mirror of https://github.com/opencv/opencv.git
Merge pull request #25469 from mshabunin:cpp-emd
imgproc: refactor EMD to reduce C-API usage #25469 - added more tests for EMD - refactored to remove CvArr - used BufferArea for memory allocations - renamed functions and variables and formatted the code - kept legacy functions intact in separate headerpull/25486/head
parent
5b0843728e
commit
7e56908306
6 changed files with 1258 additions and 77 deletions
File diff suppressed because it is too large
Load Diff
@ -1,93 +1,250 @@ |
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// Intel License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of Intel Corporation may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html
|
||||
|
||||
#include "opencv2/imgproc.hpp" |
||||
#include "test_precomp.hpp" |
||||
|
||||
using namespace cv; |
||||
using namespace std; |
||||
|
||||
namespace opencv_test { namespace { |
||||
|
||||
class CV_EMDTest : public cvtest::BaseTest |
||||
{ |
||||
public: |
||||
CV_EMDTest(); |
||||
protected: |
||||
void run(int); |
||||
}; |
||||
//==============================================================================
|
||||
// Utility
|
||||
|
||||
template <typename T> |
||||
inline T sqr(T val) |
||||
{ |
||||
return val * val; |
||||
} |
||||
|
||||
CV_EMDTest::CV_EMDTest() |
||||
inline static float calcEMD(Mat w1, Mat w2, Mat& flow, int dist, int dims) |
||||
{ |
||||
float mass1 = 0.f, mass2 = 0.f, work = 0.f; |
||||
for (int i = 0; i < flow.rows; ++i) |
||||
{ |
||||
mass1 += w1.at<float>(i, 0); |
||||
for (int j = 0; j < flow.cols; ++j) |
||||
{ |
||||
if (i == 0) |
||||
mass2 += w2.at<float>(j, 0); |
||||
float dist_ = 0.f; |
||||
switch (dist) |
||||
{ |
||||
case DIST_L1: |
||||
{ |
||||
for (int k = 1; k <= dims; ++k) |
||||
{ |
||||
dist_ += abs(w1.at<float>(i, k) - w2.at<float>(j, k)); |
||||
} |
||||
break; |
||||
} |
||||
case DIST_L2: |
||||
{ |
||||
for (int k = 1; k <= dims; ++k) |
||||
{ |
||||
dist_ += sqr(w1.at<float>(i, k) - w2.at<float>(j, k)); |
||||
} |
||||
dist_ = sqrt(dist_); |
||||
break; |
||||
} |
||||
case DIST_C: |
||||
{ |
||||
for (int k = 1; k <= dims; ++k) |
||||
{ |
||||
const float val = abs(w1.at<float>(i, k) - w2.at<float>(j, k)); |
||||
if (val > dist_) |
||||
dist_ = val; |
||||
} |
||||
break; |
||||
} |
||||
} |
||||
const float weight = flow.at<float>(i, j); |
||||
work += dist_ * weight; |
||||
} |
||||
} |
||||
return work / max(mass1, mass2); |
||||
} |
||||
|
||||
void CV_EMDTest::run( int ) |
||||
//==============================================================================
|
||||
|
||||
TEST(Imgproc_EMD, regression) |
||||
{ |
||||
int code = cvtest::TS::OK; |
||||
const double success_error_level = 1e-6; |
||||
#define M 10000 |
||||
double emd0 = 2460./210; |
||||
static float cost[] = |
||||
// input data
|
||||
const float M = 10000; |
||||
Matx<float, 4, 1> w1 {50, 60, 50, 50}; |
||||
Matx<float, 5, 1> w2 {30, 20, 70, 30, 60}; |
||||
Matx<float, 4, 5> cost {16, 16, 13, 22, 17, 14, 14, 13, 19, 15, |
||||
19, 19, 20, 23, M, M, 0, M, 0, 0}; |
||||
|
||||
// expected results
|
||||
const double emd0 = 2460. / 210; |
||||
Matx<float, 4, 5> flow0 {0, 0, 50, 0, 0, 0, 0, 20, 0, 40, 30, 20, 0, 0, 0, 0, 0, 0, 30, 20}; |
