diff --git a/cmake/OpenCVDetectInferenceEngine.cmake b/cmake/OpenCVDetectInferenceEngine.cmake index 923a4a7faa..371de6c41d 100644 --- a/cmake/OpenCVDetectInferenceEngine.cmake +++ b/cmake/OpenCVDetectInferenceEngine.cmake @@ -15,23 +15,25 @@ macro(ie_fail) return() endmacro() -if(NOT INF_ENGINE_ROOT_DIR OR NOT EXISTS "${INF_ENGINE_ROOT_DIR}/inference_engine/include/inference_engine.hpp") +if(NOT INF_ENGINE_ROOT_DIR OR NOT EXISTS "${INF_ENGINE_ROOT_DIR}/include/inference_engine.hpp") set(ie_root_paths "${INF_ENGINE_ROOT_DIR}") if(DEFINED ENV{INTEL_CVSDK_DIR}) list(APPEND ie_root_paths "$ENV{INTEL_CVSDK_DIR}") + list(APPEND ie_root_paths "$ENV{INTEL_CVSDK_DIR}/inference_engine") endif() if(DEFINED INTEL_CVSDK_DIR) list(APPEND ie_root_paths "${INTEL_CVSDK_DIR}") + list(APPEND ie_root_paths "${INTEL_CVSDK_DIR}/inference_engine") endif() if(WITH_INF_ENGINE AND NOT ie_root_paths) - list(APPEND ie_root_paths "/opt/intel/deeplearning_deploymenttoolkit/deployment_tools") + list(APPEND ie_root_paths "/opt/intel/deeplearning_deploymenttoolkit/deployment_tools/inference_engine") endif() - find_path(INF_ENGINE_ROOT_DIR inference_engine/include/inference_engine.hpp PATHS ${ie_root_paths}) + find_path(INF_ENGINE_ROOT_DIR include/inference_engine.hpp PATHS ${ie_root_paths}) endif() -set(INF_ENGINE_INCLUDE_DIRS "${INF_ENGINE_ROOT_DIR}/inference_engine/include" CACHE PATH "Path to Inference Engine include directory") +set(INF_ENGINE_INCLUDE_DIRS "${INF_ENGINE_ROOT_DIR}/include" CACHE PATH "Path to Inference Engine include directory") if(NOT INF_ENGINE_ROOT_DIR OR NOT EXISTS "${INF_ENGINE_ROOT_DIR}" @@ -42,12 +44,21 @@ if(NOT INF_ENGINE_ROOT_DIR endif() set(INF_ENGINE_LIBRARIES "") -foreach(lib inference_engine mklml_intel iomp5) + +set(ie_lib_list inference_engine) +if(UNIX) + list(APPEND ie_lib_list mklml_intel iomp5) +endif() + +foreach(lib ${ie_lib_list}) find_library(${lib} NAMES ${lib} + # For inference_engine HINTS ${IE_PLUGINS_PATH} HINTS "$ENV{IE_PLUGINS_PATH}" - HINTS ${INF_ENGINE_ROOT_DIR}/external/mklml_lnx/lib + # For mklml_intel, iomp5 + HINTS ${INTEL_CVSDK_DIR}/external/mklml_lnx/lib + HINTS ${INTEL_CVSDK_DIR}/inference_engine/external/mklml_lnx/lib ) if(NOT ${lib}) ie_fail() diff --git a/modules/dnn/perf/perf_net.cpp b/modules/dnn/perf/perf_net.cpp index 1d7c4f75ea..808bb0d86f 100644 --- a/modules/dnn/perf/perf_net.cpp +++ b/modules/dnn/perf/perf_net.cpp @@ -157,13 +157,16 @@ PERF_TEST_P_(DNNTestNetwork, OpenFace) PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_Caffe) { + if (backend == DNN_BACKEND_HALIDE) throw SkipTestException(""); processNet("dnn/MobileNetSSD_deploy.caffemodel", "dnn/MobileNetSSD_deploy.prototxt", "", Mat(cv::Size(300, 300), CV_32FC3), "detection_out", "caffe"); } PERF_TEST_P_(DNNTestNetwork, MobileNet_SSD_TensorFlow) { - if (backend == DNN_BACKEND_INFERENCE_ENGINE) throw SkipTestException(""); + if (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL || + backend == DNN_BACKEND_HALIDE) + throw SkipTestException(""); processNet("dnn/ssd_mobilenet_v1_coco.pb", "ssd_mobilenet_v1_coco.pbtxt", "", Mat(cv::Size(300, 300), CV_32FC3), "", "tensorflow"); } @@ -207,6 +210,13 @@ PERF_TEST_P_(DNNTestNetwork, opencv_face_detector) Mat(cv::Size(300, 300), CV_32FC3), "", "caffe"); } +PERF_TEST_P_(DNNTestNetwork, Inception_v2_SSD_TensorFlow) +{ + if (backend == DNN_BACKEND_HALIDE) throw SkipTestException(""); + processNet("dnn/ssd_inception_v2_coco_2017_11_17.pb", "ssd_inception_v2_coco_2017_11_17.pbtxt", "", + Mat(cv::Size(300, 300), CV_32FC3), "", "tensorflow"); +} + const tuple testCases[] = { #ifdef