mirror of https://github.com/opencv/opencv.git
parent
d1710a8547
commit
7a59435490
18 changed files with 7162 additions and 0 deletions
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,175 @@ |
||||
/**
|
||||
* @file AKAZE.h |
||||
* @brief Main class for detecting and computing binary descriptors in an |
||||
* accelerated nonlinear scale space |
||||
* @date Mar 27, 2013 |
||||
* @author Pablo F. Alcantarilla, Jesus Nuevo |
||||
*/ |
||||
|
||||
#ifndef _AKAZE_H_ |
||||
#define _AKAZE_H_ |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
// Includes
|
||||
#include "config.h" |
||||
#include "fed.h" |
||||
#include "utils.h" |
||||
#include "nldiffusion_functions.h" |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
// AKAZE Class Declaration
|
||||
class AKAZE { |
||||
|
||||
private: |
||||
|
||||
// Parameters of the AKAZE class
|
||||
int omax_; // Maximum octave level
|
||||
int noctaves_; // Number of octaves
|
||||
int nsublevels_; // Number of sublevels per octave level
|
||||
int img_width_; // Width of the original image
|
||||
int img_height_; // Height of the original image
|
||||
float soffset_; // Base scale offset
|
||||
float factor_size_; // Factor for the multiscale derivatives
|
||||
float sderivatives_; // Standard deviation of the Gaussian for the nonlinear diff. derivatives
|
||||
float kcontrast_; // The contrast parameter for the scalar nonlinear diffusion
|
||||
float dthreshold_; // Feature detector threshold response
|
||||
int diffusivity_; // Diffusivity type, 0->PM G1, 1->PM G2, 2-> Weickert, 3->Charbonnier
|
||||
int descriptor_; // Descriptor mode:
|
||||
// 0-> SURF_UPRIGHT, 1->SURF
|
||||
// 2-> M-SURF_UPRIGHT, 3->M-SURF
|
||||
// 4-> M-LDB_UPRIGHT, 5->M-LDB
|
||||
int descriptor_size_; // Size of the descriptor in bits. Use 0 for the full descriptor
|
||||
int descriptor_pattern_size_; // Size of the pattern. Actual size sampled is 2*pattern_size
|
||||
int descriptor_channels_; // Number of channels to consider in the M-LDB descriptor
|
||||
bool save_scale_space_; // For saving scale space images
|
||||
bool verbosity_; // Verbosity level
|
||||
std::vector<tevolution> evolution_; // Vector of nonlinear diffusion evolution
|
||||
|
||||
// FED parameters
|
||||
int ncycles_; // Number of cycles
|
||||
bool reordering_; // Flag for reordering time steps
|
||||
std::vector<std::vector<float > > tsteps_; // Vector of FED dynamic time steps
|
||||
std::vector<int> nsteps_; // Vector of number of steps per cycle
|
||||
|
||||
// Some matrices for the M-LDB descriptor computation
|
||||
cv::Mat descriptorSamples_; // List of positions in the grids to sample LDB bits from.
|
||||
cv::Mat descriptorBits_; |
||||
cv::Mat bitMask_; |
||||
|
||||
// Computation times variables in ms
|
||||
double tkcontrast_; // Kcontrast factor computation
|
||||
double tscale_; // Nonlinear Scale space generation
|
||||
double tderivatives_; // Multiscale derivatives
|
||||
double tdetector_; // Feature detector
|
||||
double textrema_; // Scale Space extrema
|
||||
double tsubpixel_; // Subpixel refinement
|
||||
double tdescriptor_; // Feature descriptors
|
||||
|
||||
public: |
||||
|
||||
// Constructor
|
||||
AKAZE(const AKAZEOptions &options); |
||||
|
||||
// Destructor
|
||||
~AKAZE(void); |
||||
|
||||
// Setters
|
||||
void Set_Octave_Max(const int& omax) { |
||||
omax_ = omax; |
||||
} |
||||
void Set_NSublevels(const int& nsublevels) { |
||||
nsublevels_ = nsublevels; |
||||
} |
||||
void Set_Save_Scale_Space_Flag(const bool& save_scale_space) { |
||||
save_scale_space_ = save_scale_space; |
||||
} |
||||
void Set_Image_Width(const int& img_width) { |
||||
img_width_ = img_width; |
||||
} |
||||
void Set_Image_Height(const int& img_height) { |
||||
img_height_ = img_height; |
||||
} |
||||
|
||||
// Getters
|
||||
int Get_Image_Width(void) { |
||||
return img_width_; |
||||
} |
||||
int Get_Image_Height(void) { |
||||
return img_height_; |
||||
} |
||||
double Get_Time_KContrast(void) { |
||||
return tkcontrast_; |
||||
} |
||||
double Get_Time_Scale_Space(void) { |
||||
return tscale_; |
||||
} |
||||
double Get_Time_Derivatives(void) { |
||||
return tderivatives_; |
||||
} |
||||
double Get_Time_Detector(void) { |
||||
return tdetector_; |
||||
} |
||||
double Get_Time_Descriptor(void) { |
||||
return tdescriptor_; |
||||
} |
||||
|
||||
// Scale Space methods
|
||||
void Allocate_Memory_Evolution(void); |
||||
int Create_Nonlinear_Scale_Space(const cv::Mat& img); |
||||
void Feature_Detection(std::vector<cv::KeyPoint>& kpts); |
||||
void Compute_Determinant_Hessian_Response(void); |
||||
void Compute_Multiscale_Derivatives(void); |
||||
void Find_Scale_Space_Extrema(std::vector<cv::KeyPoint>& kpts); |
||||
void Do_Subpixel_Refinement(std::vector<cv::KeyPoint>& kpts); |
||||
void Feature_Suppression_Distance(std::vector<cv::KeyPoint>& kpts, float mdist); |
||||
|
||||
// Feature description methods
|
||||
void Compute_Descriptors(std::vector<cv::KeyPoint>& kpts, cv::Mat& desc); |
||||
void Compute_Main_Orientation_SURF(cv::KeyPoint& kpt); |
||||
|
||||
// SURF Pattern Descriptor
|
||||
void Get_SURF_Descriptor_Upright_64(const cv::KeyPoint& kpt, float *desc); |
||||
void Get_SURF_Descriptor_64(const cv::KeyPoint& kpt, float *desc); |
||||
|
||||
// M-SURF Pattern Descriptor
|
||||
void Get_MSURF_Upright_Descriptor_64(const cv::KeyPoint& kpt, float *desc); |
||||
void Get_MSURF_Descriptor_64(const cv::KeyPoint& kpt, float *desc); |
||||
|
||||
// M-LDB Pattern Descriptor
|
||||
void Get_Upright_MLDB_Full_Descriptor(const cv::KeyPoint& kpt, unsigned char *desc); |
||||
void Get_MLDB_Full_Descriptor(const cv::KeyPoint& kpt, unsigned char *desc); |
||||
void Get_Upright_MLDB_Descriptor_Subset(const cv::KeyPoint& kpt, unsigned char *desc); |
||||
void Get_MLDB_Descriptor_Subset(const cv::KeyPoint& kpt, unsigned char *desc); |
||||
|
||||
// Methods for saving some results and showing computation times
|
||||
void Save_Scale_Space(void); |
||||
void Save_Detector_Responses(void); |
||||
void Show_Computation_Times(void); |
||||
}; |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
// Inline functions
|
||||
/**
|
||||
* @brief This function sets default parameters for the A-KAZE detector. |
||||
* @param options AKAZE options |
||||
*/ |
||||
void setDefaultAKAZEOptions(AKAZEOptions& options); |
||||
|
||||
// Inline functions
|
||||
void generateDescriptorSubsample(cv::Mat& sampleList, cv::Mat& comparisons, |
||||
int nbits, int pattern_size, int nchannels); |
||||
float get_angle(float x, float y); |
||||
float gaussian(float x, float y, float sigma); |
||||
void check_descriptor_limits(int& x, int& y, const int width, const int height); |
||||
int fRound(float flt); |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
#endif |
@ -0,0 +1,155 @@ |
||||
#ifndef _CONFIG_H_ |
||||
#define _CONFIG_H_ |
||||
|
||||
// STL
|
||||
#include <string> |
||||
#include <vector> |
||||
#include <cmath> |
||||
#include <bitset> |
||||
#include <iomanip> |
||||
|
||||
// OpenCV
|
||||
#include "precomp.hpp" |
||||
|
||||
// OpenMP
|
||||
#ifdef _OPENMP |
||||
# include <omp.h> |
||||
#endif |
||||
|
||||
// Lookup table for 2d gaussian (sigma = 2.5) where (0,0) is top left and (6,6) is bottom right
|
||||
const float gauss25[7][7] = { |
||||
{0.02546481f, 0.02350698f, 0.01849125f, 0.01239505f, 0.00708017f, 0.00344629f, 0.00142946f}, |
||||
{0.02350698f, 0.02169968f, 0.01706957f, 0.01144208f, 0.00653582f, 0.00318132f, 0.00131956f}, |
||||
{0.01849125f, 0.01706957f, 0.01342740f, 0.00900066f, 0.00514126f, 0.00250252f, 0.00103800f}, |
||||
{0.01239505f, 0.01144208f, 0.00900066f, 0.00603332f, 0.00344629f, 0.00167749f, 0.00069579f}, |
||||
{0.00708017f, 0.00653582f, 0.00514126f, 0.00344629f, 0.00196855f, 0.00095820f, 0.00039744f}, |
||||
{0.00344629f, 0.00318132f, 0.00250252f, 0.00167749f, 0.00095820f, 0.00046640f, 0.00019346f}, |
||||
{0.00142946f, 0.00131956f, 0.00103800f, 0.00069579f, 0.00039744f, 0.00019346f, 0.00008024f} |
||||
}; |
||||
|
||||
|
||||
// Scale Space parameters
|
||||
const float DEFAULT_SCALE_OFFSET = 1.60f; // Base scale offset (sigma units)
|
||||
const float DEFAULT_FACTOR_SIZE = 1.5f; // Factor for the multiscale derivatives
|
||||
const int DEFAULT_OCTAVE_MIN = 0; // Initial octave level (-1 means that the size of the input image is duplicated)
|
||||
const int DEFAULT_OCTAVE_MAX = 4; // Maximum octave evolution of the image 2^sigma (coarsest scale sigma units)
|
||||
const int DEFAULT_NSUBLEVELS = 4; // Default number of sublevels per scale level
|
||||
const int DEFAULT_DIFFUSIVITY_TYPE = 1; |
||||
const float KCONTRAST_PERCENTILE = 0.7f; |
||||
const int KCONTRAST_NBINS = 300; |
||||
const float DEFAULT_SIGMA_SMOOTHING_DERIVATIVES = 1.0f; |
||||
const float DEFAULT_KCONTRAST = .01f; |
||||
|
||||
|
||||
// Detector Parameters
|
||||
const float DEFAULT_DETECTOR_THRESHOLD = 0.001f; // Detector response threshold to accept point
|
||||
const float DEFAULT_MIN_DETECTOR_THRESHOLD = 0.00001f; // Minimum Detector response threshold to accept point
|
||||
const int DEFAULT_LDB_DESCRIPTOR_SIZE = 0; // Use 0 for the full descriptor, or the number of bits
|
||||
const int DEFAULT_LDB_PATTERN_SIZE = 10; // Actual patch size is 2*pattern_size*point.scale;
|
||||
const int DEFAULT_LDB_CHANNELS = 3; |
||||
|
||||
// Descriptor Parameters
|
||||
enum DESCRIPTOR_TYPE |
||||
{ |
||||
SURF_UPRIGHT = 0, // Upright descriptors, not invariant to rotation
|
||||
SURF = 1, |
||||
MSURF_UPRIGHT = 2, // Upright descriptors, not invariant to rotation
|
||||
MSURF = 3, |
||||
MLDB_UPRIGHT = 4, // Upright descriptors, not invariant to rotation
|
||||
MLDB = 5 |
||||
}; |
||||
|
||||
const int DEFAULT_DESCRIPTOR = MLDB; |
||||
|
||||
// Some debugging options
|
||||
const bool DEFAULT_SAVE_SCALE_SPACE = false; // For saving the scale space images
|
||||
const bool DEFAULT_VERBOSITY = false; // Verbosity level (0->no verbosity)
|
||||
const bool DEFAULT_SHOW_RESULTS = true; // For showing the output image with the detected features plus some ratios
|
||||
const bool DEFAULT_SAVE_KEYPOINTS = false; // For saving the list of keypoints
|
||||
|
||||
// Options structure
|
||||
struct AKAZEOptions |
||||
{ |
||||
int omin; |
||||
int omax; |
||||
int nsublevels; |
||||
int img_width; |
||||
int img_height; |
||||
int diffusivity; |
||||
float soffset; |
||||
float sderivatives; |
||||
float dthreshold; |
||||
float dthreshold2; |
||||
int descriptor; |
||||
int descriptor_size; |
||||
int descriptor_channels; |
||||
int descriptor_pattern_size; |
||||
bool save_scale_space; |
||||
bool save_keypoints; |
||||
bool verbosity; |
||||
|
||||
AKAZEOptions() |
||||
{ |
||||
// Load the default options
|
||||
soffset = DEFAULT_SCALE_OFFSET; |
||||
omax = DEFAULT_OCTAVE_MAX; |
||||
nsublevels = DEFAULT_NSUBLEVELS; |
||||
dthreshold = DEFAULT_DETECTOR_THRESHOLD; |
||||
diffusivity = DEFAULT_DIFFUSIVITY_TYPE; |
||||
descriptor = DEFAULT_DESCRIPTOR; |
||||
descriptor_size = DEFAULT_LDB_DESCRIPTOR_SIZE; |
||||
descriptor_channels = DEFAULT_LDB_CHANNELS; |
||||
descriptor_pattern_size = DEFAULT_LDB_PATTERN_SIZE; |
||||
sderivatives = DEFAULT_SIGMA_SMOOTHING_DERIVATIVES; |
||||
save_scale_space = DEFAULT_SAVE_SCALE_SPACE; |
||||
save_keypoints = DEFAULT_SAVE_KEYPOINTS; |
||||
verbosity = DEFAULT_VERBOSITY; |
||||
} |
||||
|
||||
friend std::ostream& operator<<(std::ostream& os, |
||||
const AKAZEOptions& akaze_options) |
||||
{ |
||||
os << std::left; |
||||
#define CHECK_AKAZE_OPTION(option) \ |
||||
os << std::setw(33) << #option << " = " << option << std::endl |
||||
|
||||
// Scale-space parameters.
