Updated ml module interfaces and documentation

pull/3679/head
Maksim Shabunin 10 years ago
parent da383e65e2
commit 79e8f0680c
  1. 5
      doc/Doxyfile.in
  2. 103
      doc/tutorials/ml/introduction_to_svm/introduction_to_svm.markdown
  3. 171
      doc/tutorials/ml/non_linear_svms/non_linear_svms.markdown
  4. 43
      modules/core/include/opencv2/core.hpp
  5. 63
      modules/ml/doc/ml_intro.markdown
  6. 801
      modules/ml/include/opencv2/ml.hpp
  7. 162
      modules/ml/src/ann_mlp.cpp
  8. 66
      modules/ml/src/boost.cpp
  9. 138
      modules/ml/src/em.cpp
  10. 265
      modules/ml/src/knearest.cpp
  11. 60
      modules/ml/src/lr.cpp
  12. 6
      modules/ml/src/nbayes.cpp
  13. 100
      modules/ml/src/precomp.hpp
  14. 69
      modules/ml/src/rtrees.cpp
  15. 232
      modules/ml/src/svm.cpp
  16. 118
      modules/ml/src/tree.cpp
  17. 32
      modules/ml/test/test_emknearestkmeans.cpp
  18. 30
      modules/ml/test/test_lr.cpp
  19. 89
      modules/ml/test/test_mltests2.cpp
  20. 3
      modules/ml/test/test_save_load.cpp
  21. 20
      modules/superres/include/opencv2/superres.hpp
  22. 12
      modules/superres/include/opencv2/superres/optical_flow.hpp
  23. 28
      modules/superres/src/optical_flow.cpp
  24. 24
      modules/video/include/opencv2/video/tracking.hpp
  25. 8
      samples/cpp/em.cpp
  26. 58
      samples/cpp/letter_recog.cpp
  27. 20
      samples/cpp/logistic_regression.cpp
  28. 120
      samples/cpp/points_classifier.cpp
  29. 26
      samples/cpp/train_HOG.cpp
  30. 30
      samples/cpp/tree_engine.cpp
  31. 30
      samples/cpp/tutorial_code/ml/introduction_to_svm/introduction_to_svm.cpp
  32. 29
      samples/cpp/tutorial_code/ml/non_linear_svms/non_linear_svms.cpp

@ -244,7 +244,10 @@ PREDEFINED = __cplusplus=1 \
CV_DEFAULT(x)=" = x" \
CV_NEON=1 \
FLANN_DEPRECATED= \
"CV_PURE_PROPERTY(type, name)= /**\@{*/ virtual type get##name() const = 0; virtual void set##name(type _##name) = 0; /**\@}*/"
"CV_PURE_PROPERTY(type, name)= /** \@see set##name */ virtual type get##name() const = 0; /** \@copybrief get##name \@see get##name */ virtual void set##name(type val) = 0;" \
"CV_IMPL_PROPERTY(type, name, x)= /** \@see set##name */ virtual type get##name() const = 0; /** \@copybrief get##name \@see get##name */ virtual void set##name(type val) = 0;" \
"CV_IMPL_PROPERTY_S(type, name, x)= /** \@see set##name */ virtual type get##name() const = 0; /** \@copybrief get##name \@see get##name */ virtual void set##name(const type & val);" \
"CV_IMPL_PROPERTY_RO(type, name, x)= virtual type get##name() const;"
EXPAND_AS_DEFINED =
SKIP_FUNCTION_MACROS = YES
TAGFILES =

@ -1,8 +1,6 @@
Introduction to Support Vector Machines {#tutorial_introduction_to_svm}
=======================================
@todo update this tutorial
Goal
----
@ -31,13 +29,11 @@ understand that this is done only because our intuition is better built from exa
to imagine. However, the same concepts apply to tasks where the examples to classify lie in a space
whose dimension is higher than two.
In the above picture you can see that there exists multiple
lines that offer a solution to the problem. Is any of them better than the others? We can
intuitively define a criterion to estimate the worth of the lines:
- A line is bad if it passes too close to the points because it will be noise sensitive and it will
not generalize correctly. Therefore, our goal should be to find the line passing as far as
possible from all points.
In the above picture you can see that there exists multiple lines that offer a solution to the
problem. Is any of them better than the others? We can intuitively define a criterion to estimate
the worth of the lines: <em> A line is bad if it passes too close to the points because it will be
noise sensitive and it will not generalize correctly. </em> Therefore, our goal should be to find
the line passing as far as possible from all points.
Then, the operation of the SVM algorithm is based on finding the hyperplane that gives the largest
minimum distance to the training examples. Twice, this distance receives the important name of
@ -57,7 +53,7 @@ where \f$\beta\f$ is known as the *weight vector* and \f$\beta_{0}\f$ as the *bi
@sa A more in depth description of this and hyperplanes you can find in the section 4.5 (*Seperating
Hyperplanes*) of the book: *Elements of Statistical Learning* by T. Hastie, R. Tibshirani and J. H.
Friedman.
Friedman (@cite HTF01).
The optimal hyperplane can be represented in an infinite number of different ways by
scaling of \f$\beta\f$ and \f$\beta_{0}\f$. As a matter of convention, among all the possible
@ -107,17 +103,14 @@ Explanation
The training data of this exercise is formed by a set of labeled 2D-points that belong to one of
two different classes; one of the classes consists of one point and the other of three points.
@code{.cpp}
float labels[4] = {1.0, -1.0, -1.0, -1.0};
float trainingData[4][2] = {{501, 10}, {255, 10}, {501, 255}, {10, 501}};
@endcode
@snippet cpp/tutorial_code/ml/introduction_to_svm/introduction_to_svm.cpp setup1
The function @ref cv::ml::SVM::train that will be used afterwards requires the training data to be
stored as @ref cv::Mat objects of floats. Therefore, we create these objects from the arrays
defined above:
@code{.cpp}
Mat trainingDataMat(4, 2, CV_32FC1, trainingData);
Mat labelsMat (4, 1, CV_32FC1, labels);
@endcode
@snippet cpp/tutorial_code/ml/introduction_to_svm/introduction_to_svm.cpp setup2
-# **Set up SVM's parameters**
@ -126,42 +119,35 @@ Explanation
used in a wide variety of problems (e.g. problems with non-linearly separable data, a SVM using
a kernel function to raise the dimensionality of the examples, etc). As a consequence of this,
we have to define some parameters before training the SVM. These parameters are stored in an
object of the class @ref cv::ml::SVM::Params .
@code{.cpp}
ml::SVM::Params params;
params.svmType = ml::SVM::C_SVC;
params.kernelType = ml::SVM::LINEAR;
params.termCrit = TermCriteria(TermCriteria::MAX_ITER, 100, 1e-6);
@endcode
- *Type of SVM*. We choose here the type **ml::SVM::C_SVC** that can be used for n-class
classification (n \f$\geq\f$ 2). This parameter is defined in the attribute
*ml::SVM::Params.svmType*.
The important feature of the type of SVM **CvSVM::C_SVC** deals with imperfect separation of classes (i.e. when the training data is non-linearly separable). This feature is not important here since the data is linearly separable and we chose this SVM type only for being the most commonly used.
object of the class @ref cv::ml::SVM.
@snippet cpp/tutorial_code/ml/introduction_to_svm/introduction_to_svm.cpp init
Here:
- *Type of SVM*. We choose here the type @ref cv::ml::SVM::C_SVC "C_SVC" that can be used for
n-class classification (n \f$\geq\f$ 2). The important feature of this type is that it deals
with imperfect separation of classes (i.e. when the training data is non-linearly separable).
This feature is not important here since the data is linearly separable and we chose this SVM
type only for being the most commonly used.
- *Type of SVM kernel*. We have not talked about kernel functions since they are not
interesting for the training data we are dealing with. Nevertheless, let's explain briefly
now the main idea behind a kernel function. It is a mapping done to the training data to
improve its resemblance to a linearly separable set of data. This mapping consists of
increasing the dimensionality of the data and is done efficiently using a kernel function.
We choose here the type **ml::SVM::LINEAR** which means that no mapping is done. This
parameter is defined in the attribute *ml::SVMParams.kernel_type*.
interesting for the training data we are dealing with. Nevertheless, let's explain briefly now
the main idea behind a kernel function. It is a mapping done to the training data to improve
its resemblance to a linearly separable set of data. This mapping consists of increasing the
dimensionality of the data and is done efficiently using a kernel function. We choose here the
type @ref cv::ml::SVM::LINEAR "LINEAR" which means that no mapping is done. This parameter is
defined using cv::ml::SVM::setKernel.
- *Termination criteria of the algorithm*. The SVM training procedure is implemented solving a
constrained quadratic optimization problem in an **iterative** fashion. Here we specify a
maximum number of iterations and a tolerance error so we allow the algorithm to finish in
less number of steps even if the optimal hyperplane has not been computed yet. This
parameter is defined in a structure @ref cv::cvTermCriteria .
parameter is defined in a structure @ref cv::TermCriteria .
