||||
openCLExecuteKernel(clCxt, &orb, kernelName, globalThreads, localThreads, args, -1, -1, (char*)"-D CPU"); |
||||
else |
||||
{ |
||||
cl_kernel kernel = openCLGetKernelFromSource(Context::getContext(), &orb, kernelName); |
||||
int wave_size = (int)queryWaveFrontSize(kernel); |
||||
openCLSafeCall(clReleaseKernel(kernel)); |
||||
|
||||
std::string opt = format("-D WAVE_SIZE=%d", wave_size); |
||||
openCLExecuteKernel(Context::getContext(), &orb, kernelName, globalThreads, localThreads, args, -1, -1, opt.c_str()); |
||||
} |
||||
} |
||||
|
||||
static void IC_Angle_OCL(const oclMat& image, oclMat& keypoints, const oclMat& uMax, int npoints, int half_k) |
||||
{ |
||||
size_t localThreads[3] = {32, 8, 1}; |
||||
size_t globalThreads[3] = {divUp(npoints, localThreads[1]) * localThreads[1] * localThreads[0], |
||||
1, |
||||
1}; |
||||
|
||||
Context *clCxt = Context::getContext(); |
||||
String kernelName = "IC_Angle"; |
||||
std::vector< std::pair<size_t, const void *> > args; |
||||
|
||||
int imageStep = image.step / image.elemSize(); |
||||
int keypointsStep = keypoints.step / keypoints.elemSize(); |
||||
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&image.data)); |
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&keypoints.data)); |
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&uMax.data)); |
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&npoints)); |
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&half_k)); |
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&imageStep)); |
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&keypointsStep)); |
||||
|
||||
bool is_cpu = isCpuDevice(); |
||||
if (is_cpu) |
||||
openCLExecuteKernel(clCxt, &orb, kernelName, globalThreads, localThreads, args, -1, -1, (char*)"-D CPU"); |
||||
else |
||||
{ |
||||
cl_kernel kernel = openCLGetKernelFromSource(Context::getContext(), &orb, kernelName); |
||||
int wave_size = (int)queryWaveFrontSize(kernel); |
||||
openCLSafeCall(clReleaseKernel(kernel)); |
||||
|
||||
std::string opt = format("-D WAVE_SIZE=%d", wave_size); |
||||
openCLExecuteKernel(Context::getContext(), &orb, kernelName, globalThreads, localThreads, args, -1, -1, opt.c_str()); |
||||
} |
||||
} |
||||
|
||||
static void convertRowsToChannels_OCL(const oclMat& keypointsIn, oclMat& keypointsOut, int npoints) |
||||
{ |
||||
size_t localThreads[3] = {256, 1, 1}; |
||||
size_t globalThreads[3] = {divUp(npoints, localThreads[0]) * localThreads[0], |
||||
1, |
||||
1}; |
||||
|
||||
Context *clCxt = Context::getContext(); |
||||
String kernelName = "convertRowsToChannels"; |
||||
std::vector< std::pair<size_t, const void *> > args; |
||||
|
||||
int keypointsInStep = keypointsIn.step / keypointsIn.elemSize(); |
||||
int keypointsOutStep = keypointsOut.step / keypointsOut.elemSize(); |
||||
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&keypointsIn.data)); |
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&keypointsOut.data)); |
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&npoints)); |
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&keypointsInStep)); |
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&keypointsOutStep)); |
||||
|
||||
openCLExecuteKernel(clCxt, &orb, kernelName, globalThreads, localThreads, args, -1, -1); |