|
||||
CHECK_AKAZE_OPTION(akaze_options.omax); |
||||
CHECK_AKAZE_OPTION(akaze_options.nsublevels); |
||||
CHECK_AKAZE_OPTION(akaze_options.soffset); |
||||
CHECK_AKAZE_OPTION(akaze_options.sderivatives); |
||||
CHECK_AKAZE_OPTION(akaze_options.diffusivity); |
||||
// Detection parameters.
|
||||
CHECK_AKAZE_OPTION(akaze_options.dthreshold); |
||||
// Descriptor parameters.
|
||||
CHECK_AKAZE_OPTION(akaze_options.descriptor); |
||||
CHECK_AKAZE_OPTION(akaze_options.descriptor_channels); |
||||
CHECK_AKAZE_OPTION(akaze_options.descriptor_size); |
||||
// Save scale-space
|
||||
CHECK_AKAZE_OPTION(akaze_options.save_scale_space); |
||||
// Verbose option for debug.
|
||||
CHECK_AKAZE_OPTION(akaze_options.verbosity); |
||||
#undef CHECK_AKAZE_OPTIONS |
||||
|
||||
return os; |
||||
} |
||||
}; |
||||
|
||||
struct tevolution |
||||
{ |
||||
cv::Mat Lx, Ly; // First order spatial derivatives
|
||||
cv::Mat Lxx, Lxy, Lyy; // Second order spatial derivatives
|
||||
cv::Mat Lflow; // Diffusivity image
|
||||
cv::Mat Lt; // Evolution image
|
||||
cv::Mat Lsmooth; // Smoothed image
|
||||
cv::Mat Lstep; // Evolution step update
|
||||
cv::Mat Ldet; // Detector response
|
||||
float etime; // Evolution time
|
||||
float esigma; // Evolution sigma. For linear diffusion t = sigma^2 / 2
|
||||
int octave; // Image octave
|
||||
int sublevel; // Image sublevel in each octave
|
||||
int sigma_size; // Integer sigma. For computing the feature detector responses
|
||||
}; |
||||
|
||||
|
||||
#endif |
@ -0,0 +1,26 @@ |
||||
#ifndef FED_H |
||||
#define FED_H |
||||
|
||||
//******************************************************************************
|
||||
//******************************************************************************
|
||||
|
||||
// Includes
|
||||
#include <iostream> |
||||
#include <vector> |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
// Declaration of functions
|
||||
int fed_tau_by_process_time(const float& T, const int& M, const float& tau_max, |
||||
const bool& reordering, std::vector<float>& tau); |
||||
int fed_tau_by_cycle_time(const float& t, const float& tau_max, |
||||
const bool& reordering, std::vector<float> &tau) ; |
||||
int fed_tau_internal(const int& n, const float& scale, const float& tau_max, |
||||
const bool& reordering, std::vector<float> &tau); |
||||
bool fed_is_prime_internal(const int& number); |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
#endif // FED_H
|
@ -0,0 +1,431 @@ |
||||
//=============================================================================
|
||||
//
|
||||
// nldiffusion_functions.cpp
|
||||
// Authors: Pablo F. Alcantarilla (1), Jesus Nuevo (2)
|
||||
// Institutions: Georgia Institute of Technology (1)
|
||||
// TrueVision Solutions (2)
|
||||
// Date: 15/09/2013
|
||||
// Email: pablofdezalc@gmail.com
|
||||
//
|
||||
// AKAZE Features Copyright 2013, Pablo F. Alcantarilla, Jesus Nuevo
|
||||
// All Rights Reserved
|
||||
// See LICENSE for the license information
|
||||
//=============================================================================
|
||||
|
||||
/**
|
||||
* @file nldiffusion_functions.cpp |
||||
* @brief Functions for nonlinear diffusion filtering applications |
||||
* @date Sep 15, 2013 |
||||
* @author Pablo F. Alcantarilla, Jesus Nuevo |
||||
*/ |
||||
|
||||
#include "nldiffusion_functions.h" |
||||
|
||||
using namespace std; |
||||
using namespace cv; |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function smoothes an image with a Gaussian kernel |
||||
* @param src Input image |
||||
* @param dst Output image |
||||
* @param ksize_x Kernel size in X-direction (horizontal) |
||||
* @param ksize_y Kernel size in Y-direction (vertical) |
||||
* @param sigma Kernel standard deviation |
||||
*/ |
||||
void gaussian_2D_convolution(const cv::Mat& src, cv::Mat& dst, const size_t& ksize_x, |
||||
const size_t& ksize_y, const float& sigma) { |
||||
|
||||
size_t ksize_x_ = 0, ksize_y_ = 0; |
||||
|
||||
// Compute an appropriate kernel size according to the specified sigma
|
||||
if (sigma > ksize_x || sigma > ksize_y || ksize_x == 0 || ksize_y == 0) { |
||||
ksize_x_ = ceil(2.0*(1.0 + (sigma-0.8)/(0.3))); |
||||
ksize_y_ = ksize_x_; |
||||
} |
||||
|
||||
// The kernel size must be and odd number
|
||||
if ((ksize_x_ % 2) == 0) { |
||||
ksize_x_ += 1; |
||||
} |
||||
|
||||
if ((ksize_y_ % 2) == 0) { |
||||
ksize_y_ += 1; |
||||
} |
||||
|
||||
// Perform the Gaussian Smoothing with border replication
|
||||
GaussianBlur(src,dst,Size(ksize_x_,ksize_y_),sigma,sigma,BORDER_REPLICATE); |
||||
} |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function computes image derivatives with Scharr kernel |
||||
* @param src Input image |
||||
* @param dst Output image |
||||
* @param xorder Derivative order in X-direction (horizontal) |
||||
* @param yorder Derivative order in Y-direction (vertical) |
||||
* @note Scharr operator approximates better rotation invariance than |
||||
* other stencils such as Sobel. See Weickert and Scharr, |
||||
* A Scheme for Coherence-Enhancing Diffusion Filtering with Optimized Rotation Invariance, |
||||
* Journal of Visual Communication and Image Representation 2002 |
||||
*/ |
||||
void image_derivatives_scharr(const cv::Mat& src, cv::Mat& dst, |
||||
const size_t& xorder, const size_t& yorder) { |
||||
Scharr(src,dst,CV_32F,xorder,yorder,1.0,0,BORDER_DEFAULT); |
||||
} |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function computes the Perona and Malik conductivity coefficient g1 |
||||
* g1 = exp(-|dL|^2/k^2) |
||||
* @param Lx First order image derivative in X-direction (horizontal) |
||||
* @param Ly First order image derivative in Y-direction (vertical) |
||||
* @param dst Output image |
||||
* @param k Contrast factor parameter |
||||
*/ |
||||
void pm_g1(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, const float& k) { |
||||
exp(-(Lx.mul(Lx)+Ly.mul(Ly))/(k*k),dst); |
||||
} |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function computes the Perona and Malik conductivity coefficient g2 |
||||
* g2 = 1 / (1 + dL^2 / k^2) |
||||
* @param Lx First order image derivative in X-direction (horizontal) |
||||
* @param Ly First order image derivative in Y-direction (vertical) |
||||
* @param dst Output image |
||||
* @param k Contrast factor parameter |
||||
*/ |
||||
void pm_g2(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, const float& k) { |
||||
dst = 1.0/(1.0+(Lx.mul(Lx)+Ly.mul(Ly))/(k*k)); |
||||
} |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function computes Weickert conductivity coefficient gw |
||||
* @param Lx First order image derivative in X-direction (horizontal) |
||||
* @param Ly First order image derivative in Y-direction (vertical) |
||||
* @param dst Output image |
||||
* @param k Contrast factor parameter |
||||
* @note For more information check the following paper: J. Weickert |
||||
* Applications of nonlinear diffusion in image processing and computer vision, |
||||
* Proceedings of Algorithmy 2000 |
||||
*/ |
||||
void weickert_diffusivity(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, const float& k) { |
||||
Mat modg; |
||||
pow((Lx.mul(Lx) + Ly.mul(Ly))/(k*k),4,modg); |
||||
cv::exp(-3.315/modg, dst); |
||||
dst = 1.0 - dst; |
||||
} |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function computes Charbonnier conductivity coefficient gc |
||||
* gc = 1 / sqrt(1 + dL^2 / k^2) |
||||
* @param Lx First order image derivative in X-direction (horizontal) |
||||
* @param Ly First order image derivative in Y-direction (vertical) |
||||
* @param dst Output image |
||||
* @param k Contrast factor parameter |
||||
* @note For more information check the following paper: J. Weickert |
||||
* Applications of nonlinear diffusion in image processing and computer vision, |
||||
* Proceedings of Algorithmy 2000 |
||||
*/ |
||||
void charbonnier_diffusivity(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, const float& k) { |
||||
Mat den; |
||||
cv::sqrt(1.0+(Lx.mul(Lx)+Ly.mul(Ly))/(k*k),den); |
||||
dst = 1.0/ den; |
||||
} |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function computes a good empirical value for the k contrast factor |
||||
* given an input image, the percentile (0-1), the gradient scale and the number of |
||||
* bins in the histogram |
||||
* @param img Input image |
||||
* @param perc Percentile of the image gradient histogram (0-1) |
||||
* @param gscale Scale for computing the image gradient histogram |
||||
* @param nbins Number of histogram bins |
||||
* @param ksize_x Kernel size in X-direction (horizontal) for the Gaussian smoothing kernel |
||||
* @param ksize_y Kernel size in Y-direction (vertical) for the Gaussian smoothing kernel |
||||
* @return k contrast factor |
||||
*/ |
||||
float compute_k_percentile(const cv::Mat& img, const float& perc, const float& gscale, |
||||
const size_t& nbins, const size_t& ksize_x, const size_t& ksize_y) { |
||||
|
||||
size_t nbin = 0, nelements = 0, nthreshold = 0, k = 0; |
||||
float kperc = 0.0, modg = 0.0, lx = 0.0, ly = 0.0; |
||||
float npoints = 0.0; |
||||
float hmax = 0.0; |
||||
|
||||
// Create the array for the histogram
|
||||
float *hist = new float[nbins]; |
||||
|
||||
// Create the matrices
|
||||
Mat gaussian = Mat::zeros(img.rows,img.cols,CV_32F); |
||||
Mat Lx = Mat::zeros(img.rows,img.cols,CV_32F); |
