|
|
|
@ -1,35 +1,17 @@ |
|
|
|
|
import numpy as np |
|
|
|
|
import cv2 |
|
|
|
|
from common import anorm |
|
|
|
|
from functools import partial |
|
|
|
|
|
|
|
|
|
help_message = '''SURF image match |
|
|
|
|
''' |
|
|
|
|
Feature-based image matching sample. |
|
|
|
|
|
|
|
|
|
USAGE: findobj.py [ <image1> <image2> ] |
|
|
|
|
USAGE |
|
|
|
|
find_obj.py [ <image1> <image2> ] |
|
|
|
|
''' |
|
|
|
|
|
|
|
|
|
FLANN_INDEX_KDTREE = 1 # bug: flann enums are missing |
|
|
|
|
import numpy as np |
|
|
|
|
import cv2 |
|
|
|
|
|
|
|
|
|
flann_params = dict(algorithm = FLANN_INDEX_KDTREE, |
|
|
|
|
trees = 4) |
|
|
|
|
FLANN_INDEX_KDTREE = 1 # bug: flann enums are missing |
|
|
|
|
|
|
|
|
|
def match_bruteforce(desc1, desc2, r_threshold = 0.75): |
|
|
|
|
res = [] |
|
|
|
|
for i in xrange(len(desc1)): |
|
|
|
|
dist = anorm( desc2 - desc1[i] ) |
|
|
|
|
n1, n2 = dist.argsort()[:2] |
|
|
|
|
r = dist[n1] / dist[n2] |
|
|
|
|
if r < r_threshold: |
|
|
|
|
res.append((i, n1)) |
|
|
|
|
return np.array(res) |
|
|
|
|
flann_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5) |
|
|
|
|
|
|
|
|
|
def match_flann(desc1, desc2, r_threshold = 0.6): |
|
|
|
|
flann = cv2.flann_Index(desc2, flann_params) |
|
|
|
|
idx2, dist = flann.knnSearch(desc1, 2, params = {}) # bug: need to provide empty dict |
|
|
|
|
mask = dist[:,0] / dist[:,1] < r_threshold |
|
|
|
|
idx1 = np.arange(len(desc1)) |
|
|
|
|
pairs = np.int32( zip(idx1, idx2[:,0]) ) |
|
|
|
|
return pairs[mask] |
|
|
|
|
|
|
|
|
|
def draw_match(img1, img2, p1, p2, status = None, H = None): |
|
|
|
|
h1, w1 = img1.shape[:2] |
|
|
|
@ -65,39 +47,49 @@ def draw_match(img1, img2, p1, p2, status = None, H = None): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
|
print __doc__ |
|
|
|
|
|
|
|
|
|
import sys |
|
|
|
|
try: fn1, fn2 = sys.argv[1:3] |
|
|
|
|
except: |
|
|
|
|
fn1 = '../c/box.png' |
|
|
|
|
fn2 = '../c/box_in_scene.png' |
|
|
|
|
print help_message |
|
|
|
|
|
|
|
|
|
img1 = cv2.imread(fn1, 0) |
|
|
|
|
img2 = cv2.imread(fn2, 0) |
|
|
|
|
|
|
|
|
|
surf = cv2.SURF(1000) |
|
|
|
|
kp1, desc1 = surf.detectAndCompute(img1, None) |
|
|
|
|
kp2, desc2 = surf.detectAndCompute(img2, None) |
|
|
|
|
desc1.shape = (-1, surf.descriptorSize()) |
|
|
|
|
desc2.shape = (-1, surf.descriptorSize()) |
|
|
|
|
detector = cv2.SIFT() |
|
|
|
|
kp1, desc1 = detector.detectAndCompute(img1, None) |
|
|
|
|
kp2, desc2 = detector.detectAndCompute(img2, None) |
|
|
|
|
print 'img1 - %d features, img2 - %d features' % (len(kp1), len(kp2)) |
|
|
|
|
|
|
|
|
|
def match_and_draw(match, r_threshold): |
|
|
|
|
m = match(desc1, desc2, r_threshold) |
|
|
|
|
matched_p1 = np.array([kp1[i].pt for i, j in m]) |
|
|
|
|
matched_p2 = np.array([kp2[j].pt for i, j in m]) |
|
|
|
|
H, status = cv2.findHomography(matched_p1, matched_p2, cv2.RANSAC, 5.0) |
|
|
|
|
print '%d / %d inliers/matched' % (np.sum(status), len(status)) |
|
|
|
|
bf_matcher = cv2.BFMatcher(cv2.NORM_L2) |
|
|
|
|
flann_matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329) |
|
|
|
|
|
|
|
|
|
def match_and_draw(matcher, r_threshold = 0.75): |
|
|
|
|
raw_matches = matcher.knnMatch(desc1, trainDescriptors = desc2, k = 2) |
|
|
|
|
p1, p2 = [], [] |
|
|
|
|
for m in raw_matches: |
|
|
|
|
if len(m) == 2 and m[0].distance < m[1].distance * r_threshold: |
|
|
|
|
m = m[0] |
|
|
|
|
p1.append( kp1[m.queryIdx].pt ) |
|
|
|
|
p2.append( kp2[m.trainIdx].pt ) |
|
|
|
|
p1, p2 = np.float32((p1, p2)) |
|
|
|
|
if len(p1) >= 4: |
|
|
|
|
H, status = cv2.findHomography(p1, p2, cv2.RANSAC, 2.0) |
|
|
|
|
print '%d / %d inliers/matched' % (np.sum(status), len(status)) |
|
|
|
|
else: |
|
|
|
|
H, status = None, None |
|
|
|
|
print '%d matches found, not enough for homography estimation' % len(p1) |
|
|
|
|
|
|
|
|
|
vis = draw_match(img1, img2, matched_p1, matched_p2, status, H) |
|
|
|
|
vis = draw_match(img1, img2, p1, p2, status, H) |
|
|
|
|
return vis |
|
|
|
|
|
|
|
|
|
print 'bruteforce match:', |
|
|
|
|
vis_brute = match_and_draw( match_bruteforce, 0.75 ) |
|
|
|
|
vis_brute = match_and_draw( bf_matcher ) |
|
|
|
|
print 'flann match:', |
|
|
|
|
vis_flann = match_and_draw( match_flann, 0.6 ) # flann tends to find more distant second |
|
|
|
|
# neighbours, so r_threshold is decreased |
|
|
|
|
cv2.imshow('find_obj SURF', vis_brute) |
|
|
|
|
cv2.imshow('find_obj SURF flann', vis_flann) |
|
|
|
|
vis_flann = match_and_draw( flann_matcher ) |
|
|
|
|
cv2.imshow('find_obj', vis_brute) |
|
|
|
|
cv2.imshow('find_obj flann', vis_flann) |
|
|
|
|
0xFF & cv2.waitKey() |
|
|
|
|
cv2.destroyAllWindows() |
|
|
|
|