||||
} |
||||
|
||||
static void convertChannelsToRows_OCL(const oclMat& keypointsPos, const oclMat& keypointsResp, |
||||
oclMat& keypointsOut, int npoints) |
||||
{ |
||||
size_t localThreads[3] = {256, 1, 1}; |
||||
size_t globalThreads[3] = {divUp(npoints, localThreads[0]) * localThreads[0], |
||||
1, |
||||
1}; |
||||
|
||||
Context *clCxt = Context::getContext(); |
||||
String kernelName = "convertChannelsToRows"; |
||||
std::vector< std::pair<size_t, const void *> > args; |
||||
|
||||
int keypointsPosStep = keypointsPos.step / keypointsResp.elemSize(); |
||||
int keypointsRespStep = keypointsResp.step / keypointsResp.elemSize(); |
||||
int keypointsOutStep = keypointsOut.step / keypointsOut.elemSize(); |
||||
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&keypointsPos.data)); |
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&keypointsResp.data)); |
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&keypointsOut.data)); |
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&npoints)); |
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&keypointsPosStep)); |
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&keypointsRespStep)); |
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&keypointsOutStep)); |
||||
|
||||
openCLExecuteKernel(clCxt, &orb, kernelName, globalThreads, localThreads, args, -1, -1); |
||||
} |
||||
|
||||
void cv::ocl::ORB_OCL::computeKeyPointsPyramid() |
||||
{ |
||||
int half_patch_size = patchSize_ / 2; |
||||
|
||||
keyPointsPyr_.resize(nLevels_); |
||||
keyPointsCount_.resize(nLevels_); |
||||
|
||||
for (int level = 0; level < nLevels_; ++level) |
||||
{ |
||||
keyPointsCount_[level] = fastDetector_.calcKeyPointsLocation(imagePyr_[level], maskPyr_[level]); |
||||
|
||||
if (keyPointsCount_[level] == 0) |
||||
continue; |
||||
|
||||
keyPointsCount_[level] = fastDetector_.getKeyPoints(keyPointsPyr_[level]); |
||||
|
||||
if (keyPointsCount_[level] == 0) |
||||
continue; |
||||
|
||||
int n_features = static_cast<int>(n_features_per_level_[level]); |
||||
|
||||
if (scoreType_ == ORB::HARRIS_SCORE) |
||||
{ |
||||
int featuresToIncrease = 2 * n_features - keyPointsPyr_[level].cols; |
||||
if (featuresToIncrease < 0) featuresToIncrease = 0; |
||||
|
||||
// Keeps more points than necessary as FAST does not give amazing corners
|
||||
// and expands rows in the keypoint matrix to store angle, octave and size
|
||||
copyMakeBorder(keyPointsPyr_[level], keyPointsPyr_[level], |
||||
0, ROWS_COUNT-keyPointsPyr_[level].rows, |
||||
0, featuresToIncrease, |
||||
BORDER_CONSTANT, 0.f); |
||||
|
||||
// Compute the Harris cornerness (better scoring than FAST)
|
||||
HarrisResponses_OCL(imagePyr_[level], keyPointsPyr_[level], keyPointsCount_[level], 7, HARRIS_K); |
||||
} |
||||
else |
||||
{ |
||||
// Expands rows in the keypoint matrix to store angle, octave and size
|
||||
copyMakeBorder(keyPointsPyr_[level], keyPointsPyr_[level], |
||||
0, ROWS_COUNT-keyPointsPyr_[level].rows, |
||||
0, 0, |
||||
BORDER_CONSTANT, 0.f); |
||||
} |
||||
|
||||
|
||||
// To use sortByKey the keypoint locations have to be reorganized as one row and two channels,
|
||||
// leaving the keys (responses) as a one row, one channel matrix.
|
||||
// TODO: change this when sortByRow is implemented.