||||
Mat Ly = Mat::zeros(img.rows,img.cols,CV_32F); |
||||
|
||||
// Set the histogram to zero, just in case
|
||||
for (size_t i = 0; i < nbins; i++) { |
||||
hist[i] = 0.0; |
||||
} |
||||
|
||||
// Perform the Gaussian convolution
|
||||
gaussian_2D_convolution(img,gaussian,ksize_x,ksize_y,gscale); |
||||
|
||||
// Compute the Gaussian derivatives Lx and Ly
|
||||
image_derivatives_scharr(gaussian,Lx,1,0); |
||||
image_derivatives_scharr(gaussian,Ly,0,1); |
||||
|
||||
// Skip the borders for computing the histogram
|
||||
for (int i = 1; i < gaussian.rows-1; i++) { |
||||
for (int j = 1; j < gaussian.cols-1; j++) { |
||||
lx = *(Lx.ptr<float>(i)+j); |
||||
ly = *(Ly.ptr<float>(i)+j); |
||||
modg = sqrt(lx*lx + ly*ly); |
||||
|
||||
// Get the maximum
|
||||
if (modg > hmax) { |
||||
hmax = modg; |
||||
} |
||||
} |
||||
} |
||||
|
||||
// Skip the borders for computing the histogram
|
||||
for (int i = 1; i < gaussian.rows-1; i++) { |
||||
for (int j = 1; j < gaussian.cols-1; j++) { |
||||
lx = *(Lx.ptr<float>(i)+j); |
||||
ly = *(Ly.ptr<float>(i)+j); |
||||
modg = sqrt(lx*lx + ly*ly); |
||||
|
||||
// Find the correspondent bin
|
||||
if (modg != 0.0) { |
||||
nbin = floor(nbins*(modg/hmax)); |
||||
|
||||
if (nbin == nbins) { |
||||
nbin--; |
||||
} |
||||
|
||||
hist[nbin]++; |
||||
npoints++; |
||||
} |
||||
} |
||||
} |
||||
|
||||
// Now find the perc of the histogram percentile
|
||||
nthreshold = (size_t)(npoints*perc); |
||||
|
||||
for (k = 0; nelements < nthreshold && k < nbins; k++) { |
||||
nelements = nelements + hist[k]; |
||||
} |
||||
|
||||
if (nelements < nthreshold) { |
||||
kperc = 0.03; |
||||
} |
||||
else { |
||||
kperc = hmax*((float)(k)/(float)nbins); |
||||
} |
||||
|
||||
delete [] hist; |
||||
return kperc; |
||||
} |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function computes Scharr image derivatives |
||||
* @param src Input image |
||||
* @param dst Output image |
||||
* @param xorder Derivative order in X-direction (horizontal) |
||||
* @param yorder Derivative order in Y-direction (vertical) |
||||
* @param scale Scale factor for the derivative size |
||||
*/ |
||||
void compute_scharr_derivatives(const cv::Mat& src, cv::Mat& dst, const size_t& xorder, |
||||
const size_t& yorder, const size_t& scale) { |
||||
|
||||
Mat kx, ky; |
||||
compute_derivative_kernels(kx, ky, xorder,yorder,scale); |
||||
sepFilter2D(src,dst,CV_32F,kx,ky); |
||||
} |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function performs a scalar non-linear diffusion step |
||||
* @param Ld2 Output image in the evolution |
||||
* @param c Conductivity image |
||||
* @param Lstep Previous image in the evolution |
||||
* @param stepsize The step size in time units |
||||
* @note Forward Euler Scheme 3x3 stencil |
||||
* The function c is a scalar value that depends on the gradient norm |
||||
* dL_by_ds = d(c dL_by_dx)_by_dx + d(c dL_by_dy)_by_dy |
||||
*/ |
||||
void nld_step_scalar(cv::Mat& Ld, const cv::Mat& c, cv::Mat& Lstep, const float& stepsize) { |
||||
|
||||
#ifdef _OPENMP |
||||
#pragma omp parallel for schedule(dynamic) |
||||
#endif |
||||
for (int i = 1; i < Lstep.rows-1; i++) { |
||||
for (int j = 1; j < Lstep.cols-1; j++) { |
||||
float xpos = ((*(c.ptr<float>(i)+j))+(*(c.ptr<float>(i)+j+1)))*((*(Ld.ptr<float>(i)+j+1))-(*(Ld.ptr<float>(i)+j))); |
||||
float xneg = ((*(c.ptr<float>(i)+j-1))+(*(c.ptr<float>(i)+j)))*((*(Ld.ptr<float>(i)+j))-(*(Ld.ptr<float>(i)+j-1))); |
||||
|
||||
float ypos = ((*(c.ptr<float>(i)+j))+(*(c.ptr<float>(i+1)+j)))*((*(Ld.ptr<float>(i+1)+j))-(*(Ld.ptr<float>(i)+j))); |
||||
float yneg = ((*(c.ptr<float>(i-1)+j))+(*(c.ptr<float>(i)+j)))*((*(Ld.ptr<float>(i)+j))-(*(Ld.ptr<float>(i-1)+j))); |
||||
|
||||
*(Lstep.ptr<float>(i)+j) = 0.5*stepsize*(xpos-xneg + ypos-yneg); |
||||
} |
||||
} |
||||
|
||||
for (int j = 1; j < Lstep.cols-1; j++) { |
||||
float xpos = ((*(c.ptr<float>(0)+j))+(*(c.ptr<float>(0)+j+1)))*((*(Ld.ptr<float>(0)+j+1))-(*(Ld.ptr<float>(0)+j))); |
||||
float xneg = ((*(c.ptr<float>(0)+j-1))+(*(c.ptr<float>(0)+j)))*((*(Ld.ptr<float>(0)+j))-(*(Ld.ptr<float>(0)+j-1))); |
||||
|
||||
float ypos = ((*(c.ptr<float>(0)+j))+(*(c.ptr<float>(1)+j)))*((*(Ld.ptr<float>(1)+j))-(*(Ld.ptr<float>(0)+j))); |
||||
float yneg = ((*(c.ptr<float>(0)+j))+(*(c.ptr<float>(0)+j)))*((*(Ld.ptr<float>(0)+j))-(*(Ld.ptr<float>(0)+j))); |
||||
|
||||
*(Lstep.ptr<float>(0)+j) = 0.5*stepsize*(xpos-xneg + ypos-yneg); |
||||
} |
||||
|
||||
for (int j = 1; j < Lstep.cols-1; j++) { |
||||
float xpos = ((*(c.ptr<float>(Lstep.rows-1)+j))+(*(c.ptr<float>(Lstep.rows-1)+j+1)))*((*(Ld.ptr<float>(Lstep.rows-1)+j+1))-(*(Ld.ptr<float>(Lstep.rows-1)+j))); |
||||
float xneg = ((*(c.ptr<float>(Lstep.rows-1)+j-1))+(*(c.ptr<float>(Lstep.rows-1)+j)))*((*(Ld.ptr<float>(Lstep.rows-1)+j))-(*(Ld.ptr<float>(Lstep.rows-1)+j-1))); |
||||
|
||||
float ypos = ((*(c.ptr<float>(Lstep.rows-1)+j))+(*(c.ptr<float>(Lstep.rows-1)+j)))*((*(Ld.ptr<float>(Lstep.rows-1)+j))-(*(Ld.ptr<float>(Lstep.rows-1)+j))); |
||||
float yneg = ((*(c.ptr<float>(Lstep.rows-2)+j))+(*(c.ptr<float>(Lstep.rows-1)+j)))*((*(Ld.ptr<float>(Lstep.rows-1)+j))-(*(Ld.ptr<float>(Lstep.rows-2)+j))); |
||||
|
||||
*(Lstep.ptr<float>(Lstep.rows-1)+j) = 0.5*stepsize*(xpos-xneg + ypos-yneg); |
||||
} |
||||
|
||||
for (int i = 1; i < Lstep.rows-1; i++) { |
||||
float xpos = ((*(c.ptr<float>(i)))+(*(c.ptr<float>(i)+1)))*((*(Ld.ptr<float>(i)+1))-(*(Ld.ptr<float>(i)))); |
||||
float xneg = ((*(c.ptr<float>(i)))+(*(c.ptr<float>(i))))*((*(Ld.ptr<float>(i)))-(*(Ld.ptr<float>(i)))); |
||||
|
||||
float ypos = ((*(c.ptr<float>(i)))+(*(c.ptr<float>(i+1))))*((*(Ld.ptr<float>(i+1)))-(*(Ld.ptr<float>(i)))); |
||||
float yneg = ((*(c.ptr<float>(i-1)))+(*(c.ptr<float>(i))))*((*(Ld.ptr<float>(i)))-(*(Ld.ptr<float>(i-1)))); |
||||
|
||||
*(Lstep.ptr<float>(i)) = 0.5*stepsize*(xpos-xneg + ypos-yneg); |
||||
} |
||||
|
||||
for (int i = 1; i < Lstep.rows-1; i++) { |
||||
float xpos = ((*(c.ptr<float>(i)+Lstep.cols-1))+(*(c.ptr<float>(i)+Lstep.cols-1)))*((*(Ld.ptr<float>(i)+Lstep.cols-1))-(*(Ld.ptr<float>(i)+Lstep.cols-1))); |
||||
float xneg = ((*(c.ptr<float>(i)+Lstep.cols-2))+(*(c.ptr<float>(i)+Lstep.cols-1)))*((*(Ld.ptr<float>(i)+Lstep.cols-1))-(*(Ld.ptr<float>(i)+Lstep.cols-2))); |
||||
|
||||
float ypos = ((*(c.ptr<float>(i)+Lstep.cols-1))+(*(c.ptr<float>(i+1)+Lstep.cols-1)))*((*(Ld.ptr<float>(i+1)+Lstep.cols-1))-(*(Ld.ptr<float>(i)+Lstep.cols-1))); |
||||
float yneg = ((*(c.ptr<float>(i-1)+Lstep.cols-1))+(*(c.ptr<float>(i)+Lstep.cols-1)))*((*(Ld.ptr<float>(i)+Lstep.cols-1))-(*(Ld.ptr<float>(i-1)+Lstep.cols-1))); |
||||
|
||||
*(Lstep.ptr<float>(i)+Lstep.cols-1) = 0.5*stepsize*(xpos-xneg + ypos-yneg); |
||||
} |
||||
|
||||
Ld = Ld + Lstep; |
||||
} |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function downsamples the input image with the kernel [1/4,1/2,1/4] |
||||
* @param img Input image to be downsampled |
||||
* @param dst Output image with half of the resolution of the input image |
||||
*/ |
||||
void downsample_image(const cv::Mat& src, cv::Mat& dst) { |
||||
|
||||
int i1 = 0, j1 = 0, i2 = 0, j2 = 0; |
||||
|
||||
for (i1 = 1; i1 < src.rows; i1+=2) { |
||||
j2 = 0; |
||||
for (j1 = 1; j1 < src.cols; j1+=2) { |
||||
*(dst.ptr<float>(i2)+j2) = 0.5*(*(src.ptr<float>(i1)+j1))+0.25*(*(src.ptr<float>(i1)+j1-1) + *(src.ptr<float>(i1)+j1+1)); |
||||
j2++; |
||||
} |
||||
|
||||
i2++; |
||||
} |
||||
} |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function downsamples the input image using OpenCV resize |
||||
* @param img Input image to be downsampled |
||||
* @param dst Output image with half of the resolution of the input image |
||||
*/ |
||||
void halfsample_image(const cv::Mat& src, cv::Mat& dst) { |
||||
|
||||
// Make sure the destination image is of the right size
|
||||
CV_Assert(src.cols/2==dst.cols); |
||||
CV_Assert(src.rows / 2 == dst.rows); |
||||
resize(src,dst,dst.size(),0,0,cv::INTER_AREA); |
||||
} |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief Compute Scharr derivative kernels for sizes different than 3 |
||||
* @param kx_ The derivative kernel in x-direction |
||||
* @param ky_ The derivative kernel in y-direction |
||||
* @param dx The derivative order in x-direction |
||||
* @param dy The derivative order in y-direction |
||||
* @param scale The kernel size |
||||
*/ |
||||
void compute_derivative_kernels(cv::OutputArray kx_, cv::OutputArray ky_, |
||||
const size_t& dx, const size_t& dy, const size_t& scale) { |
||||
|
||||
const int ksize = 3 + 2*(scale-1); |
||||
|
||||
// The usual Scharr kernel
|
||||
if (scale == 1) { |
||||
getDerivKernels(kx_,ky_,dx,dy,0,true,CV_32F); |
||||
return; |
||||
} |
||||
|
||||
kx_.create(ksize,1,CV_32F,-1,true); |
||||
ky_.create(ksize,1,CV_32F,-1,true); |
||||
Mat kx = kx_.getMat(); |
||||
Mat ky = ky_.getMat(); |
||||
|
||||
float w = 10.0/3.0; |
||||
float norm = 1.0/(2.0*scale*(w+2.0)); |
||||
|
||||
for (int k = 0; k < 2; k++) { |
||||
Mat* kernel = k == 0 ? &kx : &ky; |
||||
int order = k == 0 ? dx : dy; |
||||
float kerI[1000]; |
||||
|
||||
for (int t = 0; t<ksize; t++) { |
||||
kerI[t] = 0; |
||||
} |
||||
|
||||
if (order == 0) { |
||||
kerI[0] = norm; |
||||
kerI[ksize/2] = w*norm; |
||||
kerI[ksize-1] = norm; |
||||
} |
||||
else if (order == 1) { |
||||
kerI[0] = -1; |
||||
kerI[ksize/2] = 0; |
||||
kerI[ksize-1] = 1; |
||||
} |
||||
|
||||