HAVE_HALIDE tuple(DNN_BACKEND_HALIDE, DNN_TARGET_CPU), diff --git a/modules/dnn/src/layers/concat_layer.cpp b/modules/dnn/src/layers/concat_layer.cpp index 8466285e5d..f8c0a27dbe 100644 --- a/modules/dnn/src/layers/concat_layer.cpp +++ b/modules/dnn/src/layers/concat_layer.cpp @@ -298,15 +298,16 @@ public: return Ptr(); } - virtual Ptr initInfEngine(const std::vector >&) + virtual Ptr initInfEngine(const std::vector >& inputs) { #ifdef HAVE_INF_ENGINE + InferenceEngine::DataPtr input = infEngineDataNode(inputs[0]); InferenceEngine::LayerParams lp; lp.name = name; lp.type = "Concat"; lp.precision = InferenceEngine::Precision::FP32; std::shared_ptr ieLayer(new InferenceEngine::ConcatLayer(lp)); - ieLayer->_axis = axis; + ieLayer->_axis = clamp(axis, input->dims.size()); return Ptr(new InfEngineBackendNode(ieLayer)); #endif // HAVE_INF_ENGINE return Ptr(); diff --git a/modules/dnn/src/layers/detection_output_layer.cpp b/modules/dnn/src/layers/detection_output_layer.cpp index 5b04bd6a4a..87b5d706d4 100644 --- a/modules/dnn/src/layers/detection_output_layer.cpp +++ b/modules/dnn/src/layers/detection_output_layer.cpp @@ -193,7 +193,7 @@ public: virtual bool supportBackend(int backendId) { return backendId == DNN_BACKEND_DEFAULT || - backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine(); + backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine() && !_locPredTransposed; } bool getMemoryShapes(const std::vector &inputs, diff --git a/modules/dnn/src/layers/elementwise_layers.cpp b/modules/dnn/src/layers/elementwise_layers.cpp index 86ff5a5055..dbbe6ca529 100644 --- a/modules/dnn/src/layers/elementwise_layers.cpp +++ b/modules/dnn/src/layers/elementwise_layers.cpp @@ -114,7 +114,7 @@ public: { return backendId == DNN_BACKEND_DEFAULT || backendId == DNN_BACKEND_HALIDE && haveHalide() || - backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine(); + backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine() && this->type != "Sigmoid"; } virtual Ptr tryAttach(const Ptr& node) @@ -397,8 +397,11 @@ struct ReLU6Functor #ifdef HAVE_INF_ENGINE InferenceEngine::CNNLayerPtr initInfEngine(InferenceEngine::LayerParams& lp) { - CV_Error(Error::StsNotImplemented, "ReLU6"); - return InferenceEngine::CNNLayerPtr(); + lp.type = "Clamp"; + std::shared_ptr ieLayer(new InferenceEngine::ClampLayer(lp)); + ieLayer->min_value = minValue; + ieLayer->max_value = maxValue; + return ieLayer; } #endif // HAVE_INF_ENGINE diff --git a/modules/dnn/src/layers/pooling_layer.cpp b/modules/dnn/src/layers/pooling_layer.cpp index aee2d63e3c..73d919f708 100644 --- a/modules/dnn/src/layers/pooling_layer.cpp +++ b/modules/dnn/src/layers/pooling_layer.cpp @@ -239,7 +239,7 @@ public: ieLayer->_stride_y = stride.height; ieLayer->_padding_x = pad.width; ieLayer->_padding_y = pad.height; - ieLayer->_exclude_pad = false; + ieLayer->_exclude_pad = type == AVE && padMode == "SAME"; ieLayer->params["rounding-type"] = ceilMode ? "ceil" : "floor"; if (type == MAX) ieLayer->_type = InferenceEngine::PoolingLayer::PoolType::MAX; diff --git a/modules/dnn/src/layers/prior_box_layer.cpp b/modules/dnn/src/layers/prior_box_layer.cpp index 96f1c740bb..5db55c302e 100644 --- a/modules/dnn/src/layers/prior_box_layer.cpp +++ b/modules/dnn/src/layers/prior_box_layer.cpp @@ -252,7 +252,8 @@ public: virtual bool supportBackend(int backendId) { return backendId == DNN_BACKEND_DEFAULT || - backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine(); + backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine() && + _scales.empty() && !