Update train_HOG.cpp

pull/17925/head
Suleyman TURKMEN 4 years ago
parent 5bfa43f7d5
commit 7e943808b6
  1. 26
      samples/cpp/train_HOG.cpp

@ -74,9 +74,9 @@ void load_images( const String & dirname, vector< Mat > & img_lst, bool showImag
for ( size_t i = 0; i < files.size(); ++i )
{
Mat img = imread( files[i] ); // load the image
if ( img.empty() ) // invalid image, skip it.
if ( img.empty() )
{
cout << files[i] << " is invalid!" << endl;
cout << files[i] << " is invalid!" << endl; // invalid image, skip it.
continue;
}
@ -95,16 +95,13 @@ void sample_neg( const vector< Mat > & full_neg_lst, vector< Mat > & neg_lst, co
box.width = size.width;
box.height = size.height;
const int size_x = box.width;
const int size_y = box.height;
srand( (unsigned int)time( NULL ) );
for ( size_t i = 0; i < full_neg_lst.size(); i++ )
if ( full_neg_lst[i].cols > box.width && full_neg_lst[i].rows > box.height )
{
box.x = rand() % ( full_neg_lst[i].cols - size_x );
box.y = rand() % ( full_neg_lst[i].rows - size_y );
box.x = rand() % ( full_neg_lst[i].cols - box.width );
box.y = rand() % ( full_neg_lst[i].rows - box.height );
Mat roi = full_neg_lst[i]( box );
neg_lst.push_back( roi.clone() );
}
@ -259,7 +256,7 @@ int main( int argc, char** argv )
load_images( pos_dir, pos_lst, visualization );
if ( pos_lst.size() > 0 )
{
clog << "...[done]" << endl;
clog << "...[done] " << pos_lst.size() << " files." << endl;
}
else
{
@ -287,22 +284,25 @@ int main( int argc, char** argv )
}
clog << "Negative images are being loaded...";
load_images( neg_dir, full_neg_lst, false );
load_images( neg_dir, full_neg_lst, visualization );
clog << "...[done] " << full_neg_lst.size() << " files." << endl;
clog << "Negative images are being processed...";
sample_neg( full_neg_lst, neg_lst, pos_image_size );
clog << "...[done]" << endl;
clog << "...[done] " << neg_lst.size() << " files." << endl;
clog << "Histogram of Gradients are being calculated for positive images...";
computeHOGs( pos_image_size, pos_lst, gradient_lst, flip_samples );
size_t positive_count = gradient_lst.size();
labels.assign( positive_count, +1 );
clog << "...[done] ( positive count : " << positive_count << " )" << endl;
clog << "...[done] ( positive images count : " << positive_count << " )" << endl;
clog << "Histogram of Gradients are being calculated for negative images...";
computeHOGs( pos_image_size, neg_lst, gradient_lst, flip_samples );
size_t negative_count = gradient_lst.size() - positive_count;
labels.insert( labels.end(), negative_count, -1 );
CV_Assert( positive_count < labels.size() );
clog << "...[done] ( negative count : " << negative_count << " )" << endl;
clog << "...[done] ( negative images count : " << negative_count << " )" << endl;
Mat train_data;
convert_to_ml( gradient_lst, train_data );
@ -324,7 +324,7 @@ int main( int argc, char** argv )
if ( train_twice )
{
clog << "Testing trained detector on negative images. This may take a few minutes...";
clog << "Testing trained detector on negative images. This might take a few minutes...";
HOGDescriptor my_hog;
my_hog.winSize = pos_image_size;

Loading…
Cancel
Save