Mat temp(kernel->rows, kernel->cols, CV_32F, &kerI[0]); |
||||
temp.copyTo(*kernel); |
||||
} |
||||
} |
@ -0,0 +1,41 @@ |
||||
#ifndef _NLDIFFUSION_FUNCTIONS_H_ |
||||
#define _NLDIFFUSION_FUNCTIONS_H_ |
||||
|
||||
//******************************************************************************
|
||||
//******************************************************************************
|
||||
|
||||
// Includes
|
||||
#include "precomp.hpp" |
||||
|
||||
// OpenMP Includes
|
||||
#ifdef _OPENMP |
||||
# include <omp.h> |
||||
#endif |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
// Declaration of functions
|
||||
void gaussian_2D_convolution(const cv::Mat& src, cv::Mat& dst, const size_t& ksize_x, |
||||
const size_t& ksize_y, const float& sigma); |
||||
void image_derivatives_scharr(const cv::Mat& src, cv::Mat& dst, |
||||
const size_t& xorder, const size_t& yorder); |
||||
void pm_g1(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, const float& k); |
||||
void pm_g2(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, const float& k); |
||||
void weickert_diffusivity(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, const float& k); |
||||
void charbonnier_diffusivity(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, const float& k); |
||||
float compute_k_percentile(const cv::Mat& img, const float& perc, const float& gscale, |
||||
const size_t& nbins, const size_t& ksize_x, const size_t& ksize_y); |
||||
void compute_scharr_derivatives(const cv::Mat& src, cv::Mat& dst, const size_t& xorder, |
||||
const size_t& yorder, const size_t& scale); |
||||
void nld_step_scalar(cv::Mat& Ld, const cv::Mat& c, cv::Mat& Lstep, const float& stepsize); |
||||
void downsample_image(const cv::Mat& src, cv::Mat& dst); |
||||
void halfsample_image(const cv::Mat& src, cv::Mat& dst); |
||||
void compute_derivative_kernels(cv::OutputArray kx_, cv::OutputArray ky_, |
||||
const size_t& dx, const size_t& dy, const size_t& scale); |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
|
||||
#endif |
@ -0,0 +1,196 @@ |
||||
//=============================================================================
|
||||
//
|
||||
// utils.cpp
|
||||
// Authors: Pablo F. Alcantarilla (1), Jesus Nuevo (2)
|
||||
// Institutions: Georgia Institute of Technology (1)
|
||||
// TrueVision Solutions (2)
|
||||
//
|
||||
// Date: 15/09/2013
|
||||
// Email: pablofdezalc@gmail.com
|
||||
//
|
||||
// AKAZE Features Copyright 2013, Pablo F. Alcantarilla, Jesus Nuevo
|
||||
// All Rights Reserved
|
||||
// See LICENSE for the license information
|
||||
//=============================================================================
|
||||
|
||||
/**
|
||||
* @file utils.cpp |
||||
* @brief Some utilities functions |
||||
* @date Sep 15, 2013 |
||||
* @author Pablo F. Alcantarilla, Jesus Nuevo |
||||
*/ |
||||
|
||||
#include "precomp.hpp" |
||||
#include "utils.h" |
||||
|
||||
// Namespaces
|
||||
using namespace std; |
||||
using namespace cv; |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function computes the minimum value of a float image |
||||
* @param src Input image |
||||
* @param value Minimum value |
||||
*/ |
||||
void compute_min_32F(const cv::Mat &src, float &value) { |
||||
|
||||
float aux = 1000.0; |
||||
|
||||
for (int i = 0; i < src.rows; i++) { |
||||
for (int j = 0; j < src.cols; j++) { |
||||
if (src.at<float>(i,j) < aux) { |
||||
aux = src.at<float>(i,j); |
||||
} |
||||
} |
||||
} |
||||
|
||||
value = aux; |
||||
} |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function computes the maximum value of a float image |
||||
* @param src Input image |
||||
* @param value Maximum value |
||||
*/ |
||||
void compute_max_32F(const cv::Mat &src, float &value) { |
||||
|
||||
float aux = 0.0; |
||||
|
||||
for (int i = 0; i < src.rows; i++) { |
||||
for (int j = 0; j < src.cols; j++) { |
||||
if (src.at<float>(i,j) > aux) { |
||||
aux = src.at<float>(i,j); |
||||
} |
||||
} |
||||
} |
||||
|
||||
value = aux; |
||||
} |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function converts the scale of the input image prior to visualization |
||||
* @param src Input/Output image |
||||
* @param value Maximum value |
||||
*/ |
||||
void convert_scale(cv::Mat &src) { |
||||
|
||||
float min_val = 0, max_val = 0; |
||||
|
||||
compute_min_32F(src,min_val); |
||||
|
||||
src = src - min_val; |
||||
|
||||
compute_max_32F(src,max_val); |
||||
src = src / max_val; |
||||
} |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function copies the input image and converts the scale of the copied |
||||
* image prior visualization |
||||
* @param src Input image |
||||
* @param dst Output image |
||||
*/ |
||||
void copy_and_convert_scale(const cv::Mat &src, cv::Mat dst) { |
||||
|
||||
float min_val = 0, max_val = 0; |
||||
|
||||
src.copyTo(dst); |
||||
compute_min_32F(dst,min_val); |
||||
|
||||
dst = dst - min_val; |
||||
|
||||
compute_max_32F(dst,max_val); |
||||
dst = dst / max_val; |
||||
} |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
const size_t length = string("--descriptor_channels").size() + 2; |
||||
static inline std::ostream& cout_help() |
||||
{ cout << setw(length); return cout; } |
||||
|
||||
static inline std::string toUpper(std::string s) |
||||
{ |
||||
std::transform(s.begin(), s.end(), s.begin(), ::toupper); |
||||
return s; |
||||
} |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function shows the possible command line configuration options |
||||
*/ |
||||
void show_input_options_help(int example) { |
||||
|
||||
fflush(stdout); |
||||
cout << "A-KAZE Features" << endl; |
||||
cout << "Usage: "; |
||||
if (example == 0) { |
||||
cout << "./akaze_features -i img.jpg [options]" << endl; |
||||
} |
||||
else if (example == 1) { |
||||
cout << "./akaze_match img1.jpg img2.pgm homography.txt [options]" << endl; |
||||
} |
||||
else if (example == 2) { |
||||
cout << "./akaze_compare img1.jpg img2.pgm homography.txt [options]" << endl; |
||||
} |
||||
|
||||
cout << endl; |
||||
cout_help() << "Options below are not mandatory. Unless specified, default arguments are used." << endl << endl;
|
||||
// Justify on the left
|
||||
cout << left; |
||||
// Generalities
|
||||
cout_help() << "--help" << "Show the command line options" << endl; |
||||
cout_help() << "--verbose " << "Verbosity is required" << endl; |
||||
cout_help() << endl; |
||||
// Scale-space parameters
|
||||
cout_help() << "--soffset" << "Base scale offset (sigma units)" << endl; |
||||
cout_help() << "--omax" << "Maximum octave of image evolution" << endl; |
||||
cout_help() << "--nsublevels" << "Number of sublevels per octave" << endl; |
||||
cout_help() << "--diffusivity" << "Diffusivity function. Possible values:" << endl; |
||||
cout_help() << " " << "0 -> Perona-Malik, g1 = exp(-|dL|^2/k^2)" << endl; |
||||
cout_help() << " " << "1 -> Perona-Malik, g2 = 1 / (1 + dL^2 / k^2)" << endl; |
||||
cout_help() << " " << "2 -> Weickert diffusivity" << endl; |
||||
cout_help() << " " << "3 -> Charbonnier diffusivity" << endl; |
||||
cout_help() << endl; |
||||
// Feature detection parameters.
|
||||
cout_help() << "--dthreshold" << "Feature detector threshold response for keypoints" << endl; |
||||
cout_help() << " " << "(0.001 can be a good value)" << endl; |
||||
cout_help() << endl; |
||||
// Descriptor parameters.
|
||||
cout_help() << "--descriptor" << "Descriptor Type. Possible values:" << endl; |
||||
cout_help() << " " << "0 -> SURF_UPRIGHT" << endl; |
||||
cout_help() << " " << "1 -> SURF" << endl; |
||||
cout_help() << " " << "2 -> M-SURF_UPRIGHT," << endl; |
||||
cout_help() << " " << "3 -> M-SURF" << endl; |
||||
cout_help() << " " << "4 -> M-LDB_UPRIGHT" << endl; |
||||
cout_help() << " " << "5 -> M-LDB" << endl; |
||||
|
||||
cout_help() << "--descriptor_channels " << "Descriptor Channels for M-LDB. Valid values: " << endl; |
||||
cout_help() << " " << "1 -> intensity" << endl; |
||||
cout_help() << " " << "2 -> intensity + gradient magnitude" << endl; |
||||
cout_help() << " " << "3 -> intensity + X and Y gradients" <<endl; |
||||
|
||||
cout_help() << "--descriptor_size" << "Descriptor size for M-LDB in bits." << endl; |
||||
cout_help() << " " << "0: means the full length descriptor (486)!!" << endl; |
||||
cout_help() << endl; |
||||
// Save results?
|
||||
cout_help() << "--show_results" << "Possible values below:" << endl; |
||||
cout_help() << " " << "1 -> show detection results." << endl; |
||||
cout_help() << " " << "0 -> don't show detection results" << endl; |
||||
cout_help() << endl; |
||||
} |
@ -0,0 +1,54 @@ |
||||
|
||||
#ifndef _UTILS_H_ |
||||
#define _UTILS_H_ |
||||
|
||||
//******************************************************************************
|
||||
//******************************************************************************
|
||||
|
||||
// OpenCV Includes
|
||||
#include "precomp.hpp" |
||||
|
||||
// System Includes
|
||||
#include <stdlib.h> |
||||
#include <stdio.h> |
||||
#include <cstdlib> |
||||
#include <vector> |
||||
#include <fstream> |
||||
#include <iostream> |
||||
#include <iomanip> |
||||
|
||||
//******************************************************************************
|
||||
//******************************************************************************
|
||||
|
||||
// Stringify common types such as int, double and others.
