added cv::remap to T-API

pull/1903/head
Ilya Lavrenov 11 years ago
parent dcce9d7088
commit 803672feea
  1. 2
      modules/core/src/ocl.cpp
  2. 1
      modules/core/src/umatrix.cpp
  3. 138
      modules/imgproc/src/imgwarp.cpp
  4. 435
      modules/imgproc/src/opencl/remap.cl
  5. 130
      modules/imgproc/test/ocl/test_warp.cpp
  6. 1
      modules/ts/include/opencv2/ts/ocl_test.hpp

@ -1893,7 +1893,7 @@ Context2& Context2::getDefault()
// First, try to retrieve existing context of the same type.
// In its turn, Platform::getContext() may call Context2::create()
// if there is no such context.
ctx.create(Device::TYPE_CPU);
ctx.create(Device::TYPE_ACCELERATOR);
if(!ctx.p)
ctx.create(Device::TYPE_DGPU);
if(!ctx.p)

@ -578,6 +578,7 @@ Mat UMat::getMat(int accessFlags) const
u->currAllocator->map(u, accessFlags | ACCESS_READ);
CV_Assert(u->data != 0);
Mat hdr(dims, size.p, type(), u->data + offset, step.p);
hdr.flags = flags;
hdr.u = u;
hdr.datastart = u->data;
hdr.data = hdr.datastart + offset;

@ -2010,6 +2010,8 @@ static bool ocl_resize( InputArray _src, OutputArray _dst, Size dsize,
iscale_x, iscale_y, 1.0f / (iscale_x * iscale_y));
k.create("resizeAREA_FAST", ocl::imgproc::resize_oclsrc, buildOption);
if (k.empty())
return false;
int smap_tab_size = dst.cols * iscale_x + dst.rows * iscale_y;
AutoBuffer<int> dmap_tab(dst.cols + dst.rows), smap_tab(smap_tab_size);
@ -2026,6 +2028,8 @@ static bool ocl_resize( InputArray _src, OutputArray _dst, Size dsize,
{
buildOption = buildOption + format(" -D convertToT=%s", ocl::convertTypeStr(wdepth, depth, cn, cvt[0]));
k.create("resizeAREA", ocl::imgproc::resize_oclsrc, buildOption);
if (k.empty())
return false;
Size ssize = src.size();
int xytab_size = (ssize.width + ssize.height) << 1;
@ -3383,6 +3387,78 @@ private:
const void *ctab;
};
static bool ocl_remap(InputArray _src, OutputArray _dst, InputArray _map1, InputArray _map2,
int interpolation, int borderType, const Scalar& borderValue)
{
int cn = _src.channels(), type = _src.type(), depth = _src.depth();
if (borderType == BORDER_TRANSPARENT || cn == 3 || !(interpolation == INTER_LINEAR || interpolation == INTER_NEAREST)
|| _map1.type() == CV_16SC1 || _map2.type() == CV_16SC1)
return false;
UMat src = _src.getUMat(), map1 = _map1.getUMat(), map2 = _map2.getUMat();
if( (map1.type() == CV_16SC2 && (map2.type() == CV_16UC1 || map2.empty())) ||
(map2.type() == CV_16SC2 && (map1.type() == CV_16UC1 || map1.empty())) )
{
if (map1.type() != CV_16SC2)
std::swap(map1, map2);
}
else
CV_Assert( map1.type() == CV_32FC2 || (map1.type() == CV_32FC1 && map2.type() == CV_32FC1) );
_dst.create(map1.size(), type);
UMat dst = _dst.getUMat();
String kernelName = "remap";
if (map1.type() == CV_32FC2 && map2.empty())
kernelName += "_32FC2";
else if (map1.type() == CV_16SC2)
{
kernelName += "_16SC2";
if (!map2.empty())
kernelName += "_16UC1";
}
else if (map1.type() == CV_32FC1 && map2.type() == CV_32FC1)
kernelName += "_2_32FC1";
else
CV_Error(Error::StsBadArg, "Unsupported map types");
static const char * const interMap[] = { "INTER_NEAREST", "INTER_LINEAR", "INTER_CUBIC", "INTER_LINEAR", "INTER_LANCZOS" };
static const char * const borderMap[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", "BORDER_WRAP",
"BORDER_REFLECT_101", "BORDER_TRANSPARENT" };
String buildOptions = format("-D %s -D %s -D T=%s", interMap[interpolation], borderMap[borderType], ocl::typeToStr(type));