-# **Train the SVM**
We call the method @ref cv::ml::SVM::train to build the SVM model.
We call the method
[CvSVM::train](http://docs.opencv.org/modules/ml/doc/support_vector_machines.html#cvsvm-train)
to build the SVM model.
@code{.cpp}
CvSVM SVM;
SVM.train(trainingDataMat, labelsMat, Mat(), Mat(), params);
@endcode
@snippet cpp/tutorial_code/ml/introduction_to_svm/introduction_to_svm.cpp train
-# **Regions classified by the SVM**
@ -170,22 +156,8 @@ Explanation
by the SVM. In other words, an image is traversed interpreting its pixels as points of the
Cartesian plane. Each of the points is colored depending on the class predicted by the SVM; in
green if it is the class with label 1 and in blue if it is the class with label -1.
@code{.cpp}
Vec3b green(0,255,0), blue (255,0,0);
for (int i = 0; i < image.rows; ++i)
for (int j = 0; j < image.cols; ++j)
{
Mat sampleMat = (Mat_<float>(1,2) << i,j);
float response = SVM.predict(sampleMat);
if (response == 1)
image.at<Vec3b>(j, i) = green;
else
if (response == -1)
image.at<Vec3b>(j, i) = blue;
}
@endcode
@snippet cpp/tutorial_code/ml/introduction_to_svm/introduction_to_svm.cpp show
-# **Support vectors**
@ -193,15 +165,8 @@ Explanation
The method @ref cv::ml::SVM::getSupportVectors obtain all of the support
vectors. We have used this methods here to find the training examples that are
support vectors and highlight them.
@code{.cpp}
int c = SVM.get_support_vector_count();
for (int i = 0; i < c; ++i)
{
const float* v = SVM.get_support_vector(i); // get and then highlight with grayscale
circle( image, Point( (int) v[0], (int) v[1]), 6, Scalar(128, 128, 128), thickness, lineType);
}
@endcode
@snippet cpp/tutorial_code/ml/introduction_to_svm/introduction_to_svm.cpp show_vectors
Results
-------

@ -1,8 +1,6 @@
Support Vector Machines for Non-Linearly Separable Data {#tutorial_non_linear_svms}
=======================================================
@todo update this tutorial
Goal
----
@ -10,21 +8,20 @@ In this tutorial you will learn how to:
- Define the optimization problem for SVMs when it is not possible to separate linearly the
training data.
- How to configure the parameters in @ref cv::ml::SVM::Params to adapt your SVM for this class of
problems.
- How to configure the parameters to adapt your SVM for this class of problems.
Motivation
----------
Why is it interesting to extend the SVM optimation problem in order to handle non-linearly separable
training data? Most of the applications in which SVMs are used in computer vision require a more
powerful tool than a simple linear classifier. This stems from the fact that in these tasks **the
training data can be rarely separated using an hyperplane**.
powerful tool than a simple linear classifier. This stems from the fact that in these tasks __the
training data can be rarely separated using an hyperplane__.
Consider one of these tasks, for example, face detection. The training data in this case is composed
by a set of images that are faces and another set of images that are non-faces (*every other thing
in the world except from faces*). This training data is too complex so as to find a representation
of each sample (*feature vector*) that could make the whole set of faces linearly separable from the
by a set of images that are faces and another set of images that are non-faces (_every other thing
in the world except from faces_). This training data is too complex so as to find a representation
of each sample (_feature vector_) that could make the whole set of faces linearly separable from the
whole set of non-faces.
Extension of the Optimization Problem
@ -32,13 +29,13 @@ Extension of the Optimization Problem
Remember that using SVMs we obtain a separating hyperplane. Therefore, since the training data is
now non-linearly separable, we must admit that the hyperplane found will misclassify some of the
samples. This *misclassification* is a new variable in the optimization that must be taken into
samples. This _misclassification_ is a new variable in the optimization that must be taken into
account. The new model has to include both the old requirement of finding the hyperplane that gives
the biggest margin and the new one of generalizing the training data correctly by not allowing too
many classification errors.
We start here from the formulation of the optimization problem of finding the hyperplane which
maximizes the **margin** (this is explained in the previous tutorial (@ref tutorial_introduction_to_svm):
maximizes the __margin__ (this is explained in the previous tutorial (@ref tutorial_introduction_to_svm):
\f[\min_{\beta, \beta_{0}} L(\beta) = \frac{1}{2}||\beta||^{2} \text{ subject to } y_{i}(\beta^{T} x_{i} + \beta_{0}) \geq 1 \text{ } \forall i\f]
@ -50,8 +47,8 @@ constant times the number of misclassification errors in the training data, i.e.
However, this one is not a very good solution since, among some other reasons, we do not distinguish
between samples that are misclassified with a small distance to their appropriate decision region or
samples that are not. Therefore, a better solution will take into account the *distance of the
misclassified samples to their correct decision regions*, i.e.:
samples that are not. Therefore, a better solution will take into account the _distance of the
misclassified samples to their correct decision regions_, i.e.:
\f[\min ||\beta||^{2} + C \text{(distance of misclassified samples to their correct regions)}\f]
@ -68,7 +65,7 @@ distances of the rest of the samples are zero since they lay already in their co
region.
The red and blue lines that appear on the picture are the margins to each one of the
decision regions. It is very **important** to realize that each of the \f$\xi_{i}\f$ goes from a
decision regions. It is very __important__ to realize that each of the \f$\xi_{i}\f$ goes from a
misclassified training sample to the margin of its appropriate region.
Finally, the new formulation for the optimization problem is:
@ -79,26 +76,25 @@ How should the parameter C be chosen? It is obvious that the answer to this ques
the training data is distributed. Although there is no general answer, it is useful to take into
account these rules:
- Large values of C give solutions with *less misclassification errors* but a *smaller margin*.
- Large values of C give solutions with _less misclassification errors_ but a _smaller margin_.
Consider that in this case it is expensive to make misclassification errors. Since the aim of
the optimization is to minimize the argument, few misclassifications errors are allowed.
- Small values of C give solutions with *bigger margin* and *more classification errors*. In this
- Small values of C give solutions with _bigger margin_ and _more classification errors_. In this
case the minimization does not consider that much the term of the sum so it focuses more on
finding a hyperplane with big margin.
Source Code
-----------
You may also find the source code and these video file in the
`samples/cpp/tutorial_code/gpu/non_linear_svms/non_linear_svms` folder of the OpenCV source library
or [download it from here ](https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/ml/non_linear_svms/non_linear_svms.cpp).
You may also find the source code in `samples/cpp/tutorial_code/ml/non_linear_svms` folder of the OpenCV source library or
[download it from here](https://github.com/Itseez/opencv/tree/master/samples/cpp/tutorial_code/ml/non_linear_svms/non_linear_svms.cpp).
@includelineno cpp/tutorial_code/ml/non_linear_svms/non_linear_svms.cpp
Explanation
-----------
-# **Set up the training data**
-# __Set up the training data__
The training data of this exercise is formed by a set of labeled 2D-points that belong to one of
two different classes. To make the exercise more appealing, the training data is generated
@ -107,136 +103,67 @@ Explanation
We have divided the generation of the training data into two main parts.
In the first part we generate data for both classes that is linearly separable.
@code{.cpp}
// Generate random points for the class 1
Mat trainClass = trainData.rowRange(0, nLinearSamples);
// The x coordinate of the points is in [0, 0.4)
Mat c = trainClass.colRange(0, 1);
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(0.4 * WIDTH));
// The y coordinate of the points is in [0, 1)
c = trainClass.colRange(1,2);
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));
// Generate random points for the class 2
trainClass = trainData.rowRange(2*NTRAINING_SAMPLES-nLinearSamples, 2*NTRAINING_SAMPLES);
// The x coordinate of the points is in [0.6, 1]
c = trainClass.colRange(0 , 1);
rng.fill(c, RNG::UNIFORM, Scalar(0.6*WIDTH), Scalar(WIDTH));
// The y coordinate of the points is in [0, 1)
c = trainClass.colRange(1,2);
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));
@endcode
@snippet cpp/tutorial_code/ml/non_linear_svms/non_linear_svms.cpp setup1
In the second part we create data for both classes that is non-linearly separable, data that
overlaps.
@code{.cpp}
// Generate random points for the classes 1 and 2
trainClass = trainData.rowRange( nLinearSamples, 2*NTRAINING_SAMPLES-nLinearSamples);
// The x coordinate of the points is in [0.4, 0.6)
c = trainClass.colRange(0,1);
rng.fill(c, RNG::UNIFORM, Scalar(0.4*WIDTH), Scalar(0.6*WIDTH));
// The y coordinate of the points is in [0, 1)
c = trainClass.colRange(1,2);
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));
@endcode
-# **Set up SVM's parameters**
@sa
In the previous tutorial @ref tutorial_introduction_to_svm there is an explanation of the atributes of the
class @ref cv::ml::SVM::Params that we configure here before training the SVM.