|
||||
oclMat keypointsResp, keypointsPos(1,keyPointsCount_[level],CV_32FC2); |
||||
keyPointsPyr_[level].row(RESPONSE_ROW).colRange(0,keyPointsCount_[level]).copyTo(keypointsResp); |
||||
|
||||
convertRowsToChannels_OCL(keyPointsPyr_[level].rowRange(0,2), keypointsPos, keyPointsCount_[level]); |
||||
ocl::sortByKey(keypointsResp, keypointsPos, SORT_MERGE, true); |
||||
|
||||
keyPointsCount_[level] = std::min(n_features,keyPointsCount_[level]); |
||||
|
||||
// The data is then reorganized back to one channel, three rows (X_ROW, Y_ROW, RESPONSE_ROW)
|
||||
convertChannelsToRows_OCL(keypointsPos, keypointsResp, keyPointsPyr_[level], keyPointsCount_[level]); |
||||
|
||||
// Compute orientation
|
||||
IC_Angle_OCL(imagePyr_[level], keyPointsPyr_[level], uMax_, keyPointsCount_[level], half_patch_size); |
||||
} |
||||
} |
||||
|
||||
static void computeOrbDescriptor_OCL(const oclMat& img, const oclMat& keypoints, const oclMat& pattern, |
||||
oclMat& desc, const int npoints, const int dsize, const int WTA_K, |
||||
const int offset) |
||||
{ |
||||
size_t localThreads[3] = {32, 8, 1}; |
||||
size_t globalThreads[3] = {divUp(dsize, localThreads[0]) * localThreads[0], |
||||
divUp(npoints, localThreads[1]) * localThreads[1], |
||||
1}; |
||||
|
||||
Context *clCxt = Context::getContext(); |
||||
String kernelName = "computeOrbDescriptor"; |
||||
std::vector< std::pair<size_t, const void *> > args; |
||||
|
||||
int imgStep = img.step / img.elemSize(); |
||||
int keypointsStep = keypoints.step / keypoints.elemSize(); |
||||
int patternStep = pattern.step / pattern.elemSize(); |
||||
int descStep = desc.step / desc.elemSize(); |
||||
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&img.data)); |
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&keypoints.data)); |
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&pattern.data)); |
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&desc.data)); |
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&npoints)); |
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&dsize)); |
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&WTA_K)); |
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&offset)); |
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&imgStep)); |
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&keypointsStep)); |
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&patternStep)); |
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&descStep)); |
||||
|
||||
openCLExecuteKernel(clCxt, &orb, kernelName, globalThreads, localThreads, args, -1, -1); |
||||
} |
||||
|
||||
void cv::ocl::ORB_OCL::computeDescriptors(oclMat& descriptors) |
||||
{ |
||||
int nAllkeypoints = 0; |
||||
|
||||
for (int level = 0; level < nLevels_; ++level) |
||||
nAllkeypoints += keyPointsCount_[level]; |
||||
|
||||
if (nAllkeypoints == 0) |
||||
{ |
||||
descriptors.release(); |
||||
return; |
||||
} |
||||
|
||||
ensureSizeIsEnough(nAllkeypoints, descriptorSize(), CV_8UC1, descriptors); |
||||
|
||||
int offset = 0; |
||||
|
||||
for (int level = 0; level < nLevels_; ++level) |
||||
{ |
||||