if (interpolation != INTER_NEAREST)
{
char cvt[3][40];
int wdepth = std::max(CV_32F, dst.depth());
buildOptions = buildOptions
+ format(" -D WT=%s -D convertToT=%s -D convertToWT=%s"
" -D convertToWT2=%s -D WT2=%s",
ocl::typeToStr(CV_MAKE_TYPE(wdepth, cn)),
ocl::convertTypeStr(wdepth, depth, cn, cvt[0]),
ocl::convertTypeStr(depth, wdepth, cn, cvt[1]),
ocl::convertTypeStr(CV_32S, wdepth, 2, cvt[2]),
ocl::typeToStr(CV_MAKE_TYPE(wdepth, 2)));
}
ocl::Kernel k(kernelName.c_str(), ocl::imgproc::remap_oclsrc, buildOptions);
Mat scalar(1, 1, type, borderValue);
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnly(src), dstarg = ocl::KernelArg::WriteOnly(dst),
map1arg = ocl::KernelArg::ReadOnlyNoSize(map1),
scalararg = ocl::KernelArg::Constant((void*)scalar.data, scalar.elemSize());
if (map2.empty())
k.args(srcarg, dstarg, map1arg, scalararg);
else
k.args(srcarg, dstarg, map1arg, ocl::KernelArg::ReadOnlyNoSize(map2), scalararg);
size_t globalThreads[2] = { dst.cols, dst.rows };
return k.run(2, globalThreads, NULL, false);
}
}
void cv::remap( InputArray _src, OutputArray _dst,
@ -3422,11 +3498,13 @@ void cv::remap( InputArray _src, OutputArray _dst,
remapLanczos4<Cast<double, double>, float, 1>, 0
};
Mat src = _src.getMat(), map1 = _map1.getMat(), map2 = _map2.getMat();
CV_Assert( _map1.size().area() > 0 );
CV_Assert( _map2.empty() || (_map2.size() == _map1.size()));
CV_Assert( map1.size().area() > 0 );
CV_Assert( !map2.data || (map2.size() == map1.size()));
if (ocl::useOpenCL() && _dst.isUMat() && ocl_remap(_src, _dst, _map1, _map2, interpolation, borderType, borderValue))
return;
Mat src = _src.getMat(), map1 = _map1.getMat(), map2 = _map2.getMat();
_dst.create( map1.size(), src.type() );
Mat dst = _dst.getMat();
if( dst.data == src.data )
@ -3809,6 +3887,33 @@ static bool ocl_warpTransform(InputArray _src, OutputArray _dst, InputArray _M0,
(!doubleSupport && depth == CV_64F) || cn > 4 || cn == 3)
return false;
const char * const interpolationMap[3] = { "NEAREST", "LINEAR", "CUBIC" };
ocl::ProgramSource2 program = op_type == OCL_OP_AFFINE ?
ocl::imgproc::warp_affine_oclsrc : ocl::imgproc::warp_perspective_oclsrc;
const char * const kernelName = op_type == OCL_OP_AFFINE ? "warpAffine" : "warpPerspective";
ocl::Kernel k;
if (interpolation == INTER_NEAREST)
{
k.create(kernelName, program,
format("-D INTER_NEAREST -D T=%s%s", ocl::typeToStr(type),
doubleSupport ? " -D DOUBLE_SUPPORT" : ""));
}
else
{
char cvt[2][50];
wdepth = std::max(CV_32S, depth);
k.create(kernelName, program,
format("-D INTER_%s -D T=%s -D WT=%s -D depth=%d -D convertToWT=%s -D convertToT=%s%s",
interpolationMap[interpolation], ocl::typeToStr(type),
ocl::typeToStr(CV_MAKE_TYPE(wdepth, cn)), depth,
ocl::convertTypeStr(depth, wdepth, cn, cvt[0]),
ocl::convertTypeStr(wdepth, depth, cn, cvt[1]),
doubleSupport ? " -D DOUBLE_SUPPORT" : ""));
}
if (k.empty())
return false;
UMat src = _src.getUMat(), M0;
_dst.create( dsize.area() == 0 ? src.size() : dsize, src.type() );
UMat dst = _dst.getUMat();
@ -3838,32 +3943,7 @@ static bool ocl_warpTransform(InputArray _src, OutputArray _dst, InputArray _M0,
}
matM.convertTo(M0, doubleSupport ? CV_64F : CV_32F);
const char * const interpolationMap[3] = { "NEAREST", "LINEAR", "CUBIC" };
ocl::ProgramSource2 program = op_type == OCL_OP_AFFINE ?