@code{.cpp}
CvSVMParams params;
params.svm_type = SVM::C_SVC;
params.C = 0.1;
params.kernel_type = SVM::LINEAR;
params.term_crit = TermCriteria(TermCriteria::ITER, (int)1e7, 1e-6);
@endcode
@snippet cpp/tutorial_code/ml/non_linear_svms/non_linear_svms.cpp setup2
-# __Set up SVM's parameters__
@note In the previous tutorial @ref tutorial_introduction_to_svm there is an explanation of the
atributes of the class @ref cv::ml::SVM that we configure here before training the SVM.
@snippet cpp/tutorial_code/ml/non_linear_svms/non_linear_svms.cpp init
There are just two differences between the configuration we do here and the one that was done in
the previous tutorial (tutorial_introduction_to_svm) that we use as reference.
the previous tutorial (@ref tutorial_introduction_to_svm) that we use as reference.
- *CvSVM::C_SVC*. We chose here a small value of this parameter in order not to punish too much
the misclassification errors in the optimization. The idea of doing this stems from the will
of obtaining a solution close to the one intuitively expected. However, we recommend to get a
- _C_. We chose here a small value of this parameter in order not to punish too much the
misclassification errors in the optimization. The idea of doing this stems from the will of
obtaining a solution close to the one intuitively expected. However, we recommend to get a
better insight of the problem by making adjustments to this parameter.
@note Here there are just very few points in the overlapping region between classes, giving a smaller value to **FRAC_LINEAR_SEP** the density of points can be incremented and the impact of the parameter **CvSVM::C_SVC** explored deeply.
@note In this case there are just very few points in the overlapping region between classes.
By giving a smaller value to __FRAC_LINEAR_SEP__ the density of points can be incremented and the
impact of the parameter _C_ explored deeply.
- *Termination Criteria of the algorithm*. The maximum number of iterations has to be
- _Termination Criteria of the algorithm_. The maximum number of iterations has to be
increased considerably in order to solve correctly a problem with non-linearly separable
training data. In particular, we have increased in five orders of magnitude this value.
-# **Train the SVM**
-# __Train the SVM__
We call the method @ref cv::ml::SVM::train to build the SVM model. Watch out that the training
process may take a quite long time. Have patiance when your run the program.
@code{.cpp}
CvSVM svm;
svm.train(trainData, labels, Mat(), Mat(), params);
@endcode
-# **Show the Decision Regions**
@snippet cpp/tutorial_code/ml/non_linear_svms/non_linear_svms.cpp train
-# __Show the Decision Regions__
The method @ref cv::ml::SVM::predict is used to classify an input sample using a trained SVM. In
this example we have used this method in order to color the space depending on the prediction done
by the SVM. In other words, an image is traversed interpreting its pixels as points of the
Cartesian plane. Each of the points is colored depending on the class predicted by the SVM; in
dark green if it is the class with label 1 and in dark blue if it is the class with label 2.
@code{.cpp}
Vec3b green(0,100,0), blue (100,0,0);
for (int i = 0; i < I.rows; ++i)
for (int j = 0; j < I.cols; ++j)
{
Mat sampleMat = (Mat_<float>(1,2) << i, j);
float response = svm.predict(sampleMat);
if (response == 1) I.at<Vec3b>(j, i) = green;
else if (response == 2) I.at<Vec3b>(j, i) = blue;
}
@endcode
@snippet cpp/tutorial_code/ml/non_linear_svms/non_linear_svms.cpp show
-# **Show the training data**
-# __Show the training data__
The method @ref cv::circle is used to show the samples that compose the training data. The samples
of the class labeled with 1 are shown in light green and in light blue the samples of the class
labeled with 2.
@code{.cpp}
int thick = -1;
int lineType = 8;
float px, py;
// Class 1
for (int i = 0; i < NTRAINING_SAMPLES; ++i)
{
px = trainData.at<float>(i,0);
py = trainData.at<float>(i,1);
circle(I, Point( (int) px, (int) py ), 3, Scalar(0, 255, 0), thick, lineType);
}
// Class 2
for (int i = NTRAINING_SAMPLES; i <2*NTRAINING_SAMPLES; ++i)
{
px = trainData.at<float>(i,0);
py = trainData.at<float>(i,1);
circle(I, Point( (int) px, (int) py ), 3, Scalar(255, 0, 0), thick, lineType);
}
@endcode
-# **Support vectors**
@snippet cpp/tutorial_code/ml/non_linear_svms/non_linear_svms.cpp show_data
-# __Support vectors__
We use here a couple of methods to obtain information about the support vectors. The method
@ref cv::ml::SVM::getSupportVectors obtain all support vectors.
We have used this methods here to find the training examples that are
support vectors and highlight them.
@code{.cpp}
thick = 2;
lineType = 8;
int x = svm.get_support_vector_count();
for (int i = 0; i < x; ++i)
{
const float* v = svm.get_support_vector(i);
circle( I, Point( (int) v[0], (int) v[1]), 6, Scalar(128, 128, 128), thick, lineType);
}
@endcode
@ref cv::ml::SVM::getSupportVectors obtain all support vectors. We have used this methods here
to find the training examples that are support vectors and highlight them.
@snippet cpp/tutorial_code/ml/non_linear_svms/non_linear_svms.cpp show_vectors
Results
-------

@ -2802,43 +2802,36 @@ public:
#define CV_PURE_PROPERTY(type, name) \
CV_WRAP virtual type get##name() const = 0; \
CV_WRAP virtual void set##name(type _##name) = 0;
CV_WRAP virtual void set##name(type val) = 0;
#define CV_PURE_PROPERTY_S(type, name) \
CV_WRAP virtual type get##name() const = 0; \
CV_WRAP virtual void set##name(const type & _##name) = 0;
CV_WRAP virtual void set##name(const type & val) = 0;
#define CV_PURE_PROPERTY_RO(type, name) \
CV_WRAP virtual type get##name() const = 0;
// basic property implementation
#define CV_IMPL_PROPERTY(type, name, member) \
type get##name() const \
{ \
return member; \
} \
void set##name(type val) \
{ \
member = val; \
}
#define CV_IMPL_PROPERTY_RO(type, name, member) \
inline type get##name() const { return member; }
#define CV_IMPL_PROPERTY_S(type, name, member) \
type get##name() const \
{ \
return member; \
} \
void set##name(const type &val) \
{ \
member = val; \
}
#define CV_HELP_IMPL_PROPERTY(r_type, w_type, name, member) \
CV_IMPL_PROPERTY_RO(r_type, name, member) \
inline void set##name(w_type val) { member = val; }
#define CV_IMPL_PROPERTY_RO(type, name, member) \
type get##name() const \
{ \
return member; \
}
#define CV_HELP_WRAP_PROPERTY(r_type, w_type, name, internal_name, internal_obj) \
r_type get##name() const { return internal_obj.get##internal_name(); } \
void set##name(w_type val) { internal_obj.set##internal_name(val); }
#define CV_IMPL_PROPERTY(type, name, member) CV_HELP_IMPL_PROPERTY(type, type, name, member)
#define CV_IMPL_PROPERTY_S(type, name, member) CV_HELP_IMPL_PROPERTY(type, const type &, name, member)
#define CV_WRAP_PROPERTY(type, name, internal_name, internal_obj) CV_HELP_WRAP_PROPERTY(type, type, name, internal_name, internal_obj)
#define CV_WRAP_PROPERTY_S(type, name, internal_name, internal_obj) CV_HELP_WRAP_PROPERTY(type, const type &, name, internal_name, internal_obj)
#define CV_WRAP_SAME_PROPERTY(type, name, internal_obj) CV_WRAP_PROPERTY(type, name, name, internal_obj)
#define CV_WRAP_SAME_PROPERTY_S(type, name, internal_obj) CV_WRAP_PROPERTY_S(type, name, name, internal_obj)
struct Param {
enum { INT=0, BOOLEAN=1, REAL=2, STRING=3, MAT=4, MAT_VECTOR=5, ALGORITHM=6, FLOAT=7,

@ -449,40 +449,33 @@ classes 0 and 1, one can determine that the given data instance belongs to class
\geq 0.5\f$ or class 0 if \f$h_\theta(x) < 0.5\f$ .
In Logistic Regression, choosing the right parameters is of utmost importance for reducing the
training error and ensuring high training accuracy. cv::ml::LogisticRegression::Params is the
structure that defines parameters that are required to train a Logistic Regression classifier.
The learning rate is determined by cv::ml::LogisticRegression::Params.alpha. It determines how fast
we approach the solution. It is a positive real number.
Optimization algorithms like Batch Gradient Descent and Mini-Batch Gradient Descent are supported in
LogisticRegression. It is important that we mention the number of iterations these optimization
algorithms have to run. The number of iterations are mentioned by
cv::ml::LogisticRegression::Params.num_iters. The number of iterations can be thought as number of
steps taken and learning rate specifies if it is a long step or a short step. These two parameters
define how fast we arrive at a possible solution.