if (keyPointsCount_[level] == 0) |
||||
continue; |
||||
|
||||
if (blurForDescriptor) |
||||
{ |
||||
// preprocess the resized image
|
||||
ensureSizeIsEnough(imagePyr_[level].size(), imagePyr_[level].type(), buf_); |
||||
blurFilter->apply(imagePyr_[level], buf_); |
||||
} |
||||
|
||||
computeOrbDescriptor_OCL(blurForDescriptor ? buf_ : imagePyr_[level], keyPointsPyr_[level], |
||||
pattern_, descriptors, keyPointsCount_[level], descriptorSize(), WTA_K_, offset); |
||||
|
||||
offset += keyPointsCount_[level]; |
||||
} |
||||
} |
||||
|
||||
static void mergeLocation_OCL(const oclMat& keypointsIn, oclMat& keypointsOut, const int npoints, |
||||
const int offset, const float scale, const int octave, const float size) |
||||
{ |
||||
size_t localThreads[3] = {256, 1, 1}; |
||||
size_t globalThreads[3] = {divUp(npoints, localThreads[0]) * localThreads[0], |
||||
1, |
||||
1}; |
||||
|
||||
Context *clCxt = Context::getContext(); |
||||
String kernelName = "mergeLocation"; |
||||
std::vector< std::pair<size_t, const void *> > args; |
||||
|
||||
int keypointsInStep = keypointsIn.step / keypointsIn.elemSize(); |
||||
int keypointsOutStep = keypointsOut.step / keypointsOut.elemSize(); |
||||
|
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&keypointsIn.data)); |
||||
args.push_back( std::make_pair( sizeof(cl_mem), (void *)&keypointsOut.data)); |
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&npoints)); |
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&offset)); |
||||
args.push_back( std::make_pair( sizeof(cl_float), (void *)&scale)); |
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&octave)); |
||||
args.push_back( std::make_pair( sizeof(cl_float), (void *)&size)); |
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&keypointsInStep)); |
||||
args.push_back( std::make_pair( sizeof(cl_int), (void *)&keypointsOutStep)); |
||||
|
||||
openCLExecuteKernel(clCxt, &orb, kernelName, globalThreads, localThreads, args, -1, -1); |
||||
} |
||||
|
||||
void cv::ocl::ORB_OCL::mergeKeyPoints(oclMat& keypoints) |
||||
{ |
||||
int nAllkeypoints = 0; |
||||
|
||||
for (int level = 0; level < nLevels_; ++level) |
||||
nAllkeypoints += keyPointsCount_[level]; |
||||
|
||||
if (nAllkeypoints == 0) |
||||
{ |
||||
keypoints.release(); |
||||
return; |
||||
} |
||||
|
||||
ensureSizeIsEnough(ROWS_COUNT, nAllkeypoints, CV_32FC1, keypoints); |
||||
|
||||
int offset = 0; |
||||
|
||||
for (int level = 0; level < nLevels_; ++level) |
||||
{ |
||||
if (keyPointsCount_[level] == 0) |
||||
continue; |
||||
|
||||
float sf = getScale(scaleFactor_, firstLevel_, level); |
||||
|
||||
float locScale = level != firstLevel_ ? sf : 1.0f; |
||||
float size = patchSize_ * sf; |
||||
|
||||
mergeLocation_OCL(keyPointsPyr_[level], keypoints, keyPointsCount_[level], offset, locScale, level, size); |
||||
|
||||
offset += keyPointsCount_[level]; |
||||
} |
||||
} |
||||
|
||||
void cv::ocl::ORB_OCL::downloadKeyPoints(const oclMat &d_keypoints, std::vector<KeyPoint>& keypoints) |
||||
{ |
||||
if (d_keypoints.empty()) |
||||
{ |
||||
keypoints.clear(); |
||||
return; |
||||
} |
||||
|
||||