|
||||
template <typename T> |
||||
inline std::string to_string(const T& x) { |
||||
std::stringstream oss; |
||||
oss << x; |
||||
return oss.str(); |
||||
} |
||||
|
||||
//******************************************************************************
|
||||
//******************************************************************************
|
||||
|
||||
// Stringify and format integral types as follows:
|
||||
// to_formatted_string( 1, 2) produces string: '01'
|
||||
// to_formatted_string( 5, 2) produces string: '05'
|
||||
// to_formatted_string( 19, 2) produces string: '19'
|
||||
// to_formatted_string( 19, 3) produces string: '019'
|
||||
template <typename Integer> |
||||
inline std::string to_formatted_string(Integer x, int num_digits) { |
||||
std::stringstream oss; |
||||
oss << std::setfill('0') << std::setw(num_digits) << x; |
||||
return oss.str(); |
||||
} |
||||
|
||||
//******************************************************************************
|
||||
//******************************************************************************
|
||||
|
||||
void compute_min_32F(const cv::Mat& src, float& value); |
||||
void compute_max_32F(const cv::Mat& src, float& value); |
||||
void convert_scale(cv::Mat& src); |
||||
void copy_and_convert_scale(const cv::Mat& src, cv::Mat& dst); |
||||
|
||||
#endif |
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,294 @@ |
||||
|
||||
/**
|
||||
* @file KAZE.h |
||||
* @brief Main program for detecting and computing descriptors in a nonlinear |
||||
* scale space |
||||
* @date Jan 21, 2012 |
||||
* @author Pablo F. Alcantarilla |
||||
*/ |
||||
|
||||
#ifndef KAZE_H_ |
||||
#define KAZE_H_ |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
// Includes
|
||||
#include "config.h" |
||||
#include "nldiffusion_functions.h" |
||||
#include "fed.h" |
||||
#include "utils.h" |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
// KAZE Class Declaration
|
||||
class KAZE { |
||||
|
||||
private: |
||||
|
||||
// Parameters of the Nonlinear diffusion class
|
||||
float soffset_; // Base scale offset
|
||||
float sderivatives_; // Standard deviation of the Gaussian for the nonlinear diff. derivatives
|
||||
int omax_; // Maximum octave level
|
||||
int nsublevels_; // Number of sublevels per octave level
|
||||
int img_width_; // Width of the original image
|
||||
int img_height_; // Height of the original image
|
||||
bool save_scale_space_; // For saving scale space images
|
||||
bool verbosity_; // Verbosity level
|
||||
std::vector<TEvolution> evolution_; // Vector of nonlinear diffusion evolution
|
||||
float kcontrast_; // The contrast parameter for the scalar nonlinear diffusion
|
||||
float dthreshold_; // Feature detector threshold response
|
||||
int diffusivity_; // Diffusivity type, 0->PM G1, 1->PM G2, 2-> Weickert
|
||||
int descriptor_mode_; // Descriptor mode
|
||||
bool use_fed_; // Set to true in case we want to use FED for the nonlinear diffusion filtering. Set false for using AOS
|
||||
bool use_upright_; // Set to true in case we want to use the upright version of the descriptors
|
||||
bool use_extended_; // Set to true in case we want to use the extended version of the descriptors
|
||||
|
||||
// Vector of keypoint vectors for finding extrema in multiple threads
|
||||
std::vector<std::vector<cv::KeyPoint> > kpts_par_; |
||||
|
||||
// FED parameters
|
||||
int ncycles_; // Number of cycles
|
||||
bool reordering_; // Flag for reordering time steps
|
||||
std::vector<std::vector<float > > tsteps_; // Vector of FED dynamic time steps
|
||||
std::vector<int> nsteps_; // Vector of number of steps per cycle
|
||||
|
||||
// Computation times variables in ms
|
||||
double tkcontrast_; // Kcontrast factor computation
|
||||
double tnlscale_; // Nonlinear Scale space generation
|
||||
double tdetector_; // Feature detector
|
||||
double tmderivatives_; // Multiscale derivatives computation
|
||||
double tdresponse_; // Detector response computation
|
||||
double tdescriptor_; // Feature descriptor
|
||||
double tsubpixel_; // Subpixel refinement
|
||||
|
||||
// Some auxiliary variables used in the AOS step
|
||||
cv::Mat Ltx_, Lty_, px_, py_, ax_, ay_, bx_, by_, qr_, qc_; |
||||
|
||||
public: |
||||
|
||||
// Constructor
|
||||
KAZE(KAZEOptions& options); |
||||
|
||||
// Destructor
|
||||
~KAZE(void); |
||||
|
||||
// Public methods for KAZE interface
|
||||
void Allocate_Memory_Evolution(void); |
||||
int Create_Nonlinear_Scale_Space(const cv::Mat& img); |
||||
void Feature_Detection(std::vector<cv::KeyPoint>& kpts); |
||||
void Feature_Description(std::vector<cv::KeyPoint>& kpts, cv::Mat& desc); |
||||
|
||||
// Methods for saving the scale space set of images and detector responses
|
||||
void Save_Nonlinear_Scale_Space(void); |
||||
void Save_Detector_Responses(void); |
||||
void Save_Flow_Responses(void); |
||||
|
||||
private: |
||||
|
||||
// Feature Detection Methods
|
||||
void Compute_KContrast(const cv::Mat& img, const float& kper); |
||||
void Compute_Multiscale_Derivatives(void); |
||||
void Compute_Detector_Response(void); |
||||
void Determinant_Hessian_Parallel(std::vector<cv::KeyPoint>& kpts); |
||||
void Find_Extremum_Threading(const int& level); |
||||
void Do_Subpixel_Refinement(std::vector<cv::KeyPoint>& kpts); |
||||
void Feature_Suppression_Distance(std::vector<cv::KeyPoint>& kpts, const float& mdist); |
||||
|
||||
// AOS Methods
|
||||
void AOS_Step_Scalar(cv::Mat &Ld, const cv::Mat &Ldprev, const cv::Mat &c, const float& stepsize); |
||||
void AOS_Rows(const cv::Mat &Ldprev, const cv::Mat &c, const float& stepsize); |
||||
void AOS_Columns(const cv::Mat &Ldprev, const cv::Mat &c, const float& stepsize); |
||||
void Thomas(const cv::Mat &a, const cv::Mat &b, const cv::Mat &Ld, cv::Mat &x); |
||||
|
||||
// Feature Description methods
|
||||
void Compute_Main_Orientation_SURF(cv::KeyPoint& kpt); |
||||
|
||||
// Descriptor Mode -> 0 SURF 64
|
||||
void Get_SURF_Upright_Descriptor_64(const cv::KeyPoint& kpt, float* desc); |
||||
void Get_SURF_Descriptor_64(const cv::KeyPoint& kpt, float* desc); |
||||
|
||||
// Descriptor Mode -> 0 SURF 128
|
||||
void Get_SURF_Upright_Descriptor_128(const cv::KeyPoint& kpt, float* desc); |
||||
void Get_SURF_Descriptor_128(const cv::KeyPoint& kpt, float* desc); |
||||
|
||||
// Descriptor Mode -> 1 M-SURF 64
|
||||
void Get_MSURF_Upright_Descriptor_64(const cv::KeyPoint& kpt, float* desc); |
||||
void Get_MSURF_Descriptor_64(const cv::KeyPoint& kpt, float* desc); |
||||
|
||||
// Descriptor Mode -> 1 M-SURF 128
|
||||
void Get_MSURF_Upright_Descriptor_128(const cv::KeyPoint& kpt, float* desc); |
||||
void Get_MSURF_Descriptor_128(const cv::KeyPoint& kpt, float *desc); |
||||
|
||||
// Descriptor Mode -> 2 G-SURF 64
|
||||
void Get_GSURF_Upright_Descriptor_64(const cv::KeyPoint& kpt, float* desc); |
||||
void Get_GSURF_Descriptor_64(const cv::KeyPoint& kpt, float *desc); |
||||
|
||||
// Descriptor Mode -> 2 G-SURF 128
|
||||
void Get_GSURF_Upright_Descriptor_128(const cv::KeyPoint& kpt, float* desc); |
||||
void Get_GSURF_Descriptor_128(const cv::KeyPoint& kpt, float* desc); |
||||
|
||||
public: |
||||
|
||||
// Setters
|
||||
void Set_Scale_Offset(float soffset) { |
||||
soffset_ = soffset; |
||||
} |
||||
|
||||
void Set_SDerivatives(float sderivatives) { |
||||
sderivatives_ = sderivatives; |
||||
} |
||||
|
||||
void Set_Octave_Max(int omax) { |
||||
omax_ = omax; |
||||
} |
||||
|
||||
void Set_NSublevels(int nsublevels) { |
||||
nsublevels_ = nsublevels; |
||||
} |
||||
|
||||
void Set_Save_Scale_Space_Flag(bool save_scale_space) { |
||||
save_scale_space_ = save_scale_space; |
||||
} |
||||
|
||||
void Set_Image_Width(int img_width) { |
||||
img_width_ = img_width; |
||||
} |
||||
|
||||
void Set_Image_Height(int img_height) { |
||||
img_height_ = img_height; |
||||
} |
||||
|
||||
void Set_Verbosity_Level(bool verbosity) { |
||||
verbosity_ = verbosity; |
||||
} |
||||
|
||||
void Set_KContrast(float kcontrast) { |
||||
kcontrast_ = kcontrast; |
||||
} |
||||
|
||||
void Set_Detector_Threshold(float dthreshold) { |
||||
dthreshold_ = dthreshold; |
||||
} |
||||
|
||||
void Set_Diffusivity_Type(int diffusivity) { |
||||
diffusivity_ = diffusivity; |
||||
} |
||||
|
||||
void Set_Descriptor_Mode(int descriptor_mode) { |
||||
descriptor_mode_ = descriptor_mode; |
||||
} |
||||
|
||||
void Set_Use_FED(bool use_fed) { |
||||
use_fed_ = use_fed; |
||||
} |
||||
|
||||
void Set_Upright(bool use_upright) { |
||||
use_upright_ = use_upright; |
||||
} |
||||
|
||||
void Set_Extended(bool use_extended) { |
||||
use_extended_ = use_extended; |
||||
} |
||||
|
||||
// Getters
|
||||
float Get_Scale_Offset(void) { |
||||
return soffset_; |
||||
} |
||||
|
||||
float Get_SDerivatives(void) { |
||||
return sderivatives_; |
||||
} |
||||
|
||||
int Get_Octave_Max(void) { |
||||
return omax_; |
||||
} |
||||
|
||||
int Get_NSublevels(void) { |
||||
return nsublevels_; |
||||
} |
||||
|
||||
bool Get_Save_Scale_Space_Flag(void) { |
||||
return save_scale_space_; |
||||
} |
||||
|
||||
int Get_Image_Width(void) { |
||||
return img_width_; |
||||
} |
||||
|
||||
int Get_Image_Height(void) { |
||||
return img_height_; |
||||
} |
||||
|
||||
bool Get_Verbosity_Level(void) { |
||||
return verbosity_; |
||||
} |
||||
|
||||
float Get_KContrast(void) { |
||||
return kcontrast_; |
||||
} |
||||
|
||||
float Get_Detector_Threshold(void) { |
||||
return dthreshold_; |
||||
} |
||||
|
||||
int Get_Diffusivity_Type(void) { |
||||
return diffusivity_; |
||||
} |
||||
|
||||
int Get_Descriptor_Mode(void) { |
||||
return descriptor_mode_; |
||||
} |
||||
|
||||
bool Get_Upright(void) { |
||||
return use_upright_; |
||||
} |
||||
|
||||
bool Get_Extended(void) { |
||||
return use_extended_; |
||||
} |
||||
|
||||
float Get_Time_KContrast(void) { |
||||
return tkcontrast_; |
||||
} |
||||
|
||||
float Get_Time_NLScale(void) { |
||||
return tnlscale_; |
||||
} |
||||
|
||||
float Get_Time_Detector(void) { |
||||
return tdetector_; |
||||
} |
||||
|
||||
float Get_Time_Multiscale_Derivatives(void) { |
||||
return tmderivatives_; |
||||
} |
||||
|
||||
float Get_Time_Detector_Response(void) { |
||||
return tdresponse_; |
||||
} |
||||
|
||||
float Get_Time_Descriptor(void) { |
||||
return tdescriptor_; |
||||
} |
||||
|
||||
float Get_Time_Subpixel(void) { |
||||
return tsubpixel_; |
||||
} |
||||
}; |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
// Inline functions
|
||||
float getAngle(const float& x, const float& y); |
||||
float gaussian(const float& x, const float& y, const float& sig); |
||||
void checkDescriptorLimits(int &x, int &y, const int& width, const int& height); |
||||
void clippingDescriptor(float *desc, const int& dsize, const int& niter, const float& ratio); |
||||
int fRound(const float& flt); |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
#endif // KAZE_H_
|
@ -0,0 +1,129 @@ |
||||
|
||||
/**
|
||||
* @file config.h |
||||
* @brief Configuration file |
||||
* @date Dec 27, 2011 |
||||
* @author Pablo F. Alcantarilla |
||||
*/ |
||||
|
||||
#ifndef _CONFIG_H_ |
||||
#define _CONFIG_H_ |
||||
|
||||
//******************************************************************************
