|
|
|
@ -578,6 +578,19 @@ void ORB::operator()(const cv::Mat &image, const cv::Mat &mask, std::vector<cv:: |
|
|
|
|
for (std::vector<cv::KeyPoint>::iterator keypoint = keypoints_in_out.begin(), keypoint_end = keypoints_in_out.end(); keypoint |
|
|
|
|
!= keypoint_end; ++keypoint) |
|
|
|
|
all_keypoints[keypoint->octave].push_back(*keypoint); |
|
|
|
|
|
|
|
|
|
// Make sure we rescale the coordinates
|
|
|
|
|
for (unsigned int level = 0; level < params_.n_levels_; ++level) |
|
|
|
|
{ |
|
|
|
|
if (level == params_.first_level_) |
|
|
|
|
continue; |
|
|
|
|
|
|
|
|
|
std::vector<cv::KeyPoint> & keypoints = all_keypoints[level]; |
|
|
|
|
float scale = 1.0f / std::pow(params_.scale_factor_, float(level - params_.first_level_)); |
|
|
|
|
for (std::vector<cv::KeyPoint>::iterator keypoint = keypoints.begin(), keypoint_end = keypoints.end(); keypoint |
|
|
|
|
!= keypoint_end; ++keypoint) |
|
|
|
|
keypoint->pt *= scale; |
|
|
|
|
} |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
keypoints_in_out.clear(); |
|
|
|
@ -593,10 +606,9 @@ void ORB::operator()(const cv::Mat &image, const cv::Mat &mask, std::vector<cv:: |
|
|
|
|
// integral image
|
|
|
|
|
computeIntegralImage(working_mat, level, integral_image); |
|
|
|
|
|
|
|
|
|
// Compute the features
|
|
|
|
|
// Get the features and compute their orientation
|
|
|
|
|
std::vector<cv::KeyPoint> & keypoints = all_keypoints[level]; |
|
|
|
|
if (do_keypoints) |
|
|
|
|
computeOrientation(working_mat, integral_image, level, keypoints); |
|
|
|
|
computeOrientation(working_mat, integral_image, level, keypoints); |
|
|
|
|
|
|
|
|
|
// Compute the descriptors
|
|
|
|
|
cv::Mat desc; |
|
|
|
@ -653,9 +665,6 @@ void ORB::computeKeyPoints(const std::vector<cv::Mat>& image_pyramid, const std: |
|
|
|
|
{ |
|
|
|
|
all_keypoints_out.resize(params_.n_levels_); |
|
|
|
|
|
|
|
|
|
std::vector<cv::KeyPoint> all_keypoints; |
|
|
|
|
all_keypoints.reserve(2 * n_features_); |
|
|
|
|
|
|
|
|
|
// half_patch_size_ for orientation, 4 for Harris
|
|
|
|
|
unsigned int edge_threshold = std::max(std::max(half_patch_size_, 4), params_.edge_threshold_); |
|
|
|
|
|
|
|
|
@ -663,7 +672,7 @@ void ORB::computeKeyPoints(const std::vector<cv::Mat>& image_pyramid, const std: |
|
|
|
|
{ |
|
|
|
|
all_keypoints_out[level].reserve(n_features_per_level_[level]); |
|
|
|
|
|
|
|
|
|
std::vector<cv::KeyPoint> keypoints; |
|
|
|
|
std::vector<cv::KeyPoint> & keypoints = all_keypoints_out[level]; |
|
|
|
|
|
|
|
|
|
// Detect FAST features, 20 is a good threshold
|
|
|
|
|
cv::FastFeatureDetector fd(20, true); |
|
|
|
@ -678,21 +687,14 @@ void ORB::computeKeyPoints(const std::vector<cv::Mat>& image_pyramid, const std: |
|
|
|
|
// Compute the Harris cornerness (better scoring than FAST)
|
|
|
|
|
HarrisResponse h(image_pyramid[level]); |
|
|
|
|
h(keypoints); |
|
|
|
|
//cull to the final desired level, using the new harris scores.
|
|
|
|
|
//cull to the final desired level, using the new Harris scores.
|
|
|
|
|
cull(keypoints, n_features_per_level_[level]); |
|
|
|
|
|
|
|
|
|
// Set the level of the coordinates
|
|
|
|
|
for (std::vector<cv::KeyPoint>::iterator keypoint = keypoints.begin(), keypoint_end = keypoints.end(); keypoint |
|
|
|
|
!= keypoint_end; ++keypoint) |
|
|
|
|
keypoint->octave = level; |
|
|
|
|
|
|
|
|
|
all_keypoints.insert(all_keypoints.end(), keypoints.begin(), keypoints.end()); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
// Cluster the keypoints
|
|
|
|
|
for (std::vector<cv::KeyPoint>::iterator keypoint = all_keypoints.begin(), keypoint_end = all_keypoints.end(); keypoint |
|
|
|
|
!= keypoint_end; ++keypoint) |
|
|
|
|
all_keypoints_out[keypoint->octave].push_back(*keypoint); |
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
/** Compute the ORB keypoint orientations
|
|
|
|
|