Mat h_keypoints(d_keypoints); |
||||
|
||||
convertKeyPoints(h_keypoints, keypoints); |
||||
} |
||||
|
||||
void cv::ocl::ORB_OCL::convertKeyPoints(const Mat &d_keypoints, std::vector<KeyPoint>& keypoints) |
||||
{ |
||||
if (d_keypoints.empty()) |
||||
{ |
||||
keypoints.clear(); |
||||
return; |
||||
} |
||||
|
||||
CV_Assert(d_keypoints.type() == CV_32FC1 && d_keypoints.rows == ROWS_COUNT); |
||||
|
||||
const float* x_ptr = d_keypoints.ptr<float>(X_ROW); |
||||
const float* y_ptr = d_keypoints.ptr<float>(Y_ROW); |
||||
const float* response_ptr = d_keypoints.ptr<float>(RESPONSE_ROW); |
||||
const float* angle_ptr = d_keypoints.ptr<float>(ANGLE_ROW); |
||||
const float* octave_ptr = d_keypoints.ptr<float>(OCTAVE_ROW); |
||||
const float* size_ptr = d_keypoints.ptr<float>(SIZE_ROW); |
||||
|
||||
keypoints.resize(d_keypoints.cols); |
||||
|
||||
for (int i = 0; i < d_keypoints.cols; ++i) |
||||
{ |
||||
KeyPoint kp; |
||||
|
||||
kp.pt.x = x_ptr[i]; |
||||
kp.pt.y = y_ptr[i]; |
||||
kp.response = response_ptr[i]; |
||||
kp.angle = angle_ptr[i]; |
||||
kp.octave = static_cast<int>(octave_ptr[i]); |
||||
kp.size = size_ptr[i]; |
||||
|
||||
keypoints[i] = kp; |
||||
} |
||||
} |
||||
|
||||
void cv::ocl::ORB_OCL::operator()(const oclMat& image, const oclMat& mask, oclMat& keypoints) |
||||
{ |
||||
buildScalePyramids(image, mask); |
||||
computeKeyPointsPyramid(); |
||||
mergeKeyPoints(keypoints); |
||||
} |
||||
|
||||
void cv::ocl::ORB_OCL::operator()(const oclMat& image, const oclMat& mask, oclMat& keypoints, oclMat& descriptors) |
||||
{ |
||||
buildScalePyramids(image, mask); |
||||
computeKeyPointsPyramid(); |
||||
computeDescriptors(descriptors); |
||||
mergeKeyPoints(keypoints); |
||||
} |
||||
|
||||
void cv::ocl::ORB_OCL::operator()(const oclMat& image, const oclMat& mask, std::vector<KeyPoint>& keypoints) |
||||
{ |
||||
(*this)(image, mask, d_keypoints_); |
||||
downloadKeyPoints(d_keypoints_, keypoints); |
||||
} |
||||
|
||||
void cv::ocl::ORB_OCL::operator()(const oclMat& image, const oclMat& mask, std::vector<KeyPoint>& keypoints, oclMat& descriptors) |
||||
{ |
||||
(*this)(image, mask, d_keypoints_, descriptors); |
||||
downloadKeyPoints(d_keypoints_, keypoints); |
||||
} |
||||
|
||||
void cv::ocl::ORB_OCL::release() |
||||
{ |
||||
imagePyr_.clear(); |
||||
maskPyr_.clear(); |
||||
|
||||
buf_.release(); |
||||
|
||||
keyPointsPyr_.clear(); |
||||
|
||||
fastDetector_.release(); |
||||
|
||||
d_keypoints_.release(); |
||||
|
||||
uMax_.release(); |
||||
} |
@ -0,0 +1,138 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
// Authors:
|
||||
// * Peter Andreas Entschev, peter@entschev.com
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp" |
||||
|
||||
#ifdef HAVE_OPENCL |
||||
|
||||
////////////////////////////////////////////////////////
|
||||
// ORB
|
||||
|
||||
namespace |
||||
{ |
||||
IMPLEMENT_PARAM_CLASS(ORB_FeaturesCount, int) |
||||
IMPLEMENT_PARAM_CLASS(ORB_ScaleFactor, float) |
||||
IMPLEMENT_PARAM_CLASS(ORB_LevelsCount, int) |
||||
IMPLEMENT_PARAM_CLASS(ORB_EdgeThreshold, int) |
||||
IMPLEMENT_PARAM_CLASS(ORB_firstLevel, int) |
||||