|
||||
//******************************************************************************
|
||||
|
||||
// System Includes
|
||||
#include <stdlib.h> |
||||
#include <stdio.h> |
||||
#include <string.h> |
||||
#include <cstdlib> |
||||
#include <string> |
||||
#include <vector> |
||||
#include <math.h> |
||||
|
||||
// OpenCV Includes
|
||||
#include "precomp.hpp" |
||||
|
||||
// OpenMP Includes
|
||||
#ifdef _OPENMP |
||||
#include <omp.h> |
||||
#else |
||||
#define omp_get_thread_num() 0 |
||||
#endif |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
// Some defines
|
||||
#define NMAX_CHAR 400 |
||||
|
||||
// Some default options
|
||||
const float DEFAULT_SCALE_OFFSET = 1.60; // Base scale offset (sigma units)
|
||||
const float DEFAULT_OCTAVE_MAX = 4.0; // Maximum octave evolution of the image 2^sigma (coarsest scale sigma units)
|
||||
const int DEFAULT_NSUBLEVELS = 4; // Default number of sublevels per scale level
|
||||
const float DEFAULT_DETECTOR_THRESHOLD = 0.001; // Detector response threshold to accept point
|
||||
const float DEFAULT_MIN_DETECTOR_THRESHOLD = 0.00001; // Minimum Detector response threshold to accept point
|
||||
const int DEFAULT_DESCRIPTOR_MODE = 1; // Descriptor Mode 0->SURF, 1->M-SURF
|
||||
const bool DEFAULT_USE_FED = true; // 0->AOS, 1->FED
|
||||
const bool DEFAULT_UPRIGHT = false; // Upright descriptors, not invariant to rotation
|
||||
const bool DEFAULT_EXTENDED = false; // Extended descriptor, dimension 128
|
||||
const bool DEFAULT_SAVE_SCALE_SPACE = false; // For saving the scale space images
|
||||
const bool DEFAULT_VERBOSITY = false; // Verbosity level (0->no verbosity)
|
||||
const bool DEFAULT_SHOW_RESULTS = true; // For showing the output image with the detected features plus some ratios
|
||||
const bool DEFAULT_SAVE_KEYPOINTS = false; // For saving the list of keypoints
|
||||
|
||||
// Some important configuration variables
|
||||
const float DEFAULT_SIGMA_SMOOTHING_DERIVATIVES = 1.0; |
||||
const float DEFAULT_KCONTRAST = .01; |
||||
const float KCONTRAST_PERCENTILE = 0.7; |
||||
const int KCONTRAST_NBINS = 300; |
||||
const bool COMPUTE_KCONTRAST = true; |
||||
const int DEFAULT_DIFFUSIVITY_TYPE = 1; // 0 -> PM G1, 1 -> PM G2, 2 -> Weickert
|
||||
const bool USE_CLIPPING_NORMALIZATION = false; |
||||
const float CLIPPING_NORMALIZATION_RATIO = 1.6; |
||||
const int CLIPPING_NORMALIZATION_NITER = 5; |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
struct KAZEOptions { |
||||
|
||||
KAZEOptions() { |
||||
// Load the default options
|
||||
soffset = DEFAULT_SCALE_OFFSET; |
||||
omax = DEFAULT_OCTAVE_MAX; |
||||
nsublevels = DEFAULT_NSUBLEVELS; |
||||
dthreshold = DEFAULT_DETECTOR_THRESHOLD; |
||||
use_fed = DEFAULT_USE_FED; |
||||
upright = DEFAULT_UPRIGHT; |
||||
extended = DEFAULT_EXTENDED; |
||||
descriptor = DEFAULT_DESCRIPTOR_MODE; |
||||
diffusivity = DEFAULT_DIFFUSIVITY_TYPE; |
||||
sderivatives = DEFAULT_SIGMA_SMOOTHING_DERIVATIVES; |
||||
save_scale_space = DEFAULT_SAVE_SCALE_SPACE; |
||||
save_keypoints = DEFAULT_SAVE_KEYPOINTS; |
||||
verbosity = DEFAULT_VERBOSITY; |
||||
show_results = DEFAULT_SHOW_RESULTS; |
||||
} |
||||
|
||||
float soffset; |
||||
int omax; |
||||
int nsublevels; |
||||
int img_width; |
||||
int img_height; |
||||
int diffusivity; |
||||
float sderivatives; |
||||
float dthreshold; |
||||
bool use_fed; |
||||
bool upright; |
||||
bool extended; |
||||
int descriptor; |
||||
bool save_scale_space; |
||||
bool save_keypoints; |
||||
bool verbosity; |
||||
bool show_results; |
||||
}; |
||||
|
||||
struct TEvolution { |
||||
cv::Mat Lx, Ly; // First order spatial derivatives
|
||||
cv::Mat Lxx, Lxy, Lyy; // Second order spatial derivatives
|
||||
cv::Mat Lflow; // Diffusivity image
|
||||
cv::Mat Lt; // Evolution image
|
||||
cv::Mat Lsmooth; // Smoothed image
|
||||
cv::Mat Lstep; // Evolution step update
|
||||
cv::Mat Ldet; // Detector response
|
||||
float etime; // Evolution time
|
||||
float esigma; // Evolution sigma. For linear diffusion t = sigma^2 / 2
|
||||
float octave; // Image octave
|
||||
float sublevel; // Image sublevel in each octave
|
||||
int sigma_size; // Integer esigma. For computing the feature detector responses
|
||||
}; |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
#endif |
||||
|
||||
|
||||
|
||||
|
@ -0,0 +1,192 @@ |
||||
//=============================================================================
|
||||
//
|
||||
// fed.cpp
|
||||
// Authors: Pablo F. Alcantarilla (1), Jesus Nuevo (2)
|
||||
// Institutions: Georgia Institute of Technology (1)
|
||||
// TrueVision Solutions (2)
|
||||
// Date: 15/09/2013
|
||||
// Email: pablofdezalc@gmail.com
|
||||
//
|
||||
// AKAZE Features Copyright 2013, Pablo F. Alcantarilla, Jesus Nuevo
|
||||
// All Rights Reserved
|
||||
// See LICENSE for the license information
|
||||
//=============================================================================
|
||||
|
||||
/**
|
||||
* @file fed.cpp |
||||
* @brief Functions for performing Fast Explicit Diffusion and building the |
||||
* nonlinear scale space |
||||
* @date Sep 15, 2013 |
||||
* @author Pablo F. Alcantarilla, Jesus Nuevo |
||||
* @note This code is derived from FED/FJ library from Grewenig et al., |
||||
* The FED/FJ library allows solving more advanced problems |
||||
* Please look at the following papers for more information about FED: |
||||
* [1] S. Grewenig, J. Weickert, C. Schroers, A. Bruhn. Cyclic Schemes for |
||||
* PDE-Based Image Analysis. Technical Report No. 327, Department of Mathematics, |
||||
* Saarland University, Saarbrücken, Germany, March 2013 |
||||
* [2] S. Grewenig, J. Weickert, A. Bruhn. From box filtering to fast explicit diffusion. |
||||
* DAGM, 2010 |
||||
* |
||||
*/ |
||||
|
||||
#include "fed.h" |
||||
|
||||
using namespace std; |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function allocates an array of the least number of time steps such |
||||
* that a certain stopping time for the whole process can be obtained and fills |
||||
* it with the respective FED time step sizes for one cycle |
||||
* The function returns the number of time steps per cycle or 0 on failure |
||||
* @param T Desired process stopping time |
||||
* @param M Desired number of cycles |
||||
* @param tau_max Stability limit for the explicit scheme |
||||
* @param reordering Reordering flag |
||||
* @param tau The vector with the dynamic step sizes |
||||
*/ |
||||
int fed_tau_by_process_time(const float& T, const int& M, const float& tau_max, |
||||
const bool& reordering, std::vector<float>& tau) { |
||||
// All cycles have the same fraction of the stopping time
|
||||
return fed_tau_by_cycle_time(T/(float)M,tau_max,reordering,tau); |
||||
} |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function allocates an array of the least number of time steps such |
||||
* that a certain stopping time for the whole process can be obtained and fills it |
||||
* it with the respective FED time step sizes for one cycle |
||||
* The function returns the number of time steps per cycle or 0 on failure |
||||
* @param t Desired cycle stopping time |
||||
* @param tau_max Stability limit for the explicit scheme |
||||
* @param reordering Reordering flag |
||||
* @param tau The vector with the dynamic step sizes |
||||
*/ |
||||
int fed_tau_by_cycle_time(const float& t, const float& tau_max, |
||||
const bool& reordering, std::vector<float> &tau) { |
||||
int n = 0; // Number of time steps
|
||||
float scale = 0.0; // Ratio of t we search to maximal t
|
||||
|
||||
// Compute necessary number of time steps
|
||||
n = (int)(ceilf(sqrtf(3.0*t/tau_max+0.25f)-0.5f-1.0e-8f)+ 0.5f); |
||||
scale = 3.0*t/(tau_max*(float)(n*(n+1))); |
||||
|
||||
// Call internal FED time step creation routine
|
||||
return fed_tau_internal(n,scale,tau_max,reordering,tau); |
||||
} |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function allocates an array of time steps and fills it with FED |
||||
* time step sizes |
||||
* The function returns the number of time steps per cycle or 0 on failure |
||||
* @param n Number of internal steps |
||||
* @param scale Ratio of t we search to maximal t |
||||
* @param tau_max Stability limit for the explicit scheme |
||||
* @param reordering Reordering flag |
||||
* @param tau The vector with the dynamic step sizes |
||||
*/ |
||||
int fed_tau_internal(const int& n, const float& scale, const float& tau_max, |
||||
const bool& reordering, std::vector<float> &tau) { |
||||
float c = 0.0, d = 0.0; // Time savers
|
||||
vector<float> tauh; // Helper vector for unsorted taus
|
||||
|
||||
if (n <= 0) { |
||||
return 0; |
||||
} |
||||
|
||||
// Allocate memory for the time step size
|
||||
tau = vector<float>(n); |
||||
|
||||
if (reordering) { |
||||
tauh = vector<float>(n); |
||||
} |
||||
|
||||
// Compute time saver
|
||||
c = 1.0f / (4.0f * (float)n + 2.0f); |
||||
d = scale * tau_max / 2.0f; |
||||
|
||||
// Set up originally ordered tau vector
|
||||
for (int k = 0; k < n; ++k) { |
||||
float h = cosf(CV_PI * (2.0f * (float)k + 1.0f) * c); |
||||
|
||||
if (reordering) { |
||||
tauh[k] = d / (h * h); |
||||
} |
||||
else { |
||||
tau[k] = d / (h * h); |
||||
} |
||||
} |
||||
|
||||
// Permute list of time steps according to chosen reordering function
|
||||
int kappa = 0, prime = 0; |
||||
|
||||
if (reordering == true) { |
||||
// Choose kappa cycle with k = n/2
|
||||
// This is a heuristic. We can use Leja ordering instead!!
|
||||
kappa = n / 2; |
||||
|
||||
// Get modulus for permutation
|
||||
prime = n + 1; |
||||
|
||||
while (!fed_is_prime_internal(prime)) { |
||||
prime++; |
||||
} |
||||
|
||||
// Perform permutation
|
||||
for (int k = 0, l = 0; l < n; ++k, ++l) { |
||||
int index = 0; |
||||
while ((index = ((k+1)*kappa) % prime - 1) >= n) { |
||||
k++; |
||||
} |
||||
|
||||
tau[l] = tauh[index]; |
||||
} |
||||
} |
||||
|
||||
return n; |
||||
} |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function checks if a number is prime or not |
||||
* @param number Number to check if it is prime or not |
||||
* @return true if the number is prime |
||||
*/ |
||||
bool fed_is_prime_internal(const int& number) { |
||||
bool is_prime = false; |
||||
|
||||
if (number <= 1) { |
||||
return false; |
||||
} |
||||
else if (number == 1 || number == 2 || number == 3 || number == 5 || number == 7) { |
||||
return true; |
||||
} |
||||
else if ((number % 2) == 0 || (number % 3) == 0 || (number % 5) == 0 || (number % 7) == 0) { |
||||
return false; |
||||
} |
||||
else { |
||||
is_prime = true; |
||||
int upperLimit = sqrt(number+1.0); |
||||
int divisor = 11; |
||||
|
||||
while (divisor <= upperLimit ) { |
||||
if (number % divisor == 0) |
||||
{ |
||||
is_prime = false; |
||||
} |
||||
|
||||
divisor +=2; |
||||
} |
||||
|
||||
return is_prime; |
||||
} |
||||
} |
@ -0,0 +1,30 @@ |
||||
#ifndef FED_H |
||||
#define FED_H |
||||
|
||||
//******************************************************************************
|
||||
//******************************************************************************
|
||||
|
||||
// Includes
|
||||
#include <iostream> |
||||
#include <stdlib.h> |
||||
#include <stdio.h> |