ocl::imgproc::warp_affine_oclsrc : ocl::imgproc::warp_perspective_oclsrc;
const char * const kernelName = op_type == OCL_OP_AFFINE ? "warpAffine" : "warpPerspective";
ocl::Kernel k;
if (interpolation == INTER_NEAREST)
{
k.create(kernelName, program,
format("-D INTER_NEAREST -D T=%s%s", ocl::typeToStr(type),
doubleSupport ? " -D DOUBLE_SUPPORT" : ""));
}
else
{
char cvt[2][50];
wdepth = std::max(CV_32S, depth);
k.create(kernelName, program,
format("-D INTER_%s -D T=%s -D WT=%s -D depth=%d -D convertToWT=%s -D convertToT=%s%s",
interpolationMap[interpolation], ocl::typeToStr(type),
ocl::typeToStr(CV_MAKE_TYPE(wdepth, cn)), depth,
ocl::convertTypeStr(depth, wdepth, cn, cvt[0]),
ocl::convertTypeStr(wdepth, depth, cn, cvt[1]),
doubleSupport ? " -D DOUBLE_SUPPORT" : ""));
}
k.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnly(dst), ocl::KernelArg::PtrOnly(M0),
k.args(ocl::KernelArg::ReadOnly(src), ocl::KernelArg::WriteOnly(dst), ocl::KernelArg::PtrReadOnly(M0),
ocl::KernelArg::Constant(Mat(1, 1, CV_MAKE_TYPE(wdepth, cn), borderValue)));
size_t globalThreads[2] = { dst.cols, dst.rows };

@ -0,0 +1,435 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// @Authors
// Wu Zailong, bullet@yeah.net
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors as is and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifdef DOUBLE_SUPPORT
#ifdef cl_amd_fp64
#pragma OPENCL EXTENSION cl_amd_fp64:enable
#elif defined (cl_khr_fp64)
#pragma OPENCL EXTENSION cl_khr_fp64:enable
#endif
#endif
#define noconvert
enum
{
INTER_BITS = 5,
INTER_TAB_SIZE = 1 << INTER_BITS,
INTER_TAB_SIZE2 = INTER_TAB_SIZE * INTER_TAB_SIZE
};
#ifdef INTER_NEAREST
#define convertToWT
#endif
#ifdef BORDER_CONSTANT
#define EXTRAPOLATE(v2, v) v = scalar;
#elif defined BORDER_REPLICATE
#define EXTRAPOLATE(v2, v) \
{ \
v2 = max(min(v2, (int2)(src_cols - 1, src_rows - 1)), (int2)(0)); \
v = convertToWT(*((__global const T*)(srcptr + mad24(v2.y, src_step, v2.x * (int)sizeof(T) + src_offset)))); \
}
#elif defined BORDER_WRAP
#define EXTRAPOLATE(v2, v) \
{ \
if (v2.x < 0) \
v2.x -= ((v2.x - src_cols + 1) / src_cols) * src_cols; \
if (v2.x >= src_cols) \
v2.x %= src_cols; \
\
if (v2.y < 0) \
v2.y -= ((v2.y - src_rows + 1) / src_rows) * src_rows; \
if( v2.y >= src_rows ) \
v2.y %= src_rows; \
v = convertToWT(*((__global const T*)(srcptr + mad24(v2.y, src_step, v2.x * (int)sizeof(T) + src_offset)))); \
}
#elif defined(BORDER_REFLECT) || defined(BORDER_REFLECT_101)
#ifdef BORDER_REFLECT
#define DELTA int delta = 0
#else
#define DELTA int delta = 1
#endif
#define EXTRAPOLATE(v2, v) \
{ \
DELTA; \
if (src_cols == 1) \
v2.x = 0; \
else \
do \
{ \
if( v2.x < 0 ) \
v2.x = -v2.x - 1 + delta; \
else \
v2.x = src_cols - 1 - (v2.x - src_cols) - delta; \
} \
while (v2.x >= src_cols || v2.x < 0); \
\
if (src_rows == 1) \
v2.y = 0; \
else \
do \
{ \
if( v2.y < 0 ) \
v2.y = -v2.y - 1 + delta; \
else \
v2.y = src_rows - 1 - (v2.y - src_rows) - delta; \
} \
while (v2.y >= src_rows || v2.y < 0); \
v = convertToWT(*((__global const T*)(srcptr + mad24(v2.y, src_step, v2.x * (int)sizeof(T) + src_offset)))); \
