@ -14,6 +14,34 @@
| [Faster-RCNN ](https://github.com/rbgirshick/py-faster-rcnn ) | `1.0` | `800x600` | `102.9801, 115.9465, 122.7717` | BGR |
| [R-FCN ](https://github.com/YuwenXiong/py-R-FCN ) | `1.0` | `800x600` | `102.9801 115.9465 122.7717` | BGR |
#### Face detection
[An origin model ](https://github.com/opencv/opencv/tree/master/samples/dnn/face_detector )
with single precision floating point weights has been quantized using [TensorFlow framework ](https://www.tensorflow.org/ ).
To achieve the best accuracy run the model on BGR images resized to `300x300` applying mean subtraction
of values `(104, 177, 123)` for each blue, green and red channels correspondingly.
The following are accuracy metrics obtained using [COCO object detection evaluation
tool](http://cocodataset.org/#detections-eval) on [FDDB dataset ](http://vis-www.cs.umass.edu/fddb/ )
(see [script ](https://github.com/opencv/opencv/blob/master/modules/dnn/misc/face_detector_accuracy.py ))
applying resize to `300x300` and keeping an origin images' sizes.
```
AP - Average Precision | FP32/FP16 | UINT8 | FP32/FP16 | UINT8 |
AR - Average Recall | 300x300 | 300x300 | any size | any size |
--------------------------------------------------|-----------|----------------|-----------|----------------|
AP @[ IoU=0.50:0.95 | area= all | maxDets=100 ] | 0.408 | 0.408 | 0.378 | 0.328 (-0.050) |
AP @[ IoU=0.50 | area= all | maxDets=100 ] | 0.849 | 0.849 | 0.797 | 0.790 (-0.007) |
AP @[ IoU=0.75 | area= all | maxDets=100 ] | 0.251 | 0.251 | 0.208 | 0.140 (-0.068) |
AP @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.050 | 0.051 (+0.001) | 0.107 | 0.070 (-0.037) |
AP @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.381 | 0.379 (-0.002) | 0.380 | 0.368 (-0.012) |
AP @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.455 | 0.455 | 0.412 | 0.337 (-0.075) |
AR @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] | 0.299 | 0.299 | 0.279 | 0.246 (-0.033) |
AR @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] | 0.482 | 0.482 | 0.476 | 0.436 (-0.040) |
AR @[ IoU=0.50:0.95 | area= all | maxDets=100 ] | 0.496 | 0.496 | 0.491 | 0.451 (-0.040) |
AR @[ IoU=0.50:0.95 | area= small | maxDets=100 ] | 0.189 | 0.193 (+0.004) | 0.284 | 0.232 (-0.052) |
AR @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] | 0.481 | 0.480 (-0.001) | 0.470 | 0.458 (-0.012) |
AR @[ IoU=0.50:0.95 | area= large | maxDets=100 ] | 0.528 | 0.528 | 0.520 | 0.462 (-0.058) |
```
### Classification
| Model | Scale | Size WxH| Mean subtraction | Channels order |
|---------------|-------|-----------|--------------------|-------|