||||
#include <cstdlib> |
||||
#include <math.h> |
||||
#include <vector> |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
// Declaration of functions
|
||||
int fed_tau_by_process_time(const float& T, const int& M, const float& tau_max, |
||||
const bool& reordering, std::vector<float>& tau); |
||||
int fed_tau_by_cycle_time(const float& t, const float& tau_max, |
||||
const bool& reordering, std::vector<float> &tau) ; |
||||
int fed_tau_internal(const int& n, const float& scale, const float& tau_max, |
||||
const bool& reordering, std::vector<float> &tau); |
||||
bool fed_is_prime_internal(const int& number); |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
#endif // FED_H
|
@ -0,0 +1,386 @@ |
||||
|
||||
//=============================================================================
|
||||
//
|
||||
// nldiffusion_functions.cpp
|
||||
// Author: Pablo F. Alcantarilla
|
||||
// Institution: University d'Auvergne
|
||||
// Address: Clermont Ferrand, France
|
||||
// Date: 27/12/2011
|
||||
// Email: pablofdezalc@gmail.com
|
||||
//
|
||||
// KAZE Features Copyright 2012, Pablo F. Alcantarilla
|
||||
// All Rights Reserved
|
||||
// See LICENSE for the license information
|
||||
//=============================================================================
|
||||
|
||||
/**
|
||||
* @file nldiffusion_functions.cpp |
||||
* @brief Functions for non-linear diffusion applications: |
||||
* 2D Gaussian Derivatives |
||||
* Perona and Malik conductivity equations |
||||
* Perona and Malik evolution |
||||
* @date Dec 27, 2011 |
||||
* @author Pablo F. Alcantarilla |
||||
*/ |
||||
|
||||
#include "nldiffusion_functions.h" |
||||
|
||||
// Namespaces
|
||||
using namespace std; |
||||
using namespace cv; |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function smoothes an image with a Gaussian kernel |
||||
* @param src Input image |
||||
* @param dst Output image |
||||
* @param ksize_x Kernel size in X-direction (horizontal) |
||||
* @param ksize_y Kernel size in Y-direction (vertical) |
||||
* @param sigma Kernel standard deviation |
||||
*/ |
||||
void gaussian_2D_convolution(const cv::Mat& src, cv::Mat& dst, |
||||
int ksize_x, int ksize_y, float sigma) { |
||||
|
||||
size_t ksize_x_ = 0, ksize_y_ = 0; |
||||
|
||||
// Compute an appropriate kernel size according to the specified sigma
|
||||
if (sigma > ksize_x || sigma > ksize_y || ksize_x == 0 || ksize_y == 0) { |
||||
ksize_x_ = ceil(2.0*(1.0 + (sigma-0.8)/(0.3))); |
||||
ksize_y_ = ksize_x_; |
||||
} |
||||
|
||||
// The kernel size must be and odd number
|
||||
if ((ksize_x_ % 2) == 0) { |
||||
ksize_x_ += 1; |
||||
} |
||||
|
||||
if ((ksize_y_ % 2) == 0) { |
||||
ksize_y_ += 1; |
||||
} |
||||
|
||||
// Perform the Gaussian Smoothing with border replication
|
||||
GaussianBlur(src,dst,Size(ksize_x_,ksize_y_),sigma,sigma,cv::BORDER_REPLICATE); |
||||
} |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function computes the Perona and Malik conductivity coefficient g1 |
||||
* g1 = exp(-|dL|^2/k^2) |
||||
* @param Lx First order image derivative in X-direction (horizontal) |
||||
* @param Ly First order image derivative in Y-direction (vertical) |
||||
* @param dst Output image |
||||
* @param k Contrast factor parameter |
||||
*/ |
||||
void pm_g1(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k) { |
||||
cv::exp(-(Lx.mul(Lx) + Ly.mul(Ly))/(k*k),dst); |
||||
} |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function computes the Perona and Malik conductivity coefficient g2 |
||||
* g2 = 1 / (1 + dL^2 / k^2) |
||||
* @param Lx First order image derivative in X-direction (horizontal) |
||||
* @param Ly First order image derivative in Y-direction (vertical) |
||||
* @param dst Output image |
||||
* @param k Contrast factor parameter |
||||
*/ |
||||
void pm_g2(const cv::Mat &Lx, const cv::Mat& Ly, cv::Mat& dst, float k) { |
||||
dst = 1./(1. + (Lx.mul(Lx) + Ly.mul(Ly))/(k*k)); |
||||
} |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function computes Weickert conductivity coefficient g3 |
||||
* @param Lx First order image derivative in X-direction (horizontal) |
||||
* @param Ly First order image derivative in Y-direction (vertical) |
||||
* @param dst Output image |
||||
* @param k Contrast factor parameter |
||||
* @note For more information check the following paper: J. Weickert |
||||
* Applications of nonlinear diffusion in image processing and computer vision, |
||||
* Proceedings of Algorithmy 2000 |
||||
*/ |
||||
void weickert_diffusivity(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k) { |
||||
Mat modg; |
||||
cv::pow((Lx.mul(Lx) + Ly.mul(Ly))/(k*k),4,modg); |
||||
cv::exp(-3.315/modg, dst); |
||||
dst = 1.0 - dst; |
||||
} |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function computes a good empirical value for the k contrast factor |
||||
* given an input image, the percentile (0-1), the gradient scale and the number of |
||||
* bins in the histogram |
||||
* @param img Input image |
||||
* @param perc Percentile of the image gradient histogram (0-1) |
||||
* @param gscale Scale for computing the image gradient histogram |
||||
* @param nbins Number of histogram bins |
||||
* @param ksize_x Kernel size in X-direction (horizontal) for the Gaussian smoothing kernel |
||||
* @param ksize_y Kernel size in Y-direction (vertical) for the Gaussian smoothing kernel |
||||
* @return k contrast factor |
||||
*/ |
||||
float compute_k_percentile(const cv::Mat& img, float perc, float gscale, |
||||
int nbins, int ksize_x, int ksize_y) { |
||||
|
||||
int nbin = 0, nelements = 0, nthreshold = 0, k = 0; |
||||
float kperc = 0.0, modg = 0.0, lx = 0.0, ly = 0.0; |
||||
float npoints = 0.0; |
||||
float hmax = 0.0; |
||||
|
||||
// Create the array for the histogram
|
||||
float *hist = new float[nbins]; |
||||
|
||||
// Create the matrices
|
||||
Mat gaussian = Mat::zeros(img.rows,img.cols,CV_32F); |
||||
Mat Lx = Mat::zeros(img.rows,img.cols,CV_32F); |
||||
Mat Ly = Mat::zeros(img.rows,img.cols,CV_32F); |
||||
|
||||
// Set the histogram to zero, just in case
|
||||
for (int i = 0; i < nbins; i++) { |
||||
hist[i] = 0.0; |
||||
} |
||||
|
||||
// Perform the Gaussian convolution
|
||||
gaussian_2D_convolution(img,gaussian,ksize_x,ksize_y,gscale); |
||||
|
||||
// Compute the Gaussian derivatives Lx and Ly
|
||||
Scharr(gaussian,Lx,CV_32F,1,0,1,0,cv::BORDER_DEFAULT); |
||||
Scharr(gaussian,Ly,CV_32F,0,1,1,0,cv::BORDER_DEFAULT); |
||||
|
||||
// Skip the borders for computing the histogram
|
||||
for (int i = 1; i < gaussian.rows-1; i++) { |
||||
for (int j = 1; j < gaussian.cols-1; j++) { |
||||
lx = *(Lx.ptr<float>(i)+j); |
||||
ly = *(Ly.ptr<float>(i)+j); |
||||
modg = sqrt(lx*lx + ly*ly); |
||||
|
||||
// Get the maximum
|
||||
if (modg > hmax) { |
||||
hmax = modg; |
||||
} |
||||
} |
||||
} |
||||
|
||||
// Skip the borders for computing the histogram
|
||||
for (int i = 1; i < gaussian.rows-1; i++) { |
||||
for (int j = 1; j < gaussian.cols-1; j++) { |
||||
lx = *(Lx.ptr<float>(i)+j); |
||||
ly = *(Ly.ptr<float>(i)+j); |
||||
modg = sqrt(lx*lx + ly*ly); |
||||
|
||||
// Find the correspondent bin
|
||||
if (modg != 0.0) { |
||||
nbin = floor(nbins*(modg/hmax)); |
||||
|
||||
if (nbin == nbins) { |
||||
nbin--; |
||||
} |
||||
|
||||
hist[nbin]++; |
||||
npoints++; |
||||
} |
||||
} |
||||
} |
||||
|
||||
// Now find the perc of the histogram percentile
|
||||
nthreshold = (size_t)(npoints*perc); |
||||
|
||||
|
||||
for (k = 0; nelements < nthreshold && k < nbins; k++) { |
||||
nelements = nelements + hist[k]; |
||||
} |
||||
|
||||
if (nelements < nthreshold) { |
||||
kperc = 0.03; |
||||
} |
||||
else { |
||||
kperc = hmax*((float)(k)/(float)nbins); |
||||
} |
||||
|
||||
delete hist; |
||||
return kperc; |
||||
} |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function computes Scharr image derivatives |
||||
* @param src Input image |
||||
* @param dst Output image |
||||
* @param xorder Derivative order in X-direction (horizontal) |
||||
* @param yorder Derivative order in Y-direction (vertical) |
||||
* @param scale Scale factor or derivative size |
||||
*/ |
||||
void compute_scharr_derivatives(const cv::Mat& src, cv::Mat& dst, |
||||
int xorder, int yorder, int scale) { |
||||
Mat kx, ky; |
||||
compute_derivative_kernels(kx,ky,xorder,yorder,scale); |
||||
sepFilter2D(src,dst,CV_32F,kx,ky); |
||||
} |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief Compute derivative kernels for sizes different than 3 |
||||
* @param _kx Horizontal kernel values |
||||
* @param _ky Vertical kernel values |
||||
* @param dx Derivative order in X-direction (horizontal) |
||||
* @param dy Derivative order in Y-direction (vertical) |
||||
* @param scale_ Scale factor or derivative size |
||||
*/ |
||||
void compute_derivative_kernels(cv::OutputArray _kx, cv::OutputArray _ky, |
||||
int dx, int dy, int scale) { |
||||
|
||||
int ksize = 3 + 2*(scale-1); |
||||
|
||||
// The standard Scharr kernel
|
||||
if (scale == 1) { |
||||
getDerivKernels(_kx,_ky,dx,dy,0,true,CV_32F); |
||||
return; |
||||
} |
||||
|
||||
_kx.create(ksize,1,CV_32F,-1,true); |
||||
_ky.create(ksize,1,CV_32F,-1,true); |
||||
Mat kx = _kx.getMat(); |
||||
Mat ky = _ky.getMat(); |
||||
|
||||
float w = 10.0/3.0; |
||||
float norm = 1.0/(2.0*scale*(w+2.0)); |
||||
|
||||
for (int k = 0; k < 2; k++) { |
||||
Mat* kernel = k == 0 ? &kx : &ky; |
||||
int order = k == 0 ? dx : dy; |
||||
std::vector<float> kerI(ksize); |
||||
|
||||
for (int t=0; t<ksize; t++) { |
||||
kerI[t] = 0; |
||||
} |
||||
|
||||
if (order == 0) { |
||||
kerI[0] = norm, kerI[ksize/2] = w*norm, kerI[ksize-1] = norm; |
||||
} |
||||
else if (order == 1) { |
||||
kerI[0] = -1, kerI[ksize/2] = 0, kerI[ksize-1] = 1; |
||||
} |
||||
|
||||
Mat temp(kernel->rows,kernel->cols,CV_32F,&kerI[0]); |
||||
temp.copyTo(*kernel); |
||||
} |
||||
} |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function performs a scalar non-linear diffusion step |
||||
* @param Ld2 Output image in the evolution |
||||
* @param c Conductivity image |
||||
* @param Lstep Previous image in the evolution |
||||
* @param stepsize The step size in time units |
||||
* @note Forward Euler Scheme 3x3 stencil |
||||
* The function c is a scalar value that depends on the gradient norm |
||||
* dL_by_ds = d(c dL_by_dx)_by_dx + d(c dL_by_dy)_by_dy |
||||
*/ |
||||
void nld_step_scalar(cv::Mat& Ld, const cv::Mat& c, cv::Mat& Lstep, float stepsize) { |
||||
|
||||
#ifdef _OPENMP |
||||
#pragma omp parallel for schedule(dynamic) |
||||
#endif |
||||
for (int i = 1; i < Lstep.rows-1; i++) { |
||||
for (int j = 1; j < Lstep.cols-1; j++) { |
||||
float xpos = ((*(c.ptr<float>(i)+j))+(*(c.ptr<float>(i)+j+1)))*((*(Ld.ptr<float>(i)+j+1))-(*(Ld.ptr<float>(i)+j))); |
||||
float xneg = ((*(c.ptr<float>(i)+j-1))+(*(c.ptr<float>(i)+j)))*((*(Ld.ptr<float>(i)+j))-(*(Ld.ptr<float>(i)+j-1))); |
||||
float ypos = ((*(c.ptr<float>(i)+j))+(*(c.ptr<float>(i+1)+j)))*((*(Ld.ptr<float>(i+1)+j))-(*(Ld.ptr<float>(i)+j))); |
||||
float yneg = ((*(c.ptr<float>(i-1)+j))+(*(c.ptr<float>(i)+j)))*((*(Ld.ptr<float>(i)+j))-(*(Ld.ptr<float>(i-1)+j))); |
||||
*(Lstep.ptr<float>(i)+j) = 0.5*stepsize*(xpos-xneg + ypos-yneg); |