}
#else
#error No extrapolation method
#endif
#define NEED_EXTRAPOLATION(gx, gy) (gx >= src_cols || gy >= src_rows || gx < 0 || gy < 0)
#ifdef INTER_NEAREST
__kernel void remap_2_32FC1(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
__global const uchar * map1ptr, int map1_step, int map1_offset,
__global const uchar * map2ptr, int map2_step, int map2_offset,
T scalar)
{
int x = get_global_id(0);
int y = get_global_id(1);
if (x < dst_cols && y < dst_rows)
{
int map1_index = mad24(y, map1_step, x * (int)sizeof(float) + map1_offset);
int map2_index = mad24(y, map2_step, x * (int)sizeof(float) + map2_offset);
int dst_index = mad24(y, dst_step, x * (int)sizeof(T) + dst_offset);
__global const float * map1 = (__global const float *)(map1ptr + map1_index);
__global const float * map2 = (__global const float *)(map2ptr + map2_index);
__global T * dst = (__global T *)(dstptr + dst_index);
int gx = convert_int_sat_rte(map1[0]);
int gy = convert_int_sat_rte(map2[0]);
if (NEED_EXTRAPOLATION(gx, gy))
{
#ifndef BORDER_CONSTANT
int2 gxy = (int2)(gx, gy);
#endif
EXTRAPOLATE(gxy, dst[0])
}
else
{
int src_index = mad24(gy, src_step, gx * (int)sizeof(T) + src_offset);
dst[0] = *((__global const T*)(srcptr + src_index));
}
}
}
__kernel void remap_32FC2(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
__global const uchar * mapptr, int map_step, int map_offset,
T scalar)
{
int x = get_global_id(0);
int y = get_global_id(1);
if (x < dst_cols && y < dst_rows)
{
int dst_index = mad24(y, dst_step, x * (int)sizeof(T) + dst_offset);
int map_index = mad24(y, map_step, x * (int)sizeof(float2) + map_offset);
__global const float2 * map = (__global const float2 *)(mapptr + map_index);
__global T * dst = (__global T *)(dstptr + dst_index);
int2 gxy = convert_int2_sat_rte(map[0]);
int gx = gxy.x, gy = gxy.y;
if (NEED_EXTRAPOLATION(gx, gy))
EXTRAPOLATE(gxy, dst[0])
else
{
int src_index = mad24(gy, src_step, gx * (int)sizeof(T) + src_offset);
dst[0] = *((__global const T *)(srcptr + src_index));
}
}
}
__kernel void remap_16SC2(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
__global const uchar * mapptr, int map_step, int map_offset,
T scalar)
{
int x = get_global_id(0);
int y = get_global_id(1);
if (x < dst_cols && y < dst_rows)
{
int dst_index = mad24(y, dst_step, x * (int)sizeof(T) + dst_offset);
int map_index = mad24(y, map_step, x * (int)sizeof(short2) + map_offset);
__global const short2 * map = (__global const short2 *)(mapptr + map_index);
__global T * dst = (__global T *)(dstptr + dst_index);
int2 gxy = convert_int2(map[0]);
int gx = gxy.x, gy = gxy.y;
if (NEED_EXTRAPOLATION(gx, gy))
EXTRAPOLATE(gxy, dst[0])
else
{
int src_index = mad24(gy, src_step, gx * (int)sizeof(T) + src_offset);
dst[0] = *((__global const T *)(srcptr + src_index));
}
}
}
__kernel void remap_16SC2_16UC1(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
__global const uchar * map1ptr, int map1_step, int map1_offset,
__global const uchar * map2ptr, int map2_step, int map2_offset,
T scalar)
{
int x = get_global_id(0);