In order to compensate for overfitting regularization is performed, which can be enabled by setting
cv::ml::LogisticRegression::Params.regularized to a positive integer (greater than zero). One can
specify what kind of regularization has to be performed by setting
cv::ml::LogisticRegression::Params.norm to REG_L1 or REG_L2 values.
LogisticRegression provides a choice of 2 training methods with Batch Gradient Descent or the Mini-
Batch Gradient Descent. To specify this, set cv::ml::LogisticRegression::Params::train_method to
either BATCH or MINI_BATCH. If training method is set to MINI_BATCH, the size of the mini batch has
to be to a postive integer using cv::ml::LogisticRegression::Params::mini_batch_size.
A sample set of training parameters for the Logistic Regression classifier can be initialized as
follows:
@code{.cpp}
using namespace cv::ml;
LogisticRegression::Params params;
params.alpha = 0.5;
params.num_iters = 10000;
params.norm = LogisticRegression::REG_L2;
params.regularized = 1;
params.train_method = LogisticRegression::MINI_BATCH;
params.mini_batch_size = 10;
@endcode
training error and ensuring high training accuracy:
- The learning rate can be set with @ref cv::ml::LogisticRegression::setLearningRate "setLearningRate"
method. It determines how fast we approach the solution. It is a positive real number.
- Optimization algorithms like Batch Gradient Descent and Mini-Batch Gradient Descent are supported
in LogisticRegression. It is important that we mention the number of iterations these optimization
algorithms have to run. The number of iterations can be set with @ref
cv::ml::LogisticRegression::setIterations "setIterations". This parameter can be thought
as number of steps taken and learning rate specifies if it is a long step or a short step. This
and previous parameter define how fast we arrive at a possible solution.
- In order to compensate for overfitting regularization is performed, which can be enabled with
@ref cv::ml::LogisticRegression::setRegularization "setRegularization". One can specify what
kind of regularization has to be performed by passing one of @ref
cv::ml::LogisticRegression::RegKinds "regularization kinds" to this method.
- Logistic regression implementation provides a choice of 2 training methods with Batch Gradient
Descent or the MiniBatch Gradient Descent. To specify this, call @ref
cv::ml::LogisticRegression::setTrainMethod "setTrainMethod" with either @ref
cv::ml::LogisticRegression::BATCH "LogisticRegression::BATCH" or @ref
cv::ml::LogisticRegression::MINI_BATCH "LogisticRegression::MINI_BATCH". If training method is
set to @ref cv::ml::LogisticRegression::MINI_BATCH "MINI_BATCH", the size of the mini batch has
to be to a postive integer set with @ref cv::ml::LogisticRegression::setMiniBatchSize
"setMiniBatchSize".
A sample set of training parameters for the Logistic Regression classifier can be initialized as follows:
@snippet samples/cpp/logistic_regression.cpp init
@sa cv::ml::LogisticRegression

File diff suppressed because it is too large Load Diff

@ -42,84 +42,57 @@
namespace cv { namespace ml {
ANN_MLP::Params::Params()
struct AnnParams
{
layerSizes = Mat();
activateFunc = SIGMOID_SYM;
fparam1 = fparam2 = 0;
termCrit = TermCriteria( TermCriteria::COUNT + TermCriteria::EPS, 1000, 0.01 );
trainMethod = RPROP;
bpDWScale = bpMomentScale = 0.1;
rpDW0 = 0.1; rpDWPlus = 1.2; rpDWMinus = 0.5;
rpDWMin = FLT_EPSILON; rpDWMax = 50.;
}
AnnParams()
{
termCrit = TermCriteria( TermCriteria::COUNT + TermCriteria::EPS, 1000, 0.01 );
trainMethod = ANN_MLP::RPROP;
bpDWScale = bpMomentScale = 0.1;
rpDW0 = 0.1; rpDWPlus = 1.2; rpDWMinus = 0.5;
rpDWMin = FLT_EPSILON; rpDWMax = 50.;
}
TermCriteria termCrit;
int trainMethod;
double bpDWScale;
double bpMomentScale;
double rpDW0;
double rpDWPlus;
double rpDWMinus;
double rpDWMin;
double rpDWMax;
};
ANN_MLP::Params::Params( const Mat& _layerSizes, int _activateFunc, double _fparam1, double _fparam2,
TermCriteria _termCrit, int _trainMethod, double _param1, double _param2 )
template <typename T>
inline T inBounds(T val, T min_val, T max_val)
{
layerSizes = _layerSizes;
activateFunc = _activateFunc;
fparam1 = _fparam1;
fparam2 = _fparam2;
termCrit = _termCrit;
trainMethod = _trainMethod;
bpDWScale = bpMomentScale = 0.1;
rpDW0 = 1.; rpDWPlus = 1.2; rpDWMinus = 0.5;
rpDWMin = FLT_EPSILON; rpDWMax = 50.;
if( trainMethod == RPROP )
{
rpDW0 = _param1;
if( rpDW0 < FLT_EPSILON )
rpDW0 = 1.;
rpDWMin = _param2;
rpDWMin = std::max( rpDWMin, 0. );
}
else if( trainMethod == BACKPROP )
{
bpDWScale = _param1;
if( bpDWScale <= 0 )
bpDWScale = 0.1;
bpDWScale = std::max( bpDWScale, 1e-3 );
bpDWScale = std::min( bpDWScale, 1. );
bpMomentScale = _param2;
if( bpMomentScale < 0 )
bpMomentScale = 0.1;
bpMomentScale = std::min( bpMomentScale, 1. );
}
else
trainMethod = RPROP;
return std::min(std::max(val, min_val), max_val);
}
class ANN_MLPImpl : public ANN_MLP
{
public:
ANN_MLPImpl()
{
clear();
}
ANN_MLPImpl( const Params& p )
{
clear();
setParams(p);
setActivationFunction( SIGMOID_SYM, 0, 0 );
setLayerSizes(Mat());
setTrainMethod(ANN_MLP::RPROP, 0.1, FLT_EPSILON);
}
virtual ~ANN_MLPImpl() {}
void setParams(const Params& p)
{
params = p;
create( params.layerSizes );
set_activ_func( params.activateFunc, params.fparam1, params.fparam2 );
}
Params getParams() const
{
return params;
}
CV_IMPL_PROPERTY(TermCriteria, TermCriteria, params.termCrit)
CV_IMPL_PROPERTY(double, BackpropWeightScale, params.bpDWScale)
CV_IMPL_PROPERTY(double, BackpropMomentumScale, params.bpMomentScale)
CV_IMPL_PROPERTY(double, RpropDW0, params.rpDW0)
CV_IMPL_PROPERTY(double, RpropDWPlus, params.rpDWPlus)
CV_IMPL_PROPERTY(double, RpropDWMinus, params.rpDWMinus)
CV_IMPL_PROPERTY(double, RpropDWMin, params.rpDWMin)
CV_IMPL_PROPERTY(double, RpropDWMax, params.rpDWMax)
void clear()
{
@ -132,7 +105,35 @@ public:
int layer_count() const { return (int)layer_sizes.size(); }
void set_activ_func( int _activ_func, double _f_param1, double _f_param2 )
void setTrainMethod(int method, double param1, double param2)
{
if (method != ANN_MLP::RPROP && method != ANN_MLP::BACKPROP)
method = ANN_MLP::RPROP;
params.trainMethod = method;
if(method == ANN_MLP::RPROP )
{
if( param1 < FLT_EPSILON )
param1 = 1.;
params.rpDW0 = param1;
params.rpDWMin = std::max( param2, 0. );
}
else if(method == ANN_MLP::BACKPROP )
{
if( param1 <= 0 )
param1 = 0.1;
params.bpDWScale = inBounds<double>(param1, 1e-3, 1.);
if( param2 < 0 )
param2 = 0.1;
params.bpMomentScale = std::min( param2, 1. );
}
}
int getTrainMethod() const
{
return params.trainMethod;
}
void setActivationFunction(int _activ_func, double _f_param1, double _f_param2 )
{
if( _activ_func < 0 || _activ_func > GAUSSIAN )
CV_Error( CV_StsOutOfRange, "Unknown activation function" );
@ -201,7 +202,12 @@ public:
}
}
void create( InputArray _layer_sizes )
Mat getLayerSizes() const
{
return Mat_<int>(layer_sizes, true);
}
void setLayerSizes( InputArray _layer_sizes )
{
clear();
@ -700,7 +706,7 @@ public:
termcrit.maxCount = std::max((params.termCrit.type & CV_TERMCRIT_ITER ? params.termCrit.maxCount : MAX_ITER), 1);
termcrit.epsilon = std::max((params.termCrit.type & CV_TERMCRIT_EPS ? params.termCrit.epsilon : DEFAULT_EPSILON), DBL_EPSILON);
int iter = params.trainMethod == Params::BACKPROP ?
