diff --git a/modules/java/generator/gen_java.py b/modules/java/generator/gen_java.py index f93870ce05..955fbeb9ab 100755 --- a/modules/java/generator/gen_java.py +++ b/modules/java/generator/gen_java.py @@ -1347,7 +1347,7 @@ class JavaWrapperGenerator(object): ret = "return (jlong) new %s(_retval_);" % self.fullTypeName(fi.ctype) elif fi.ctype.startswith('Ptr_'): c_prologue.append("typedef Ptr<%s> %s;" % (self.fullTypeName(fi.ctype[4:]), fi.ctype)) - ret = "%(ctype)s* curval = new %(ctype)s(_retval_);return (jlong)curval->get();" % { 'ctype':fi.ctype } + ret = "return (jlong)(new %(ctype)s(_retval_));" % { 'ctype':fi.ctype } elif self.isWrapped(ret_type): # pointer to wrapped class: ret = "return (jlong) _retval_;" elif type_dict[fi.ctype]["jni_type"] == "jdoubleArray": @@ -1538,7 +1538,7 @@ JNIEXPORT void JNICALL Java_org_opencv_%(module)s_%(j_cls)s_delete ''' Check if class stores Ptr* instead of T* in nativeObj field ''' - return False + return self.isWrapped(classname) def smartWrap(self, name, fullname): ''' diff --git a/modules/ml/include/opencv2/ml.hpp b/modules/ml/include/opencv2/ml.hpp index ea9c89e4e6..ab89c04e6a 100644 --- a/modules/ml/include/opencv2/ml.hpp +++ b/modules/ml/include/opencv2/ml.hpp @@ -289,7 +289,7 @@ public: `, containing types of each input and output variable. See ml::VariableTypes. */ - CV_WRAP static Ptr create(InputArray samples, int layout, InputArray responses, + CV_WRAP static Ptr create(InputArray samples, int layout, InputArray responses, InputArray varIdx=noArray(), InputArray sampleIdx=noArray(), InputArray sampleWeights=noArray(), InputArray varType=noArray()); }; @@ -324,7 +324,7 @@ public: @param flags optional flags, depending on the model. Some of the models can be updated with the new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP). */ - CV_WRAP virtual bool train( const Ptr& trainData, int flags=0 ); + CV_WRAP virtual bool train( const Ptr& trainData, int flags=0 ); /** @brief Trains the statistical model @@ -347,7 +347,7 @@ public: The method uses StatModel::predict to compute the error. For regression models the error is computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%). */ - CV_WRAP virtual float calcError( const Ptr& data, bool test, OutputArray resp ) const; + CV_WRAP virtual float calcError( const Ptr& data, bool test, OutputArray resp ) const; /** @brief Predicts response(s) for the provided sample(s) @@ -361,7 +361,7 @@ public: The class must implement static `create()` method with no parameters or with all default parameter values */ - template static Ptr<_Tp> train(const Ptr& data, int flags=0) + template static Ptr<_Tp> train(const Ptr& data, int flags=0) { Ptr<_Tp> model = _Tp::create(); return !model.empty() && model->train(data, flags) ? model : Ptr<_Tp>(); @@ -671,7 +671,7 @@ public: regression (SVM::EPS_SVR or SVM::NU_SVR). If it is SVM::ONE_CLASS, no optimization is made and the usual %SVM with parameters specified in params is executed. */ - virtual bool trainAuto( const Ptr& data, int kFold = 10, + virtual bool trainAuto( const Ptr& data, int kFold = 10, ParamGrid Cgrid = SVM::getDefaultGrid(SVM::C), ParamGrid gammaGrid = SVM::getDefaultGrid(SVM::GAMMA), ParamGrid pGrid = SVM::getDefaultGrid(SVM::P),