int y = get_global_id(1);
if (x < dst_cols && y < dst_rows)
{
int dst_index = mad24(y, dst_step, x * (int)sizeof(T) + dst_offset);
int map1_index = mad24(y, map1_step, x * (int)sizeof(short2) + map1_offset);
int map2_index = mad24(y, map2_step, x * (int)sizeof(ushort) + map2_offset);
__global const short2 * map1 = (__global const short2 *)(map1ptr + map1_index);
__global const ushort * map2 = (__global const ushort *)(map2ptr + map2_index);
__global T * dst = (__global T *)(dstptr + dst_index);
int map2Value = convert_int(map2[0]) & (INTER_TAB_SIZE2 - 1);
int dx = (map2Value & (INTER_TAB_SIZE - 1)) < (INTER_TAB_SIZE >> 1) ? 1 : 0;
int dy = (map2Value >> INTER_BITS) < (INTER_TAB_SIZE >> 1) ? 1 : 0;
int2 gxy = convert_int2(map1[0]) + (int2)(dx, dy);
int gx = gxy.x, gy = gxy.y;
if (NEED_EXTRAPOLATION(gx, gy))
EXTRAPOLATE(gxy, dst[0])
else
{
int src_index = mad24(gy, src_step, gx * (int)sizeof(T) + src_offset);
dst[0] = *((__global const T *)(srcptr + src_index));
}
}
}
#elif INTER_LINEAR
__kernel void remap_16SC2_16UC1(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
__global const uchar * map1ptr, int map1_step, int map1_offset,
__global const uchar * map2ptr, int map2_step, int map2_offset,
T nVal)
{
int x = get_global_id(0);
int y = get_global_id(1);
if (x < dst_cols && y < dst_rows)
{
int dst_index = mad24(y, dst_step, x * (int)sizeof(T) + dst_offset);
int map1_index = mad24(y, map1_step, x * (int)sizeof(short2) + map1_offset);
int map2_index = mad24(y, map2_step, x * (int)sizeof(ushort) + map2_offset);
__global const short2 * map1 = (__global const short2 *)(map1ptr + map1_index);
__global const ushort * map2 = (__global const ushort *)(map2ptr + map2_index);
__global T * dst = (__global T *)(dstptr + dst_index);
int2 map_dataA = convert_int2(map1[0]);
int2 map_dataB = (int2)(map_dataA.x + 1, map_dataA.y);
int2 map_dataC = (int2)(map_dataA.x, map_dataA.y + 1);
int2 map_dataD = (int2)(map_dataA.x + 1, map_dataA.y + 1);
ushort map2Value = (ushort)(map2[0] & (INTER_TAB_SIZE2 - 1));
WT2 u = (WT2)(map2Value & (INTER_TAB_SIZE - 1), map2Value >> INTER_BITS) / (WT2)(INTER_TAB_SIZE);
WT scalar = convertToWT(nVal);
WT a = scalar, b = scalar, c = scalar, d = scalar;
if (!NEED_EXTRAPOLATION(map_dataA.x, map_dataA.y))
a = convertToWT(*((__global const T *)(srcptr + mad24(map_dataA.y, src_step, map_dataA.x * (int)sizeof(T) + src_offset))));
else
EXTRAPOLATE(map_dataA, a);
if (!NEED_EXTRAPOLATION(map_dataB.x, map_dataB.y))
b = convertToWT(*((__global const T *)(srcptr + mad24(map_dataB.y, src_step, map_dataB.x * (int)sizeof(T) + src_offset))));
else
EXTRAPOLATE(map_dataB, b);
if (!NEED_EXTRAPOLATION(map_dataC.x, map_dataC.y))
c = convertToWT(*((__global const T *)(srcptr + mad24(map_dataC.y, src_step, map_dataC.x * (int)sizeof(T) + src_offset))));
else
EXTRAPOLATE(map_dataC, c);
if (!NEED_EXTRAPOLATION(map_dataD.x, map_dataD.y))
d = convertToWT(*((__global const T *)(srcptr + mad24(map_dataD.y, src_step, map_dataD.x * (int)sizeof(T) + src_offset))));
else
EXTRAPOLATE(map_dataD, d);