int iter = params.trainMethod == ANN_MLP::BACKPROP ?
train_backprop( inputs, outputs, sw, termcrit ) :
train_rprop( inputs, outputs, sw, termcrit );
@ -1113,13 +1119,13 @@ public:
fs << "min_val" << min_val << "max_val" << max_val << "min_val1" << min_val1 << "max_val1" << max_val1;
fs << "training_params" << "{";
if( params.trainMethod == Params::BACKPROP )
if( params.trainMethod == ANN_MLP::BACKPROP )
{
fs << "train_method" << "BACKPROP";
fs << "dw_scale" << params.bpDWScale;
fs << "moment_scale" << params.bpMomentScale;
}
else if( params.trainMethod == Params::RPROP )
else if( params.trainMethod == ANN_MLP::RPROP )
{
fs << "train_method" << "RPROP";
fs << "dw0" << params.rpDW0;
@ -1186,7 +1192,7 @@ public:
f_param1 = (double)fn["f_param1"];
f_param2 = (double)fn["f_param2"];
set_activ_func( activ_func, f_param1, f_param2 );
setActivationFunction( activ_func, f_param1, f_param2 );
min_val = (double)fn["min_val"];
max_val = (double)fn["max_val"];
@ -1194,7 +1200,7 @@ public:
max_val1 = (double)fn["max_val1"];
FileNode tpn = fn["training_params"];
params = Params();
params = AnnParams();
if( !tpn.empty() )
{
@ -1202,13 +1208,13 @@ public:
if( tmethod_name == "BACKPROP" )
{
params.trainMethod = Params::BACKPROP;
params.trainMethod = ANN_MLP::BACKPROP;
params.bpDWScale = (double)tpn["dw_scale"];
params.bpMomentScale = (double)tpn["moment_scale"];
}
else if( tmethod_name == "RPROP" )
{
params.trainMethod = Params::RPROP;
params.trainMethod = ANN_MLP::RPROP;
params.rpDW0 = (double)tpn["dw0"];
params.rpDWPlus = (double)tpn["dw_plus"];
params.rpDWMinus = (double)tpn["dw_minus"];
@ -1244,7 +1250,7 @@ public:
vector<int> _layer_sizes;
readVectorOrMat(fn["layer_sizes"], _layer_sizes);
create( _layer_sizes );
setLayerSizes( _layer_sizes );
int i, l_count = layer_count();
read_params(fn);
@ -1267,11 +1273,6 @@ public:
trained = true;
}
Mat getLayerSizes() const
{
return Mat_<int>(layer_sizes, true);
}
Mat getWeights(int layerIdx) const
{
CV_Assert( 0 <= layerIdx && layerIdx < (int)weights.size() );
@ -1304,17 +1305,16 @@ public:
double min_val, max_val, min_val1, max_val1;
int activ_func;
int max_lsize, max_buf_sz;
Params params;
AnnParams params;
RNG rng;
Mutex mtx;
bool trained;
};
Ptr<ANN_MLP> ANN_MLP::create(const ANN_MLP::Params& params)
Ptr<ANN_MLP> ANN_MLP::create()
{
Ptr<ANN_MLPImpl> ann = makePtr<ANN_MLPImpl>(params);
return ann;
return makePtr<ANN_MLPImpl>();
}
}}

@ -54,47 +54,32 @@ log_ratio( double val )
}
Boost::Params::Params()
BoostTreeParams::BoostTreeParams()
{
boostType = Boost::REAL;
weakCount = 100;
weightTrimRate = 0.95;
CVFolds = 0;
maxDepth = 1;
}
Boost::Params::Params( int _boostType, int _weak_count,
double _weightTrimRate, int _maxDepth,
bool _use_surrogates, const Mat& _priors )
BoostTreeParams::BoostTreeParams( int _boostType, int _weak_count,
double _weightTrimRate)
{
boostType = _boostType;
weakCount = _weak_count;
weightTrimRate = _weightTrimRate;
CVFolds = 0;
maxDepth = _maxDepth;
useSurrogates = _use_surrogates;
priors = _priors;
}
class DTreesImplForBoost : public DTreesImpl
{
public:
DTreesImplForBoost() {}
virtual ~DTreesImplForBoost() {}
bool isClassifier() const { return true; }
void setBParams(const Boost::Params& p)
DTreesImplForBoost()
{
bparams = p;
params.setCVFolds(0);
params.setMaxDepth(1);
}
virtual ~DTreesImplForBoost() {}
Boost::Params getBParams() const
{
return bparams;
}
bool isClassifier() const { return true; }
void clear()
{
@ -199,10 +184,6 @@ public:
bool train( const Ptr<TrainData>& trainData, int flags )
{
Params dp(bparams.maxDepth, bparams.minSampleCount, bparams.regressionAccuracy,
bparams.useSurrogates, bparams.maxCategories, 0,
false, false, bparams.priors);
setDParams(dp);
startTraining(trainData, flags);
int treeidx, ntrees = bparams.weakCount >= 0 ? bparams.weakCount : 10000;
vector<int> sidx = w->sidx;
@ -426,12 +407,6 @@ public:
void readParams( const FileNode& fn )
{
DTreesImpl::readParams(fn);
bparams.maxDepth = params0.maxDepth;
bparams.minSampleCount = params0.minSampleCount;
bparams.regressionAccuracy = params0.regressionAccuracy;
bparams.useSurrogates = params0.useSurrogates;
bparams.maxCategories = params0.maxCategories;
bparams.priors = params0.priors;
FileNode tparams_node = fn["training_params"];
// check for old layout
@ -465,7 +440,7 @@ public:
}
}
Boost::Params bparams;
BoostTreeParams bparams;
vector<double> sumResult;
};
@ -476,6 +451,20 @@ public:
BoostImpl() {}
virtual ~BoostImpl() {}
CV_IMPL_PROPERTY(int, BoostType, impl.bparams.boostType)
CV_IMPL_PROPERTY(int, WeakCount, impl.bparams.weakCount)
CV_IMPL_PROPERTY(double, WeightTrimRate, impl.bparams.weightTrimRate)
CV_WRAP_SAME_PROPERTY(int, MaxCategories, impl.params)
CV_WRAP_SAME_PROPERTY(int, MaxDepth, impl.params)
CV_WRAP_SAME_PROPERTY(int, MinSampleCount, impl.params)
CV_WRAP_SAME_PROPERTY(int, CVFolds, impl.params)
CV_WRAP_SAME_PROPERTY(bool, UseSurrogates, impl.params)
CV_WRAP_SAME_PROPERTY(bool, Use1SERule, impl.params)
CV_WRAP_SAME_PROPERTY(bool, TruncatePrunedTree, impl.params)
CV_WRAP_SAME_PROPERTY(float, RegressionAccuracy, impl.params)
CV_WRAP_SAME_PROPERTY_S(cv::Mat, Priors, impl.params)
String getDefaultModelName() const { return "opencv_ml_boost"; }
bool train( const Ptr<TrainData>& trainData, int flags )
@ -498,9 +487,6 @@ public:
impl.read(fn);
}
void setBParams(const Params& p) { impl.setBParams(p); }
Params getBParams() const { return impl.getBParams(); }
int getVarCount() const { return impl.getVarCount(); }
bool isTrained() const { return impl.isTrained(); }
@ -515,11 +501,9 @@ public:
};
Ptr<Boost> Boost::create(const Params& params)
Ptr<Boost> Boost::create()
{
Ptr<BoostImpl> p = makePtr<BoostImpl>();
p->setBParams(params);
return p;
return makePtr<BoostImpl>();
}
}}

@ -48,37 +48,49 @@ namespace ml
const double minEigenValue = DBL_EPSILON;
EM::Params::Params(int _nclusters, int _covMatType, const TermCriteria& _termCrit)
{
nclusters = _nclusters;
covMatType = _covMatType;
termCrit = _termCrit;
}
class CV_EXPORTS EMImpl : public EM
{
public:
EMImpl(const Params& _params)
int nclusters;
int covMatType;
TermCriteria termCrit;
CV_IMPL_PROPERTY_S(TermCriteria, TermCriteria, termCrit)
void setClustersNumber(int val)
{
setParams(_params);
nclusters = val;
CV_Assert(nclusters > 1);
}
virtual ~EMImpl() {}
int getClustersNumber() const
{
return nclusters;
}
void setParams(const Params& _params)
void setCovarianceMatrixType(int val)
{
params = _params;
CV_Assert(params.nclusters > 1);
CV_Assert(params.covMatType == COV_MAT_SPHERICAL ||
params.covMatType == COV_MAT_DIAGONAL ||
params.covMatType == COV_MAT_GENERIC);
covMatType = val;
CV_Assert(covMatType == COV_MAT_SPHERICAL ||
covMatType == COV_MAT_DIAGONAL ||
covMatType == COV_MAT_GENERIC);
}
Params getParams() const
int getCovarianceMatrixType() const
{
return params;
return covMatType;
}
EMImpl()
{
nclusters = DEFAULT_NCLUSTERS;
covMatType=EM::COV_MAT_DIAGONAL;
termCrit = TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, EM::DEFAULT_MAX_ITERS, 1e-6);
}
virtual ~EMImpl() {}
void clear()
{
trainSamples.release();
@ -100,10 +112,10 @@ public:
bool train(const Ptr<TrainData>& data, int)
{
Mat samples = data->getTrainSamples(), labels;
return train_(samples, labels, noArray(), noArray());
return trainEM(samples, labels, noArray(), noArray());
}
bool train_(InputArray samples,
bool trainEM(InputArray samples,
OutputArray logLikelihoods,