||||
|
||||
// basic call with cost
|
||||
{ |
||||
float emd = 0.f; |
||||
ASSERT_NO_THROW(emd = EMD(w1, w2, DIST_USER, cost)); |
||||
EXPECT_NEAR(emd, emd0, 1e-6 * emd0); |
||||
} |
||||
|
||||
// basic call with cost and flow output
|
||||
{ |
||||
16, 16, 13, 22, 17, |
||||
14, 14, 13, 19, 15, |
||||
19, 19, 20, 23, M, |
||||
M , 0, M, 0, 0 |
||||
}; |
||||
static float w1[] = { 50, 60, 50, 50 }, |
||||
w2[] = { 30, 20, 70, 30, 60 }; |
||||
Mat _w1(4, 1, CV_32F, w1); |
||||
Mat _w2(5, 1, CV_32F, w2); |
||||
Mat _cost(_w1.rows, _w2.rows, CV_32F, cost); |
||||
|
||||
float emd = EMD( _w1, _w2, -1, _cost ); |
||||
if( fabs( emd - emd0 ) > success_error_level*emd0 ) |
||||
Mat flow; |
||||
float emd = 0.f; |
||||
ASSERT_NO_THROW(emd = EMD(w1, w2, DIST_USER, cost, nullptr, flow)); |
||||
EXPECT_NEAR(emd, emd0, 1e-6 * emd0); |
||||
EXPECT_MAT_NEAR(Mat(flow0), flow, 1e-6); |
||||
} |
||||
// no cost and DIST_USER - error
|
||||
{ |
||||
ts->printf( cvtest::TS::LOG, |
||||
"The computed distance is %.2f, while it should be %.2f\n", emd, emd0 ); |
||||
code = cvtest::TS::FAIL_BAD_ACCURACY; |
||||
Mat flow; |
||||
EXPECT_THROW(EMD(w1, w2, DIST_USER, noArray(), nullptr, flow), cv::Exception); |
||||
EXPECT_THROW(EMD(w1, w2, DIST_USER), cv::Exception); |
||||
} |
||||
} |
||||
|
||||
TEST(Imgproc_EMD, distance_types) |
||||
{ |
||||
// 1D (sum = 210)
|
||||
Matx<float, 4, 2> w1 {50, 1, 60, 2, 50, 3, 50, 4}; |
||||
Matx<float, 5, 2> w2 {30, 1, 20, 2, 70, 3, 30, 4, 60, 5}; |
||||
|
||||
// 2D (sum = 210)
|
||||
Matx<float, 4, 3> w3 {50, 0, 0, 60, 0, 1, 50, 1, 0, 50, 1, 1}; |
||||
Matx<float, 5, 3> w4 {20, 0, 1, 70, 1, 0, 30, 1, 1, 60, 2, 2, 30, 3, 3}; |
||||
|
||||
// basic call with all distance types
|
||||
{ |
||||
const vector<DistanceTypes> good_types {DIST_L1, DIST_L2, DIST_C}; |
||||
for (const auto& dt : good_types) |
||||
{ |
||||
SCOPED_TRACE(cv::format("dt=%d", dt)); |
||||
float emd = 0.f; |
||||
Mat flow; |
||||
// 1D
|
||||
{ |
||||
ASSERT_NO_THROW(emd = EMD(w1, w2, dt, noArray(), nullptr, flow)); |
||||
const float emd0 = calcEMD(Mat(w1), Mat(w2), flow, dt, 1); |
||||
EXPECT_NEAR(emd0, emd, 1e-6); |
||||
} |
||||
// 2D
|
||||
{ |
||||
ASSERT_NO_THROW(emd = EMD(w3, w4, dt, noArray(), nullptr, flow)); |
||||
const float emd0 = calcEMD(Mat(w3), Mat(w4), flow, dt, 2); |
||||
EXPECT_NEAR(emd0, emd, 1e-6); |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
typedef testing::TestWithParam<int> Imgproc_EMD_dist; |
||||
|
||||
TEST_P(Imgproc_EMD_dist, random_flow_verify) |
||||
{ |
||||
const int dist = GetParam(); |
||||
for (size_t iter = 0; iter < 100; ++iter) |
||||
{ |
||||
SCOPED_TRACE(cv::format("iter=%zu", iter)); |
||||
RNG& rng = TS::ptr()->get_rng(); |
||||
const int dims = rng.uniform(1, 10); |
||||
Mat w1(rng.uniform(1, 10), dims + 1, CV_32FC1); |
||||
Mat w2(rng.uniform(1, 10), dims + 1, CV_32FC1); |
||||
|
||||
if( code < 0 ) |
||||
ts->set_failed_test_info( code ); |
||||
// weights > 0
|
||||
{ |
||||
Mat w1_weights = w1.col(0); |
||||
Mat w2_weights = w2.col(0); |
||||
cvtest::randUni(rng, w1_weights, 0, 100); |
||||
cvtest::randUni(rng, w2_weights, 0, 100); |
||||
} |
||||
|
||||
// coord
|
||||
{ |
||||
Mat w1_coord = w1.colRange(1, dims + 1); |