WT dst_data = a * (1 - u.x) * (1 - u.y) +
b * (u.x) * (1 - u.y) +
c * (1 - u.x) * (u.y) +
d * (u.x) * (u.y);
dst[0] = convertToT(dst_data);
}
}
__kernel void remap_2_32FC1(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
__global const uchar * map1ptr, int map1_step, int map1_offset,
__global const uchar * map2ptr, int map2_step, int map2_offset,
T nVal)
{
int x = get_global_id(0);
int y = get_global_id(1);
if (x < dst_cols && y < dst_rows)
{
int dst_index = mad24(y, dst_step, x * (int)sizeof(T) + dst_offset);
int map1_index = mad24(y, map1_step, x * (int)sizeof(float) + map1_offset);
int map2_index = mad24(y, map2_step, x * (int)sizeof(float) + map2_offset);
__global const float * map1 = (__global const float *)(map1ptr + map1_index);
__global const float * map2 = (__global const float *)(map2ptr + map2_index);
__global T * dst = (__global T *)(dstptr + dst_index);
float2 map_data = (float2)(map1[0], map2[0]);
int2 map_dataA = convert_int2_sat_rtn(map_data);
int2 map_dataB = (int2)(map_dataA.x + 1, map_dataA.y);
int2 map_dataC = (int2)(map_dataA.x, map_dataA.y + 1);
int2 map_dataD = (int2)(map_dataA.x + 1, map_dataA.y + 1);
float2 _u = map_data - convert_float2(map_dataA);
WT2 u = convertToWT2(convert_int2_rte(convertToWT2(_u) * (WT2)INTER_TAB_SIZE)) / (WT2)INTER_TAB_SIZE;
WT scalar = convertToWT(nVal);
WT a = scalar, b = scalar, c = scalar, d = scalar;
if (!NEED_EXTRAPOLATION(map_dataA.x, map_dataA.y))
a = convertToWT(*((__global const T *)(srcptr + mad24(map_dataA.y, src_step, map_dataA.x * (int)sizeof(T) + src_offset))));
else
EXTRAPOLATE(map_dataA, a);
if (!NEED_EXTRAPOLATION(map_dataB.x, map_dataB.y))
b = convertToWT(*((__global const T *)(srcptr + mad24(map_dataB.y, src_step, map_dataB.x * (int)sizeof(T) + src_offset))));
else
EXTRAPOLATE(map_dataB, b);
if (!NEED_EXTRAPOLATION(map_dataC.x, map_dataC.y))
c = convertToWT(*((__global const T *)(srcptr + mad24(map_dataC.y, src_step, map_dataC.x * (int)sizeof(T) + src_offset))));
else
EXTRAPOLATE(map_dataC, c);
if (!NEED_EXTRAPOLATION(map_dataD.x, map_dataD.y))
d = convertToWT(*((__global const T *)(srcptr + mad24(map_dataD.y, src_step, map_dataD.x * (int)sizeof(T) + src_offset))));
else
EXTRAPOLATE(map_dataD, d);
WT dst_data = a * (1 - u.x) * (1 - u.y) +
b * (u.x) * (1 - u.y) +
c * (1 - u.x) * (u.y) +
d * (u.x) * (u.y);
dst[0] = convertToT(dst_data);
}
}
__kernel void remap_32FC2(__global const uchar * srcptr, int src_step, int src_offset, int src_rows, int src_cols,
__global uchar * dstptr, int dst_step, int dst_offset, int dst_rows, int dst_cols,
__global const uchar * mapptr, int map_step, int map_offset,
T nVal)
{
int x = get_global_id(0);
int y = get_global_id(1);
if (x < dst_cols && y < dst_rows)
{
int dst_index = mad24(y, dst_step, x * (int)sizeof(T) + dst_offset);
int map_index = mad24(y, map_step, x * (int)sizeof(float2) + map_offset);
__global const float2 * map = (__global const float2 *)(mapptr + map_index);
__global T * dst = (__global T *)(dstptr + dst_index);
float2 map_data = map[0];
int2 map_dataA = convert_int2_sat_rtn(map_data);