OutputArray labels,
OutputArray probs)
@ -157,7 +169,7 @@ public:
{
if( _outputs.fixedType() )
ptype = _outputs.type();
_outputs.create(samples.rows, params.nclusters, ptype);
_outputs.create(samples.rows, nclusters, ptype);
}
else
nsamples = std::min(nsamples, 1);
@ -193,7 +205,7 @@ public:
{
if( _probs.fixedType() )
ptype = _probs.type();
_probs.create(1, params.nclusters, ptype);
_probs.create(1, nclusters, ptype);
probs = _probs.getMat();
}
@ -311,7 +323,6 @@ public:
const std::vector<Mat>* covs0,
const Mat* weights0)
{
int nclusters = params.nclusters, covMatType = params.covMatType;
clear();
checkTrainData(startStep, samples, nclusters, covMatType, probs0, means0, covs0, weights0);
@ -350,7 +361,6 @@ public:
void decomposeCovs()
{
int nclusters = params.nclusters, covMatType = params.covMatType;
CV_Assert(!covs.empty());
covsEigenValues.resize(nclusters);
if(covMatType == COV_MAT_GENERIC)
@ -383,7 +393,6 @@ public:
void clusterTrainSamples()
{
int nclusters = params.nclusters;
int nsamples = trainSamples.rows;
// Cluster samples, compute/update means
@ -443,7 +452,6 @@ public:
void computeLogWeightDivDet()
{
int nclusters = params.nclusters;
CV_Assert(!covsEigenValues.empty());
Mat logWeights;
@ -458,7 +466,7 @@ public:
double logDetCov = 0.;
const int evalCount = static_cast<int>(covsEigenValues[clusterIndex].total());
for(int di = 0; di < evalCount; di++)
logDetCov += std::log(covsEigenValues[clusterIndex].at<double>(params.covMatType != COV_MAT_SPHERICAL ? di : 0));
logDetCov += std::log(covsEigenValues[clusterIndex].at<double>(covMatType != COV_MAT_SPHERICAL ? di : 0));
logWeightDivDet.at<double>(clusterIndex) = logWeights.at<double>(clusterIndex) - 0.5 * logDetCov;
}
@ -466,7 +474,6 @@ public:
bool doTrain(int startStep, OutputArray logLikelihoods, OutputArray labels, OutputArray probs)
{
int nclusters = params.nclusters;
int dim = trainSamples.cols;
// Precompute the empty initial train data in the cases of START_E_STEP and START_AUTO_STEP
if(startStep != START_M_STEP)
@ -488,9 +495,9 @@ public:
mStep();
double trainLogLikelihood, prevTrainLogLikelihood = 0.;
int maxIters = (params.termCrit.type & TermCriteria::MAX_ITER) ?
params.termCrit.maxCount : DEFAULT_MAX_ITERS;
double epsilon = (params.termCrit.type & TermCriteria::EPS) ? params.termCrit.epsilon : 0.;
int maxIters = (termCrit.type & TermCriteria::MAX_ITER) ?
termCrit.maxCount : DEFAULT_MAX_ITERS;
double epsilon = (termCrit.type & TermCriteria::EPS) ? termCrit.epsilon : 0.;
for(int iter = 0; ; iter++)
{
@ -521,12 +528,12 @@ public:
covs.resize(nclusters);
for(int clusterIndex = 0; clusterIndex < nclusters; clusterIndex++)
{
if(params.covMatType == COV_MAT_SPHERICAL)
if(covMatType == COV_MAT_SPHERICAL)
{
covs[clusterIndex].create(dim, dim, CV_64FC1);
setIdentity(covs[clusterIndex], Scalar(covsEigenValues[clusterIndex].at<double>(0)));
}
else if(params.covMatType == COV_MAT_DIAGONAL)
else if(covMatType == COV_MAT_DIAGONAL)
{
covs[clusterIndex] = Mat::diag(covsEigenValues[clusterIndex]);
}
@ -555,7 +562,6 @@ public:
// see Alex Smola's blog http://blog.smola.org/page/2 for
// details on the log-sum-exp trick
int nclusters = params.nclusters, covMatType = params.covMatType;
int stype = sample.type();
CV_Assert(!means.empty());
CV_Assert((stype == CV_32F || stype == CV_64F) && (ptype == CV_32F || ptype == CV_64F));
@ -621,7 +627,7 @@ public:
void eStep()
{
// Compute probs_ik from means_k, covs_k and weights_k.
trainProbs.create(trainSamples.rows, params.nclusters, CV_64FC1);
trainProbs.create(trainSamples.rows, nclusters, CV_64FC1);
trainLabels.create(trainSamples.rows, 1, CV_32SC1);
trainLogLikelihoods.create(trainSamples.rows, 1, CV_64FC1);
@ -642,8 +648,6 @@ public:
void mStep()
{
// Update means_k, covs_k and weights_k from probs_ik
int nclusters = params.nclusters;
int covMatType = params.covMatType;
int dim = trainSamples.cols;
// Update weights
@ -755,12 +759,12 @@ public:
void write_params(FileStorage& fs) const
{
fs << "nclusters" << params.nclusters;
fs << "cov_mat_type" << (params.covMatType == COV_MAT_SPHERICAL ? String("spherical") :
params.covMatType == COV_MAT_DIAGONAL ? String("diagonal") :
params.covMatType == COV_MAT_GENERIC ? String("generic") :
format("unknown_%d", params.covMatType));
writeTermCrit(fs, params.termCrit);
fs << "nclusters" << nclusters;
fs << "cov_mat_type" << (covMatType == COV_MAT_SPHERICAL ? String("spherical") :
covMatType == COV_MAT_DIAGONAL ? String("diagonal") :
covMatType == COV_MAT_GENERIC ? String("generic") :
format("unknown_%d", covMatType));
writeTermCrit(fs, termCrit);
}
void write(FileStorage& fs) const
@ -781,15 +785,13 @@ public:
void read_params(const FileNode& fn)
{
Params _params;
_params.nclusters = (int)fn["nclusters"];
nclusters = (int)fn["nclusters"];
String s = (String)fn["cov_mat_type"];
_params.covMatType = s == "spherical" ? COV_MAT_SPHERICAL :
covMatType = s == "spherical" ? COV_MAT_SPHERICAL :
s == "diagonal" ? COV_MAT_DIAGONAL :
s == "generic" ? COV_MAT_GENERIC : -1;
CV_Assert(_params.covMatType >= 0);
_params.termCrit = readTermCrit(fn);
setParams(_params);
CV_Assert(covMatType >= 0);
termCrit = readTermCrit(fn);
}
void read(const FileNode& fn)
@ -820,8 +822,6 @@ public:
std::copy(covs.begin(), covs.end(), _covs.begin());
}
Params params;
// all inner matrices have type CV_64FC1
Mat trainSamples;
Mat trainProbs;
@ -838,41 +838,9 @@ public:
Mat logWeightDivDet;
};
Ptr<EM> EM::train(InputArray samples, OutputArray logLikelihoods,
OutputArray labels, OutputArray probs,
const EM::Params& params)
{
Ptr<EMImpl> em = makePtr<EMImpl>(params);
if(!em->train_(samples, logLikelihoods, labels, probs))
em.release();
return em;
}
Ptr<EM> EM::train_startWithE(InputArray samples, InputArray means0,
InputArray covs0, InputArray weights0,
OutputArray logLikelihoods, OutputArray labels,
OutputArray probs, const EM::Params& params)
{
Ptr<EMImpl> em = makePtr<EMImpl>(params);
if(!em->trainE(samples, means0, covs0, weights0, logLikelihoods, labels, probs))
em.release();
return em;
}
Ptr<EM> EM::train_startWithM(InputArray samples, InputArray probs0,
OutputArray logLikelihoods, OutputArray labels,
OutputArray probs, const EM::Params& params)
{
Ptr<EMImpl> em = makePtr<EMImpl>(params);
if(!em->trainM(samples, probs0, logLikelihoods, labels, probs))
em.release();
return em;
}
Ptr<EM> EM::create(const Params& params)
Ptr<EM> EM::create()
{
return makePtr<EMImpl>(params);
return makePtr<EMImpl>();
}
}

@ -50,46 +50,33 @@
namespace cv {
namespace ml {
KNearest::Params::Params(int k, bool isclassifier_, int Emax_, int algorithmType_) :
defaultK(k),
isclassifier(isclassifier_),
Emax(Emax_),
algorithmType(algorithmType_)
{
}
const String NAME_BRUTE_FORCE = "opencv_ml_knn";
const String NAME_KDTREE = "opencv_ml_knn_kd";
class KNearestImpl : public KNearest
class Impl
{
public:
KNearestImpl(const Params& p)
{
params = p;
}
virtual ~KNearestImpl() {}
Params getParams() const { return params; }
void setParams(const Params& p) { params = p; }
bool isClassifier() const { return params.isclassifier; }
bool isTrained() const { return !samples.empty(); }
String getDefaultModelName() const { return "opencv_ml_knn"; }
void clear()
Impl()
{
samples.release();
responses.release();
defaultK = 10;
isclassifier = true;
Emax = INT_MAX;
}
int getVarCount() const { return samples.cols; }
virtual ~Impl() {}
virtual String getModelName() const = 0;