||||
Mat w2_coord = w2.colRange(1, dims + 1); |
||||
cvtest::randUni(rng, w1_coord, -10, +10); |
||||
cvtest::randUni(rng, w2_coord, -10, +10); |
||||
} |
||||
|
||||
float emd1 = 0.f, emd2 = 0.f; |
||||
const float eps = 1e-5f; |
||||
Mat flow; |
||||
{ |
||||
ASSERT_NO_THROW(emd1 = EMD(w1, w2, dist, noArray(), nullptr, flow)); |
||||
const float emd0 = calcEMD(w1, w2, flow, dist, dims); |
||||
EXPECT_NEAR(emd0, emd1, eps); |
||||
} |
||||
{ |
||||
ASSERT_NO_THROW(emd2 = EMD(w2, w1, dist, noArray(), nullptr, flow)); |
||||
const float emd0 = calcEMD(w2, w1, flow, dist, dims); |
||||
EXPECT_NEAR(emd0, emd2, eps); |
||||
} |
||||
EXPECT_NEAR(emd1, emd2, eps); |
||||
} |
||||
} |
||||
|
||||
TEST(Imgproc_EMD, regression) { CV_EMDTest test; test.safe_run(); } |
||||
INSTANTIATE_TEST_CASE_P(, Imgproc_EMD_dist, testing::Values(DIST_L1, DIST_L2, DIST_C)); |
||||
|
||||
|
||||
TEST(Imgproc_EMD, invalid) |
||||
{ |
||||
Matx<float, 4, 2> w1 {50, 1, 60, 2, 50, 3, 50, 4}; |
||||
Matx<float, 5, 2> w2 {30, 1, 20, 2, 70, 3, 30, 4, 60, 5}; |
||||
|
||||
// empty signature
|
||||
{ |
||||
Mat empty; |
||||
EXPECT_THROW(EMD(empty, w2, DIST_USER), cv::Exception); |
||||
EXPECT_THROW(EMD(w1, empty, DIST_USER), cv::Exception); |
||||
} |
||||
|
||||
// zero total weight, negative weight
|
||||
{ |
||||
Matx<float, 3, 1> wz {0, 0, 0}; |
||||
Matx<float, 3, 2> wz1 {0, 1, 0, 2, 0, 3}; |
||||
Matx<float, 3, 1> wn {0, 3, -2}; |
||||
Matx<float, 3, 2> wn1 {0, 1, 3, 2, -2, 3}; |
||||
EXPECT_THROW(EMD(wz, w2, DIST_USER), cv::Exception); |
||||
EXPECT_THROW(EMD(wz1, w2, DIST_USER), cv::Exception); |
||||
EXPECT_THROW(EMD(wn, w2, DIST_USER), cv::Exception); |
||||
EXPECT_THROW(EMD(wn1, w2, DIST_USER), cv::Exception); |
||||
} |
||||
|
||||
// user distance type, but no cost matrix provided or is wrong
|
||||
{ |
||||
Mat cost(3, 3, CV_32FC1, Scalar::all(0)), cost8u(4, 5, CV_8UC1, Scalar::all(0)), empty; |
||||
EXPECT_THROW(EMD(w1, w2, DIST_USER, noArray()), cv::Exception); |
||||
EXPECT_THROW(EMD(w1, w2, DIST_USER, empty), cv::Exception); |
||||
EXPECT_THROW(EMD(w1, w2, DIST_USER, cost8u), cv::Exception); |
||||
EXPECT_THROW(EMD(w1, w2, DIST_USER, cost), cv::Exception); |
||||
} |
||||
|
||||
// lower_bound is set together with cost
|
||||
{ |
||||
Mat cost(4, 5, CV_32FC1, Scalar::all(0)); |
||||
float bound = 0.f; |
||||
EXPECT_THROW(EMD(w1, w2, DIST_USER, cost, &bound), cv::Exception); |
||||
} |
||||
|
||||
// zero dimensions with non-user distance type
|
||||
const vector<DistanceTypes> good_types {DIST_L1, DIST_L2, DIST_C}; |
||||
for (const auto& dt : good_types) |
||||
{ |
||||
SCOPED_TRACE(cv::format("dt=%d", dt)); |
||||
Matx<float, 4, 1> w01 {20, 30, 40, 50}; |
||||
Matx<float, 5, 1> w02 {20, 30, 40, 50, 10}; |
||||
EXPECT_THROW(EMD(w01, w02, dt), cv::Exception); |
||||
} |
||||
|
||||
// wrong distance type
|
||||
const vector<DistanceTypes> bad_types {DIST_L12, DIST_FAIR, DIST_WELSCH, DIST_HUBER}; |
||||
for (const auto& dt : bad_types) |
||||
{ |
||||
SCOPED_TRACE(cv::format("dt=%d", dt)); |
||||
EXPECT_THROW(EMD(w1, w2, dt), cv::Exception); |
||||
} |
||||
} |
||||
|
||||
}} // namespace
|
||||
/* End of file. */ |
||||
}} // namespace opencv_test
|
||||
|
Loading…
Reference in new issue