int2 map_dataB = (int2)(map_dataA.x + 1, map_dataA.y);
int2 map_dataC = (int2)(map_dataA.x, map_dataA.y + 1);
int2 map_dataD = (int2)(map_dataA.x + 1, map_dataA.y + 1);
float2 _u = map_data - convert_float2(map_dataA);
WT2 u = convertToWT2(convert_int2_rte(convertToWT2(_u) * (WT2)INTER_TAB_SIZE)) / (WT2)INTER_TAB_SIZE;
WT scalar = convertToWT(nVal);
WT a = scalar, b = scalar, c = scalar, d = scalar;
if (!NEED_EXTRAPOLATION(map_dataA.x, map_dataA.y))
a = convertToWT(*((__global const T *)(srcptr + mad24(map_dataA.y, src_step, map_dataA.x * (int)sizeof(T) + src_offset))));
else
EXTRAPOLATE(map_dataA, a);
if (!NEED_EXTRAPOLATION(map_dataB.x, map_dataB.y))
b = convertToWT(*((__global const T *)(srcptr + mad24(map_dataB.y, src_step, map_dataB.x * (int)sizeof(T) + src_offset))));
else
EXTRAPOLATE(map_dataB, b);
if (!NEED_EXTRAPOLATION(map_dataC.x, map_dataC.y))
c = convertToWT(*((__global const T *)(srcptr + mad24(map_dataC.y, src_step, map_dataC.x * (int)sizeof(T) + src_offset))));
else
EXTRAPOLATE(map_dataC, c);
if (!NEED_EXTRAPOLATION(map_dataD.x, map_dataD.y))
d = convertToWT(*((__global const T *)(srcptr + mad24(map_dataD.y, src_step, map_dataD.x * (int)sizeof(T) + src_offset))));
else
EXTRAPOLATE(map_dataD, d);
WT dst_data = a * (1 - u.x) * (1 - u.y) +
b * (u.x) * (1 - u.y) +
c * (1 - u.x) * (u.y) +
d * (u.x) * (u.y);
dst[0] = convertToT(dst_data);
}
}
#endif

@ -60,6 +60,11 @@
namespace cvtest {
namespace ocl {
enum
{
noType = -1
};
/////////////////////////////////////////////////////////////////////////////////////////////////
// warpAffine & warpPerspective
@ -69,8 +74,8 @@ PARAM_TEST_CASE(WarpTestBase, MatType, Interpolation, bool, bool)
Size dsize;
bool useRoi, mapInverse;
TEST_DECLARE_INPUT_PARATEMER(src)
TEST_DECLARE_OUTPUT_PARATEMER(dst)
TEST_DECLARE_INPUT_PARAMETER(src)
TEST_DECLARE_OUTPUT_PARAMETER(dst)
virtual void SetUp()
{
@ -217,6 +222,100 @@ OCL_TEST_P(Resize, Mat)
}
}
/////////////////////////////////////////////////////////////////////////////////////////////////
// remap
PARAM_TEST_CASE(Remap, MatDepth, Channels, std::pair<MatType, MatType>, Border, bool)
{
int srcType, map1Type, map2Type;
int borderType;
bool useRoi;
Scalar val;
TEST_DECLARE_INPUT_PARAMETER(src)
TEST_DECLARE_INPUT_PARAMETER(map1)
TEST_DECLARE_INPUT_PARAMETER(map2)
TEST_DECLARE_OUTPUT_PARAMETER(dst)
virtual void SetUp()
{
srcType = CV_MAKE_TYPE(GET_PARAM(0), GET_PARAM(1));
map1Type = GET_PARAM(2).first;
map2Type = GET_PARAM(2).second;
borderType = GET_PARAM(3);
useRoi = GET_PARAM(4);
}
void random_roi()
{
val = randomScalar(-MAX_VALUE, MAX_VALUE);
Size srcROISize = randomSize(1, MAX_VALUE);
Size dstROISize = randomSize(1, MAX_VALUE);
Border srcBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
randomSubMat(src, src_roi, srcROISize, srcBorder, srcType, 5, 256);
Border dstBorder = randomBorder(0, useRoi ? MAX_VALUE : 0);
randomSubMat(dst, dst_roi, dstROISize, dstBorder, srcType, -MAX_VALUE, MAX_VALUE);
int mapMaxValue = MAX_VALUE << 2;
Border map1Border = randomBorder(0, useRoi ? MAX_VALUE : 0);