virtual int getType() const = 0;
virtual float findNearest( InputArray _samples, int k,
OutputArray _results,
OutputArray _neighborResponses,
OutputArray _dists ) const = 0;
bool train( const Ptr<TrainData>& data, int flags )
{
Mat new_samples = data->getTrainSamples(ROW_SAMPLE);
Mat new_responses;
data->getTrainResponses().convertTo(new_responses, CV_32F);
bool update = (flags & UPDATE_MODEL) != 0 && !samples.empty();
bool update = (flags & ml::KNearest::UPDATE_MODEL) != 0 && !samples.empty();
CV_Assert( new_samples.type() == CV_32F );
@ -106,9 +93,53 @@ public:
samples.push_back(new_samples);
responses.push_back(new_responses);
doTrain(samples);
return true;
}
virtual void doTrain(InputArray points) { (void)points; }
void clear()
{
samples.release();
responses.release();
}
void read( const FileNode& fn )
{
clear();
isclassifier = (int)fn["is_classifier"] != 0;
defaultK = (int)fn["default_k"];
fn["samples"] >> samples;
fn["responses"] >> responses;
}
void write( FileStorage& fs ) const
{
fs << "is_classifier" << (int)isclassifier;
fs << "default_k" << defaultK;
fs << "samples" << samples;
fs << "responses" << responses;
}
public:
int defaultK;
bool isclassifier;
int Emax;
Mat samples;
Mat responses;
};
class BruteForceImpl : public Impl
{
public:
String getModelName() const { return NAME_BRUTE_FORCE; }
int getType() const { return ml::KNearest::BRUTE_FORCE; }
void findNearestCore( const Mat& _samples, int k0, const Range& range,
Mat* results, Mat* neighbor_responses,
Mat* dists, float* presult ) const
@ -199,7 +230,7 @@ public:
if( results || testidx+range.start == 0 )
{
if( !params.isclassifier || k == 1 )
if( !isclassifier || k == 1 )
{
float s = 0.f;
for( j = 0; j < k; j++ )
@ -251,7 +282,7 @@ public:
struct findKNearestInvoker : public ParallelLoopBody
{
findKNearestInvoker(const KNearestImpl* _p, int _k, const Mat& __samples,
findKNearestInvoker(const BruteForceImpl* _p, int _k, const Mat& __samples,
Mat* __results, Mat* __neighbor_responses, Mat* __dists, float* _presult)
{
p = _p;
@ -273,7 +304,7 @@ public:
}
}
const KNearestImpl* p;
const BruteForceImpl* p;
int k;
const Mat* _samples;
Mat* _results;
@ -324,88 +355,18 @@ public:
//invoker(Range(0, testcount));
return result;
}
float predict(InputArray inputs, OutputArray outputs, int) const
{
return findNearest( inputs, params.defaultK, outputs, noArray(), noArray() );
}
void write( FileStorage& fs ) const
{
fs << "is_classifier" << (int)params.isclassifier;
fs << "default_k" << params.defaultK;
fs << "samples" << samples;
fs << "responses" << responses;
}
void read( const FileNode& fn )
{
clear();
params.isclassifier = (int)fn["is_classifier"] != 0;
params.defaultK = (int)fn["default_k"];
fn["samples"] >> samples;
fn["responses"] >> responses;
}
Mat samples;
Mat responses;
Params params;
};
class KNearestKDTreeImpl : public KNearest
class KDTreeImpl : public Impl
{
public:
KNearestKDTreeImpl(const Params& p)
{
params = p;
}
virtual ~KNearestKDTreeImpl() {}
Params getParams() const { return params; }
void setParams(const Params& p) { params = p; }
bool isClassifier() const { return params.isclassifier; }
bool isTrained() const { return !samples.empty(); }
String getModelName() const { return NAME_KDTREE; }
int getType() const { return ml::KNearest::KDTREE; }
String getDefaultModelName() const { return "opencv_ml_knn_kd"; }
void clear()
{
samples.release();
responses.release();
}
int getVarCount() const { return samples.cols; }
bool train( const Ptr<TrainData>& data, int flags )
void doTrain(InputArray points)
{
Mat new_samples = data->getTrainSamples(ROW_SAMPLE);
Mat new_responses;
data->getTrainResponses().convertTo(new_responses, CV_32F);
bool update = (flags & UPDATE_MODEL) != 0 && !samples.empty();
CV_Assert( new_samples.type() == CV_32F );
if( !update )
{
clear();
}
else
{
CV_Assert( new_samples.cols == samples.cols &&
new_responses.cols == responses.cols );
}
samples.push_back(new_samples);
responses.push_back(new_responses);
tr.build(samples);
return true;
tr.build(points);
}
float findNearest( InputArray _samples, int k,
@ -460,51 +421,97 @@ public:
{
_d = d.row(i);
}
tr.findNearest(test_samples.row(i), k, params.Emax, _res, _nr, _d, noArray());
tr.findNearest(test_samples.row(i), k, Emax, _res, _nr, _d, noArray());
}
return result; // currently always 0
}
float predict(InputArray inputs, OutputArray outputs, int) const
KDTree tr;
};
//================================================================
class KNearestImpl : public KNearest
{
CV_IMPL_PROPERTY(int, DefaultK, impl->defaultK)
CV_IMPL_PROPERTY(bool, IsClassifier, impl->isclassifier)
CV_IMPL_PROPERTY(int, Emax, impl->Emax)
public:
int getAlgorithmType() const
{
return impl->getType();
}
void setAlgorithmType(int val)
{
return findNearest( inputs, params.defaultK, outputs, noArray(), noArray() );
if (val != BRUTE_FORCE && val != KDTREE)
val = BRUTE_FORCE;
initImpl(val);
}
void write( FileStorage& fs ) const
public:
KNearestImpl()
{
initImpl(BRUTE_FORCE);
}
~KNearestImpl()
{
fs << "is_classifier" << (int)params.isclassifier;
fs << "default_k" << params.defaultK;
}
fs << "samples" << samples;
fs << "responses" << responses;
bool isClassifier() const { return impl->isclassifier; }
bool isTrained() const { return !impl->samples.empty(); }
int getVarCount() const { return impl->samples.cols; }
void write( FileStorage& fs ) const
{
impl->write(fs);
}
void read( const FileNode& fn )
{
clear();
params.isclassifier = (int)fn["is_classifier"] != 0;
params.defaultK = (int)fn["default_k"];
int algorithmType = BRUTE_FORCE;
if (fn.name() == NAME_KDTREE)
algorithmType = KDTREE;
initImpl(algorithmType);
impl->read(fn);
}
fn["samples"] >> samples;
fn["responses"] >> responses;
float findNearest( InputArray samples, int k,
OutputArray results,
OutputArray neighborResponses=noArray(),
OutputArray dist=noArray() ) const
{
return impl->findNearest(samples, k, results, neighborResponses, dist);
}
KDTree tr;
float predict(InputArray inputs, OutputArray outputs, int) const
{
return impl->findNearest( inputs, impl->defaultK, outputs, noArray(), noArray() );
}
Mat samples;
Mat responses;
Params params;
};
bool train( const Ptr<TrainData>& data, int flags )
{
return impl->train(data, flags);
}
Ptr<KNearest> KNearest::create(const Params& p)
{
if (KDTREE==p.algorithmType)
String getDefaultModelName() const { return impl->getModelName(); }
protected:
void initImpl(int algorithmType)
{
return makePtr<KNearestKDTreeImpl>(p);
if (algorithmType != KDTREE)
impl = makePtr<BruteForceImpl>();
else
impl = makePtr<KDTreeImpl>();
}
Ptr<Impl> impl;
};
return makePtr<KNearestImpl>(p);
Ptr<KNearest> KNearest::create()
{
return makePtr<KNearestImpl>();
}
}

@ -60,31 +60,41 @@ using namespace std;
namespace cv {
namespace ml {
LogisticRegression::Params::Params(double learning_rate,
int iters,
int method,
int normlization,
int reg,
int batch_size)
class LrParams
{
alpha = learning_rate;
num_iters = iters;
norm = normlization;
regularized = reg;
train_method = method;
mini_batch_size = batch_size;
term_crit = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, num_iters, alpha);
}
public:
LrParams()
{
alpha = 0.001;
num_iters = 1000;
norm = LogisticRegression::REG_L2;
train_method = LogisticRegression::BATCH;
mini_batch_size = 1;
term_crit = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, num_iters, alpha);
}
double alpha; //!< learning rate.