||||
} |
||||
} |
||||
|
||||
for (int j = 1; j < Lstep.cols-1; j++) { |
||||
float xpos = ((*(c.ptr<float>(0)+j))+(*(c.ptr<float>(0)+j+1)))*((*(Ld.ptr<float>(0)+j+1))-(*(Ld.ptr<float>(0)+j))); |
||||
float xneg = ((*(c.ptr<float>(0)+j-1))+(*(c.ptr<float>(0)+j)))*((*(Ld.ptr<float>(0)+j))-(*(Ld.ptr<float>(0)+j-1))); |
||||
float ypos = ((*(c.ptr<float>(0)+j))+(*(c.ptr<float>(1)+j)))*((*(Ld.ptr<float>(1)+j))-(*(Ld.ptr<float>(0)+j))); |
||||
float yneg = ((*(c.ptr<float>(0)+j))+(*(c.ptr<float>(0)+j)))*((*(Ld.ptr<float>(0)+j))-(*(Ld.ptr<float>(0)+j))); |
||||
*(Lstep.ptr<float>(0)+j) = 0.5*stepsize*(xpos-xneg + ypos-yneg); |
||||
} |
||||
|
||||
for (int j = 1; j < Lstep.cols-1; j++) { |
||||
float xpos = ((*(c.ptr<float>(Lstep.rows-1)+j))+(*(c.ptr<float>(Lstep.rows-1)+j+1)))*((*(Ld.ptr<float>(Lstep.rows-1)+j+1))-(*(Ld.ptr<float>(Lstep.rows-1)+j))); |
||||
float xneg = ((*(c.ptr<float>(Lstep.rows-1)+j-1))+(*(c.ptr<float>(Lstep.rows-1)+j)))*((*(Ld.ptr<float>(Lstep.rows-1)+j))-(*(Ld.ptr<float>(Lstep.rows-1)+j-1))); |
||||
float ypos = ((*(c.ptr<float>(Lstep.rows-1)+j))+(*(c.ptr<float>(Lstep.rows-1)+j)))*((*(Ld.ptr<float>(Lstep.rows-1)+j))-(*(Ld.ptr<float>(Lstep.rows-1)+j))); |
||||
float yneg = ((*(c.ptr<float>(Lstep.rows-2)+j))+(*(c.ptr<float>(Lstep.rows-1)+j)))*((*(Ld.ptr<float>(Lstep.rows-1)+j))-(*(Ld.ptr<float>(Lstep.rows-2)+j))); |
||||
*(Lstep.ptr<float>(Lstep.rows-1)+j) = 0.5*stepsize*(xpos-xneg + ypos-yneg); |
||||
} |
||||
|
||||
for (int i = 1; i < Lstep.rows-1; i++) { |
||||
float xpos = ((*(c.ptr<float>(i)))+(*(c.ptr<float>(i)+1)))*((*(Ld.ptr<float>(i)+1))-(*(Ld.ptr<float>(i)))); |
||||
float xneg = ((*(c.ptr<float>(i)))+(*(c.ptr<float>(i))))*((*(Ld.ptr<float>(i)))-(*(Ld.ptr<float>(i)))); |
||||
float ypos = ((*(c.ptr<float>(i)))+(*(c.ptr<float>(i+1))))*((*(Ld.ptr<float>(i+1)))-(*(Ld.ptr<float>(i)))); |
||||
float yneg = ((*(c.ptr<float>(i-1)))+(*(c.ptr<float>(i))))*((*(Ld.ptr<float>(i)))-(*(Ld.ptr<float>(i-1)))); |
||||
*(Lstep.ptr<float>(i)) = 0.5*stepsize*(xpos-xneg + ypos-yneg); |
||||
} |
||||
|
||||
for (int i = 1; i < Lstep.rows-1; i++) { |
||||
float xpos = ((*(c.ptr<float>(i)+Lstep.cols-1))+(*(c.ptr<float>(i)+Lstep.cols-1)))*((*(Ld.ptr<float>(i)+Lstep.cols-1))-(*(Ld.ptr<float>(i)+Lstep.cols-1))); |
||||
float xneg = ((*(c.ptr<float>(i)+Lstep.cols-2))+(*(c.ptr<float>(i)+Lstep.cols-1)))*((*(Ld.ptr<float>(i)+Lstep.cols-1))-(*(Ld.ptr<float>(i)+Lstep.cols-2))); |
||||
float ypos = ((*(c.ptr<float>(i)+Lstep.cols-1))+(*(c.ptr<float>(i+1)+Lstep.cols-1)))*((*(Ld.ptr<float>(i+1)+Lstep.cols-1))-(*(Ld.ptr<float>(i)+Lstep.cols-1))); |
||||
float yneg = ((*(c.ptr<float>(i-1)+Lstep.cols-1))+(*(c.ptr<float>(i)+Lstep.cols-1)))*((*(Ld.ptr<float>(i)+Lstep.cols-1))-(*(Ld.ptr<float>(i-1)+Lstep.cols-1))); |
||||
*(Lstep.ptr<float>(i)+Lstep.cols-1) = 0.5*stepsize*(xpos-xneg + ypos-yneg); |
||||
} |
||||
|
||||
Ld = Ld + Lstep; |
||||
} |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function checks if a given pixel is a maximum in a local neighbourhood |
||||
* @param img Input image where we will perform the maximum search |
||||
* @param dsize Half size of the neighbourhood |
||||
* @param value Response value at (x,y) position |
||||
* @param row Image row coordinate |
||||
* @param col Image column coordinate |
||||
* @param same_img Flag to indicate if the image value at (x,y) is in the input image |
||||
* @return 1->is maximum, 0->otherwise |
||||
*/ |
||||
bool check_maximum_neighbourhood(const cv::Mat& img, int dsize, float value, |
||||
int row, int col, bool same_img) { |
||||
|
||||
bool response = true; |
||||
|
||||
for (int i = row-dsize; i <= row+dsize; i++) { |
||||
for (int j = col-dsize; j <= col+dsize; j++) { |
||||
if (i >= 0 && i < img.rows && j >= 0 && j < img.cols) { |
||||
if (same_img == true) { |
||||
if (i != row || j != col) { |
||||
if ((*(img.ptr<float>(i)+j)) > value) { |
||||
response = false; |
||||
return response; |
||||
} |
||||
} |
||||
} |
||||
else { |
||||
if ((*(img.ptr<float>(i)+j)) > value) { |
||||
response = false; |
||||
return response; |
||||
} |
||||
} |
||||
} |
||||
} |
||||
} |
||||
|
||||
return response; |
||||
} |
@ -0,0 +1,51 @@ |
||||
|
||||
/**
|
||||
* @file nldiffusion_functions.h |
||||
* @brief Functions for non-linear diffusion applications: |
||||
* 2D Gaussian Derivatives |
||||
* Perona and Malik conductivity equations |
||||
* Perona and Malik evolution |
||||
* @date Dec 27, 2011 |
||||
* @author Pablo F. Alcantarilla |
||||
*/ |
||||
|
||||
#ifndef NLDIFFUSION_FUNCTIONS_H_ |
||||
#define NLDIFFUSION_FUNCTIONS_H_ |
||||
|
||||
//******************************************************************************
|
||||
//******************************************************************************
|
||||
|
||||
// Includes
|
||||
#include "config.h" |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
// Gaussian 2D convolution
|
||||
void gaussian_2D_convolution(const cv::Mat& src, cv::Mat& dst, |
||||
int ksize_x, int ksize_y, float sigma); |
||||
|
||||
// Diffusivity functions
|
||||
void pm_g1(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k); |
||||
void pm_g2(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k); |
||||
void weickert_diffusivity(const cv::Mat& Lx, const cv::Mat& Ly, cv::Mat& dst, float k); |
||||
float compute_k_percentile(const cv::Mat& img, float perc, float gscale, |
||||
int nbins, int ksize_x, int ksize_y); |
||||
|
||||
// Image derivatives
|
||||
void compute_scharr_derivatives(const cv::Mat& src, cv::Mat& dst, |
||||
int xorder, int yorder, int scale); |
||||
void compute_derivative_kernels(cv::OutputArray _kx, cv::OutputArray _ky, |
||||
int dx, int dy, int scale); |
||||
|
||||
// Nonlinear diffusion filtering scalar step
|
||||
void nld_step_scalar(cv::Mat& Ld, const cv::Mat& c, cv::Mat& Lstep, float stepsize); |
||||
|
||||
// For non-maxima suppresion
|
||||
bool check_maximum_neighbourhood(const cv::Mat& img, int dsize, float value, |
||||
int row, int col, bool same_img); |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
#endif // NLDIFFUSION_FUNCTIONS_H_
|
@ -0,0 +1,92 @@ |
||||
|
||||
//=============================================================================
|
||||
//
|
||||
// utils.cpp
|
||||
// Author: Pablo F. Alcantarilla
|
||||
// Institution: University d'Auvergne
|
||||
// Address: Clermont Ferrand, France
|
||||
// Date: 29/12/2011
|
||||
// Email: pablofdezalc@gmail.com
|
||||
//
|
||||
// KAZE Features Copyright 2012, Pablo F. Alcantarilla
|
||||
// All Rights Reserved
|
||||
// See LICENSE for the license information
|
||||
//=============================================================================
|
||||
|
||||
/**
|
||||
* @file utils.cpp |
||||
* @brief Some useful functions |
||||
* @date Dec 29, 2011 |
||||
* @author Pablo F. Alcantarilla |
||||
*/ |
||||
|
||||
#include "utils.h" |
||||
|
||||
using namespace std; |
||||
using namespace cv; |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/**
|
||||
* @brief This function copies the input image and converts the scale of the copied |
||||
* image prior visualization |
||||
* @param src Input image |
||||
* @param dst Output image |
||||
*/ |
||||
void copy_and_convert_scale(const cv::Mat& src, cv::Mat& dst) { |
||||
|
||||
float min_val = 0, max_val = 0; |
||||
|
||||
src.copyTo(dst); |
||||
compute_min_32F(dst,min_val); |
||||
|
||||
dst = dst - min_val; |
||||
|
||||
compute_max_32F(dst,max_val); |
||||
dst = dst / max_val; |
||||
} |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
/*
|
||||
void show_input_options_help(int example) { |
||||
|
||||
fflush(stdout); |
||||
|
||||
cout << endl; |
||||
cout << endl; |
||||
cout << "KAZE Features" << endl; |
||||
cout << "***********************************************************" << endl; |
||||
cout << "For running the program you need to type in the command line the following arguments: " << endl; |
||||
|
||||
if (example == 0) { |
||||
cout << "./kaze_features img.jpg [options]" << endl; |
||||
} |
||||
else if (example == 1) { |
||||
cout << "./kaze_match img1.jpg img2.pgm homography.txt [options]" << endl; |
||||
} |
||||
else if (example == 2) { |
||||
cout << "./kaze_compare img1.jpg img2.pgm homography.txt [options]" << endl; |
||||
} |
||||
|
||||
cout << endl; |
||||
cout << "The options are not mandatory. In case you do not specify additional options, default arguments will be used" << endl << endl; |
||||
cout << "Here is a description of the additional options: " << endl; |
||||
cout << "--verbose " << "\t\t if verbosity is required" << endl; |
||||
cout << "--help" << "\t\t for showing the command line options" << endl; |
||||
cout << "--soffset" << "\t\t the base scale offset (sigma units)" << endl; |
||||
cout << "--omax" << "\t\t maximum octave evolution of the image 2^sigma (coarsest scale)" << endl; |
||||
cout << "--nsublevels" << "\t\t number of sublevels per octave" << endl; |
||||
cout << "--dthreshold" << "\t\t Feature detector threshold response for accepting points (0.001 can be a good value)" << endl; |
||||
cout << "--descriptor" << "\t\t Descriptor Type 0 -> SURF, 1 -> M-SURF, 2 -> G-SURF" << endl; |
||||
cout << "--use_fed" "\t\t 1 -> Use FED, 0 -> Use AOS for the nonlinear diffusion filtering" << endl; |
||||
cout << "--upright" << "\t\t 0 -> Rotation Invariant, 1 -> No Rotation Invariant" << endl; |
||||
cout << "--extended" << "\t\t 0 -> Normal Descriptor (64), 1 -> Extended Descriptor (128)" << endl; |
||||
cout << "--output keypoints.txt" << "\t\t For saving the detected keypoints into a .txt file" << endl; |
||||
cout << "--save_scale_space" << "\t\t 1 in case we want to save the nonlinear scale space images. 0 otherwise" << endl; |
||||
cout << "--show_results" << "\t\t 1 in case we want to show detection results. 0 otherwise" << endl; |
||||
cout << endl; |
||||
} |
||||
*/ |
@ -0,0 +1,41 @@ |
||||
|
||||
/**
|
||||
* @file utils.h |
||||
* @brief Some useful functions |
||||
* @date Dec 29, 2011 |
||||
* @author Pablo F. Alcantarilla |
||||
*/ |
||||
|
||||
#ifndef UTILS_H_ |
||||
#define UTILS_H_ |
||||
|
||||
//******************************************************************************
|
||||
//******************************************************************************
|
||||
|
||||
// OPENCV Includes
|
||||
#include "precomp.hpp" |
||||
|
||||
// System Includes
|
||||
#include <stdlib.h> |
||||
#include <stdio.h> |
||||
#include <string.h> |
||||
#include <cstdlib> |
||||
#include <string> |
||||
#include <vector> |
||||
#include <fstream> |
||||
#include <assert.h> |
||||
#include <math.h> |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
// Declaration of Functions
|
||||
void compute_min_32F(const cv::Mat& src, float& value); |
||||
void compute_max_32F(const cv::Mat& src, float& value); |
||||
void convert_scale(cv::Mat& src); |
||||
void copy_and_convert_scale(const cv::Mat &src, cv::Mat& dst); |
||||
|
||||
//*************************************************************************************
|
||||
//*************************************************************************************
|
||||
|
||||
#endif // UTILS_H_
|
Loading…
Reference in new issue