randomSubMat(map1, map1_roi, dstROISize, map1Border, map1Type, -mapMaxValue, mapMaxValue);
Border map2Border = randomBorder(0, useRoi ? MAX_VALUE : 0);
if (map2Type != noType)
{
int mapMinValue = -mapMaxValue;
if (map2Type == CV_16UC1 || map2Type == CV_16SC1)
mapMinValue = 0, mapMaxValue = INTER_TAB_SIZE2;
randomSubMat(map2, map2_roi, dstROISize, map2Border, map2Type, mapMinValue, mapMaxValue);
}
UMAT_UPLOAD_INPUT_PARAMETER(src)
UMAT_UPLOAD_INPUT_PARAMETER(map1)
UMAT_UPLOAD_OUTPUT_PARAMETER(dst)
if (noType != map2Type)
UMAT_UPLOAD_INPUT_PARAMETER(map2)
}
void Near(double threshold = 0.0)
{
EXPECT_MAT_NEAR(dst, udst, threshold);
EXPECT_MAT_NEAR(dst_roi, udst_roi, threshold);
}
};
typedef Remap Remap_INTER_NEAREST;
OCL_TEST_P(Remap_INTER_NEAREST, Mat)
{
for (int j = 0; j < test_loop_times; j++)
{
random_roi();
OCL_OFF(cv::remap(src_roi, dst_roi, map1_roi, map2_roi, INTER_NEAREST, borderType, val));
OCL_ON(cv::remap(usrc_roi, udst_roi, umap1_roi, umap2_roi, INTER_NEAREST, borderType, val));
Near(1.0);
}
}
typedef Remap Remap_INTER_LINEAR;
OCL_TEST_P(Remap_INTER_LINEAR, Mat)
{
for (int j = 0; j < test_loop_times; j++)
{
random_roi();
OCL_OFF(cv::remap(src_roi, dst_roi, map1_roi, map2_roi, INTER_LINEAR, borderType, val));
OCL_ON(cv::remap(usrc_roi, udst_roi, umap1_roi, umap2_roi, INTER_LINEAR, borderType, val));
Near(2.0);
}
}
/////////////////////////////////////////////////////////////////////////////////////
OCL_INSTANTIATE_TEST_CASE_P(ImgprocWarp, WarpAffine, Combine(
@ -245,6 +344,33 @@ OCL_INSTANTIATE_TEST_CASE_P(ImgprocWarpResizeArea, Resize, Combine(
Values((Interpolation)INTER_AREA),
Bool()));
OCL_INSTANTIATE_TEST_CASE_P(ImgprocWarp, Remap_INTER_LINEAR, Combine(
Values(CV_8U, CV_16U, CV_32F),
Values(1, 4),
Values(std::pair<MatType, MatType>((MatType)CV_32FC1, (MatType)CV_32FC1),
std::pair<MatType, MatType>((MatType)CV_16SC2, (MatType)CV_16UC1),
std::pair<MatType, MatType>((MatType)CV_32FC2, noType)),
Values((Border)BORDER_CONSTANT,
(Border)BORDER_REPLICATE,
(Border)BORDER_WRAP,
(Border)BORDER_REFLECT,
(Border)BORDER_REFLECT_101),
Bool()));
OCL_INSTANTIATE_TEST_CASE_P(ImgprocWarp, Remap_INTER_NEAREST, Combine(
Values(CV_8U, CV_16U, CV_32F),
Values(1, 4),
Values(std::pair<MatType, MatType>((MatType)CV_32FC1, (MatType)CV_32FC1),
std::pair<MatType, MatType>((MatType)CV_32FC2, noType),
std::pair<MatType, MatType>((MatType)CV_16SC2, (MatType)CV_16UC1),
std::pair<MatType, MatType>((MatType)CV_16SC2, noType)),
Values((Border)BORDER_CONSTANT,
(Border)BORDER_REPLICATE,
(Border)BORDER_WRAP,
(Border)BORDER_REFLECT,
(Border)BORDER_REFLECT_101),
Bool()));
} } // namespace cvtest::ocl
#endif // HAVE_OPENCL

@ -306,6 +306,7 @@ IMPLEMENT_PARAM_CLASS(Channels, int)
#define OCL_ALL_CHANNELS Values(1, 2, 3, 4)
CV_ENUM(Interpolation, INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, INTER_AREA)
CV_ENUM(Border, BORDER_CONSTANT, BORDER_REPLICATE, BORDER_WRAP, BORDER_REFLECT, BORDER_REFLECT_101)
#define OCL_INSTANTIATE_TEST_CASE_P(prefix, test_case_name, generator) \
INSTANTIATE_TEST_CASE_P(OCL_ ## prefix, test_case_name, generator)

Loading…
Cancel
Save