_explicitSizes; } bool getMemoryShapes(const std::vector &inputs, diff --git a/modules/dnn/src/layers/shift_layer.cpp b/modules/dnn/src/layers/shift_layer.cpp index 9e1004ab1c..48b547c9cc 100644 --- a/modules/dnn/src/layers/shift_layer.cpp +++ b/modules/dnn/src/layers/shift_layer.cpp @@ -10,6 +10,7 @@ Implementation of shift layer, which adds up const values to blob. */ #include "../precomp.hpp" +#include "op_inf_engine.hpp" #include namespace cv @@ -26,6 +27,12 @@ public: CV_Assert(blobs.size() == 1); } + virtual bool supportBackend(int backendId) + { + return backendId == DNN_BACKEND_DEFAULT || + backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine(); + } + bool getMemoryShapes(const std::vector &inputs, const int requiredOutputs, std::vector &outputs, @@ -83,6 +90,52 @@ public: } } + virtual Ptr tryAttach(const Ptr& node) + { + switch (node->backendId) + { + case DNN_BACKEND_INFERENCE_ENGINE: + { +#ifdef HAVE_INF_ENGINE + auto base = node.dynamicCast(); + auto conv = std::dynamic_pointer_cast(base->layer); + if (conv) + { + fuseConvWeights(conv, Mat(), blobs[0]); + return base; + } +#endif // HAVE_INF_ENGINE + break; + } + } + return Ptr(); + } + + virtual Ptr initInfEngine(const std::vector >&) + { +#ifdef HAVE_INF_ENGINE + // Inference Engine has no layer just for biases. Create a linear + // transformation layer with ones weights. + InferenceEngine::LayerParams lp; + lp.name = name; + lp.type = "ScaleShift"; + lp.precision = InferenceEngine::Precision::FP32; + std::shared_ptr ieLayer(new InferenceEngine::ScaleShiftLayer(lp)); + + auto weights = InferenceEngine::make_shared_blob(InferenceEngine::Precision::FP32, + {blobs[0].total()}); + weights->allocate(); + + std::vector ones(blobs[0].total(), 1); + weights->set(ones); + ieLayer->_weights = weights; + + ieLayer->_biases = wrapToInfEngineBlob(blobs[0]); + return Ptr(new InfEngineBackendNode(ieLayer)); +#endif // HAVE_INF_ENGINE + return Ptr(); + } + virtual int64 getFLOPS(const std::vector &inputs, const std::vector &outputs) const { diff --git a/modules/dnn/src/op_inf_engine.cpp b/modules/dnn/src/op_inf_engine.cpp index 6c245fa6cf..75503885f8 100644 --- a/modules/dnn/src/op_inf_engine.cpp +++ b/modules/dnn/src/op_inf_engine.cpp @@ -54,7 +54,8 @@ static InferenceEngine::DataPtr wrapToInfEngineDataNode(const Mat& m, const std: std::vector reversedShape(&m.size[0], &m.size[0] + m.dims); std::reverse(reversedShape.begin(), reversedShape.end()); return InferenceEngine::DataPtr( - new InferenceEngine::Data(name, reversedShape, InferenceEngine::Precision::FP32) + new InferenceEngine::Data(name, reversedShape, InferenceEngine::Precision::FP32, + InferenceEngine::Layout::ANY) ); } @@ -122,37 +123,6 @@ void InfEngineBackendNet::getOutputsInfo(InferenceEngine::OutputsDataMap &output // Returns input references that aren't connected to internal outputs. void InfEngineBackendNet::getInputsInfo(InferenceEngine::InputsDataMap &inputs_) noexcept { - if (inputs.empty()) - { - std::map internalOutputs; - for (const auto& l : layers) - { - for (const InferenceEngine::DataWeakPtr& ptr : l->insData) - { - InferenceEngine::DataPtr inp(ptr); - if (internalOutputs.find(inp->name) == internalOutputs.end()) - { - InferenceEngine::InputInfo::Ptr inpInfo(new InferenceEngine::InputInfo()); - inpInfo->setInputData(inp); - if (inputs.find(inp->name) == inputs.end()) - inputs[inp->name] = inpInfo; - } - } - for (const InferenceEngine::DataPtr& out : l->outData) - { - // TODO: Replace to uniquness assertion. - if (internalOutputs.find(out->name) == internalOutputs.end()) - internalOutputs[out->name] = out; - } - } - CV_Assert(layers.empty() || !inputs.empty()); - } - inpBlobs.clear(); - for (const auto& it : inputs) - { - CV_Assert(allBlobs.find(it.first) != allBlobs.end()); - inpBlobs[it.first] = allBlobs[it.first]; - } inputs_ = inputs; } @@ -239,7 +209,31 @@ size_t InfEngineBackendNet::getBatchSize() const noexcept void InfEngineBackendNet::initEngine() { - CV_Assert(!isInitialized()); + CV_Assert(!isInitialized(), !layers.empty()); + + // Collect all external input blobs. + std::map internalOutputs; + for (const auto& l : layers) + { + for (const InferenceEngine::DataWeakPtr& ptr : l->insData) + { + InferenceEngine::DataPtr inp(ptr); + if (internalOutputs.find(inp->name) == internalOutputs.end()) + { + InferenceEngine::InputInfo::Ptr inpInfo(new InferenceEngine::InputInfo()); + inpInfo->setInputData(inp); + if (inputs.find(inp->name) == inputs.end()) + inputs[inp->name] = inpInfo; + } + } + for (const InferenceEngine::DataPtr& out : l->outData) + { + // TODO: Replace to uniquness assertion. + if (internalOutputs.find(out->name) == internalOutputs.end()) + internalOutputs[out->name] = out; + } + } + CV_Assert(!inputs.empty()); // Add all unconnected blobs to output blobs. InferenceEngine::OutputsDataMap unconnectedOuts; @@ -258,13 +252,21 @@ void InfEngineBackendNet::initEngine() unconnectedOuts.erase(InferenceEngine::DataPtr(inp)->name); } } - CV_Assert(layers.empty() || !unconnectedOuts.empty()); + CV_Assert(!unconnectedOuts.empty()); for (auto it = unconnectedOuts.begin(); it != unconnectedOuts.end(); ++it) { outputs[it->first] = it->second; } + // Set up input blobs. + inpBlobs.clear(); + for (const auto& it : inputs) + { + CV_Assert(allBlobs.find(it.first) != allBlobs.end()); + inpBlobs[it.first] = allBlobs[it.first]; + } + // Set up output blobs. outBlobs.clear(); for (const auto& it : outputs) @@ -273,7 +275,11 @@ void InfEngineBackendNet::initEngine() outBlobs[it.first] = allBlobs[it.first]; } +#ifdef _WIN32 + engine = InferenceEngine::InferenceEnginePluginPtr("MKLDNNPlugin.dll"); +#else engine = InferenceEngine::InferenceEnginePluginPtr("libMKLDNNPlugin.so"); +#endif // _WIN32 InferenceEngine::ResponseDesc resp; InferenceEngine::StatusCode status = engine->LoadNetwork(*this, &resp); if (status != InferenceEngine::StatusCode::OK) @@ -305,7 +311,8 @@ void InfEngineBackendNet::forward() static inline Mat infEngineBlobToMat(const InferenceEngine::Blob::Ptr& blob) { // NOTE: Inference Engine sizes are reversed. - std::vector size(blob->dims().begin(), blob->dims().end()); + std::vector dims = blob->dims(); + std::vector size(dims.begin(), dims.end()); std::reverse(size.begin(), size.end()); return Mat(size, CV_32F, (void*)blob->buffer()); } @@ -313,28 +320,32 @@ static inline Mat infEngineBlobToMat(const InferenceEngine::Blob::Ptr& blob) void fuseConvWeights(const std::shared_ptr& conv, const Mat& w, const Mat& b) { - // Get convolution's weights. Clone the data because Inference Engine can host it - // and conv->_weights->allocate() below will deallocate it. - Mat originWeights = infEngineBlobToMat(conv->_weights).clone(); - - // Create new weights blob. - conv->_weights = InferenceEngine::make_shared_blob( - InferenceEngine::Precision::FP32, conv->_weights->dims()); - conv->_weights->allocate(); - - // Convolution weights have OIHW data layout. - // (conv(I) + b1 ) * w + b2 - // w*conv(I) + b1 * w + b2 - Mat fusedWeights = infEngineBlobToMat(conv->_weights); - - const int numChannels = fusedWeights.size[0]; - // Mat weights = blobs[0].reshape(1, 1); - // Mat bias = hasBias ? blobs[1].reshape(1, 1) : Mat(); - CV_Assert(numChannels == w.total()); - CV_Assert(b.empty() || numChannels == b.total()); - for (int i = 0; i < numChannels; ++i) + CV_Assert(!w.empty() || !b.empty()); + if (!w.empty()) { - cv::multiply(slice(originWeights, i), w.at(i), slice(fusedWeights, i)); + // Get convolution's weights. Clone the data because Inference Engine can host it + // and conv->_weights->allocate() below will deallocate it. + Mat originWeights = infEngineBlobToMat(conv->_weights).clone(); + + // Create new weights blob. + conv->_weights = InferenceEngine::make_shared_blob( + InferenceEngine::Precision::FP32, conv->_weights->dims()); + conv->_weights->allocate(); + + // Convolution weights have OIHW data layout. + // (conv(I) + b1 ) * w + b2 + // w*conv(I) + b1 * w + b2 + Mat fusedWeights = infEngineBlobToMat(conv->_weights); + + const int numChannels = fusedWeights.size[0]; + // Mat weights = blobs[0].reshape(1, 1); + // Mat bias = hasBias ? blobs[1].reshape(1, 1) : Mat(); + CV_Assert(numChannels == w.total()); + CV_Assert(b.empty() || numChannels == b.total()); + for (int i = 0; i < numChannels; ++i) + { + cv::multiply(slice(originWeights, i), w.at(i), slice(fusedWeights, i)); + } } if (conv->_biases) { @@ -345,8 +356,10 @@ void fuseConvWeights(const std::shared_ptr& c InferenceEngine::Precision::FP32, conv->_biases->dims()); conv->_biases->allocate(); Mat fusedBiases = infEngineBlobToMat(conv->_biases); + originBiases.copyTo(fusedBiases); - cv::multiply(w.reshape(1, fusedBiases.dims, &fusedBiases.size[0]), originBiases, fusedBiases); + if (!w.empty()) + cv::multiply(w.reshape(1, fusedBiases.dims, &fusedBiases.size[0]), fusedBiases, fusedBiases); if (!b.empty()) cv::add(fusedBiases, b.reshape(1, fusedBiases.dims, &fusedBiases.size[0]), fusedBiases); } diff --git a/modules/dnn/test/test_backends.cpp b/modules/dnn/test/test_backends.cpp index 58b25f3a45..6ed926215e 100644 --- a/modules/dnn/test/test_backends.cpp +++ b/modules/dnn/test/test_backends.cpp @@ -162,8 +162,9 @@ TEST_P(DNNTestNetwork, ENet) 2e-5, 0.15); } -TEST_P(DNNTestNetwork, MobileNetSSD) +TEST_P(DNNTestNetwork, MobileNet_SSD_Caffe) { + if (backend == DNN_BACKEND_HALIDE) throw SkipTestException(""); Mat sample = imread(findDataFile("dnn/street.png", false)); Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false); @@ -171,6 +172,17 @@ TEST_P(DNNTestNetwork, MobileNetSSD) inp, "detection_out", "caffe"); } +TEST_P(DNNTestNetwork, MobileNet_SSD_TensorFlow) +{ + if (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL || + backend == DNN_BACKEND_HALIDE) + throw SkipTestException(""); + Mat sample = imread(findDataFile("dnn/street.png", false)); + Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false); + processNet("dnn/ssd_mobilenet_v1_coco.pb", "dnn/ssd_mobilenet_v1_coco.pbtxt", + inp, "detection_out", "tensorflow"); +} + TEST_P(DNNTestNetwork, SSD_VGG16) { if (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL || @@ -221,6 +233,17 @@ TEST_P(DNNTestNetwork, opencv_face_detector) inp, "detection_out", "caffe"); } +TEST_P(DNNTestNetwork, Inception_v2_SSD_TensorFlow) +{ + if (backend == DNN_BACKEND_DEFAULT && target == DNN_TARGET_OPENCL || + backend == DNN_BACKEND_HALIDE) + throw SkipTestException(""); + Mat sample = imread(findDataFile("dnn/street.png", false)); + Mat inp = blobFromImage(sample, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), false); + processNet("dnn/ssd_inception_v2_coco_2017_11_17.pb", "dnn/ssd_inception_v2_coco_2017_11_17.pbtxt", + inp, "detection_out", "tensorflow"); +} + const tuple testCases[] = { #ifdef HAVE_HALIDE tuple(DNN_BACKEND_HALIDE, DNN_TARGET_CPU),