IMPLEMENT_PARAM_CLASS(ORB_WTA_K, int) |
||||
IMPLEMENT_PARAM_CLASS(ORB_PatchSize, int) |
||||
IMPLEMENT_PARAM_CLASS(ORB_BlurForDescriptor, bool) |
||||
} |
||||
|
||||
CV_ENUM(ORB_ScoreType, ORB::HARRIS_SCORE, ORB::FAST_SCORE) |
||||
|
||||
PARAM_TEST_CASE(ORB, ORB_FeaturesCount, ORB_ScaleFactor, ORB_LevelsCount, ORB_EdgeThreshold, |
||||
ORB_firstLevel, ORB_WTA_K, ORB_ScoreType, ORB_PatchSize, ORB_BlurForDescriptor) |
||||
{ |
||||
int nFeatures; |
||||
float scaleFactor; |
||||
int nLevels; |
||||
int edgeThreshold; |
||||
int firstLevel; |
||||
int WTA_K; |
||||
int scoreType; |
||||
int patchSize; |
||||
bool blurForDescriptor; |
||||
|
||||
virtual void SetUp() |
||||
{ |
||||
nFeatures = GET_PARAM(0); |
||||
scaleFactor = GET_PARAM(1); |
||||
nLevels = GET_PARAM(2); |
||||
edgeThreshold = GET_PARAM(3); |
||||
firstLevel = GET_PARAM(4); |
||||
WTA_K = GET_PARAM(5); |
||||
scoreType = GET_PARAM(6); |
||||
patchSize = GET_PARAM(7); |
||||
blurForDescriptor = GET_PARAM(8); |
||||
} |
||||
}; |
||||
|
||||
OCL_TEST_P(ORB, Accuracy) |
||||
{ |
||||
cv::Mat image = readImage("gpu/perf/aloe.png", cv::IMREAD_GRAYSCALE); |
||||
ASSERT_FALSE(image.empty()); |
||||
|
||||
cv::Mat mask(image.size(), CV_8UC1, cv::Scalar::all(1)); |
||||
mask(cv::Range(0, image.rows / 2), cv::Range(0, image.cols / 2)).setTo(cv::Scalar::all(0)); |
||||
|
||||
cv::ocl::oclMat ocl_image = cv::ocl::oclMat(image); |
||||
cv::ocl::oclMat ocl_mask = cv::ocl::oclMat(mask); |
||||
|
||||
cv::ocl::ORB_OCL orb(nFeatures, scaleFactor, nLevels, edgeThreshold, firstLevel, WTA_K, scoreType, patchSize); |
||||
orb.blurForDescriptor = blurForDescriptor; |
||||
|
||||
std::vector<cv::KeyPoint> keypoints; |
||||
cv::ocl::oclMat descriptors; |
||||
orb(ocl_image, ocl_mask, keypoints, descriptors); |
||||
|
||||
cv::ORB orb_gold(nFeatures, scaleFactor, nLevels, edgeThreshold, firstLevel, WTA_K, scoreType, patchSize); |
||||
|
||||
std::vector<cv::KeyPoint> keypoints_gold; |
||||
cv::Mat descriptors_gold; |
||||
orb_gold(image, mask, keypoints_gold, descriptors_gold); |
||||
|
||||
cv::BFMatcher matcher(cv::NORM_HAMMING); |
||||
std::vector<cv::DMatch> matches; |
||||
matcher.match(descriptors_gold, cv::Mat(descriptors), matches); |
||||
|
||||
int matchedCount = getMatchedPointsCount(keypoints_gold, keypoints, matches); |
||||
double matchedRatio = static_cast<double>(matchedCount) / keypoints.size(); |
||||
|
||||
EXPECT_GT(matchedRatio, 0.35); |
||||
} |
||||
|
||||
INSTANTIATE_TEST_CASE_P(OCL_Features2D, ORB, testing::Combine( |
||||
testing::Values(ORB_FeaturesCount(1000)), |
||||
testing::Values(ORB_ScaleFactor(1.2f)), |
||||
testing::Values(ORB_LevelsCount(4), ORB_LevelsCount(8)), |
||||
testing::Values(ORB_EdgeThreshold(31)), |
||||
testing::Values(ORB_firstLevel(0), ORB_firstLevel(2)), |
||||
testing::Values(ORB_WTA_K(2), ORB_WTA_K(3), ORB_WTA_K(4)), |
||||
testing::Values(ORB_ScoreType(cv::ORB::HARRIS_SCORE)), |
||||
testing::Values(ORB_PatchSize(31), ORB_PatchSize(29)), |
||||
testing::Values(ORB_BlurForDescriptor(false), ORB_BlurForDescriptor(true)))); |
||||
|
||||
#endif |
Loading…
Reference in new issue