int num_iters; //!< number of iterations.
int norm;
int train_method;
int mini_batch_size;
TermCriteria term_crit;
};
class LogisticRegressionImpl : public LogisticRegression
{
public:
LogisticRegressionImpl(const Params& pms)
: params(pms)
{
}
LogisticRegressionImpl() { }
virtual ~LogisticRegressionImpl() {}
CV_IMPL_PROPERTY(double, LearningRate, params.alpha)
CV_IMPL_PROPERTY(int, Iterations, params.num_iters)
CV_IMPL_PROPERTY(int, Regularization, params.norm)
CV_IMPL_PROPERTY(int, TrainMethod, params.train_method)
CV_IMPL_PROPERTY(int, MiniBatchSize, params.mini_batch_size)
CV_IMPL_PROPERTY(TermCriteria, TermCriteria, params.term_crit)
virtual bool train( const Ptr<TrainData>& trainData, int=0 );
virtual float predict(InputArray samples, OutputArray results, int) const;
virtual void clear();
@ -103,7 +113,7 @@ protected:
bool set_label_map(const Mat& _labels_i);
Mat remap_labels(const Mat& _labels_i, const map<int, int>& lmap) const;
protected:
Params params;
LrParams params;
Mat learnt_thetas;
map<int, int> forward_mapper;
map<int, int> reverse_mapper;
@ -111,9 +121,9 @@ protected:
Mat labels_n;
};
Ptr<LogisticRegression> LogisticRegression::create(const Params& params)
Ptr<LogisticRegression> LogisticRegression::create()
{
return makePtr<LogisticRegressionImpl>(params);
return makePtr<LogisticRegressionImpl>();
}
bool LogisticRegressionImpl::train(const Ptr<TrainData>& trainData, int)
@ -312,7 +322,7 @@ double LogisticRegressionImpl::compute_cost(const Mat& _data, const Mat& _labels
theta_b = _init_theta(Range(1, n), Range::all());
multiply(theta_b, theta_b, theta_c, 1);
if(this->params.regularized > 0)
if(params.norm != REG_NONE)
{
llambda = 1;
}
@ -367,7 +377,7 @@ Mat LogisticRegressionImpl::compute_batch_gradient(const Mat& _data, const Mat&
m = _data.rows;
n = _data.cols;
if(this->params.regularized > 0)
if(params.norm != REG_NONE)
{
llambda = 1;
}
@ -439,7 +449,7 @@ Mat LogisticRegressionImpl::compute_mini_batch_gradient(const Mat& _data, const
Mat data_d;
Mat labels_l;
if(this->params.regularized > 0)
if(params.norm != REG_NONE)
{
lambda_l = 1;
}
@ -570,7 +580,6 @@ void LogisticRegressionImpl::write(FileStorage& fs) const
fs<<"alpha"<<this->params.alpha;
fs<<"iterations"<<this->params.num_iters;
fs<<"norm"<<this->params.norm;
fs<<"regularized"<<this->params.regularized;
fs<<"train_method"<<this->params.train_method;
if(this->params.train_method == LogisticRegression::MINI_BATCH)
{
@ -592,7 +601,6 @@ void LogisticRegressionImpl::read(const FileNode& fn)
this->params.alpha = (double)fn["alpha"];
this->params.num_iters = (int)fn["iterations"];
this->params.norm = (int)fn["norm"];
this->params.regularized = (int)fn["regularized"];
this->params.train_method = (int)fn["train_method"];
if(this->params.train_method == LogisticRegression::MINI_BATCH)

@ -43,7 +43,6 @@
namespace cv {
namespace ml {
NormalBayesClassifier::Params::Params() {}
class NormalBayesClassifierImpl : public NormalBayesClassifier
{
@ -53,9 +52,6 @@ public:
nallvars = 0;
}
void setParams(const Params&) {}
Params getParams() const { return Params(); }
bool train( const Ptr<TrainData>& trainData, int flags )
{
const float min_variation = FLT_EPSILON;
@ -455,7 +451,7 @@ public:
};
Ptr<NormalBayesClassifier> NormalBayesClassifier::create(const Params&)
Ptr<NormalBayesClassifier> NormalBayesClassifier::create()
{
Ptr<NormalBayesClassifierImpl> p = makePtr<NormalBayesClassifierImpl>();
return p;

@ -120,6 +120,91 @@ namespace ml
return termCrit;
}
struct TreeParams
{
TreeParams();
TreeParams( int maxDepth, int minSampleCount,
double regressionAccuracy, bool useSurrogates,
int maxCategories, int CVFolds,
bool use1SERule, bool truncatePrunedTree,
const Mat& priors );
inline void setMaxCategories(int val)
{
if( val < 2 )
CV_Error( CV_StsOutOfRange, "max_categories should be >= 2" );
maxCategories = std::min(val, 15 );
}
inline void setMaxDepth(int val)
{
if( val < 0 )
CV_Error( CV_StsOutOfRange, "max_depth should be >= 0" );
maxDepth = std::min( val, 25 );
}
inline void setMinSampleCount(int val)
{
minSampleCount = std::max(val, 1);
}
inline void setCVFolds(int val)
{
if( val < 0 )
CV_Error( CV_StsOutOfRange,
"params.CVFolds should be =0 (the tree is not pruned) "
"or n>0 (tree is pruned using n-fold cross-validation)" );
if( val == 1 )
val = 0;
CVFolds = val;
}
inline void setRegressionAccuracy(float val)
{
if( val < 0 )
CV_Error( CV_StsOutOfRange, "params.regression_accuracy should be >= 0" );
regressionAccuracy = val;
}
inline int getMaxCategories() const { return maxCategories; }
inline int getMaxDepth() const { return maxDepth; }
inline int getMinSampleCount() const { return minSampleCount; }
inline int getCVFolds() const { return CVFolds; }
inline float getRegressionAccuracy() const { return regressionAccuracy; }
CV_IMPL_PROPERTY(bool, UseSurrogates, useSurrogates)
CV_IMPL_PROPERTY(bool, Use1SERule, use1SERule)
CV_IMPL_PROPERTY(bool, TruncatePrunedTree, truncatePrunedTree)
CV_IMPL_PROPERTY_S(cv::Mat, Priors, priors)
public:
bool useSurrogates;
bool use1SERule;
bool truncatePrunedTree;
Mat priors;
protected:
int maxCategories;
int maxDepth;
int minSampleCount;
int CVFolds;
float regressionAccuracy;
};
struct RTreeParams
{
RTreeParams();
RTreeParams(bool calcVarImportance, int nactiveVars, TermCriteria termCrit );
bool calcVarImportance;
int nactiveVars;
TermCriteria termCrit;
};
struct BoostTreeParams
{
BoostTreeParams();
BoostTreeParams(int boostType, int weakCount, double weightTrimRate);
int boostType;
int weakCount;
double weightTrimRate;
};
class DTreesImpl : public DTrees
{
public:
@ -191,6 +276,16 @@ namespace ml
int maxSubsetSize;
};
CV_WRAP_SAME_PROPERTY(int, MaxCategories, params)
CV_WRAP_SAME_PROPERTY(int, MaxDepth, params)
CV_WRAP_SAME_PROPERTY(int, MinSampleCount, params)
CV_WRAP_SAME_PROPERTY(int, CVFolds, params)
CV_WRAP_SAME_PROPERTY(bool, UseSurrogates, params)
CV_WRAP_SAME_PROPERTY(bool, Use1SERule, params)
CV_WRAP_SAME_PROPERTY(bool, TruncatePrunedTree, params)
CV_WRAP_SAME_PROPERTY(float, RegressionAccuracy, params)
CV_WRAP_SAME_PROPERTY_S(cv::Mat, Priors, params)
DTreesImpl();
virtual ~DTreesImpl();
virtual void clear();
@ -202,8 +297,7 @@ namespace ml
int getCatCount(int vi) const { return catOfs[vi][1] - catOfs[vi][0]; }
int getSubsetSize(int vi) const { return (getCatCount(vi) + 31)/32; }
virtual void setDParams(const Params& _params);
virtual Params getDParams() const;
virtual void setDParams(const TreeParams& _params);
virtual void startTraining( const Ptr<TrainData>& trainData, int flags );
virtual void endTraining();
virtual void initCompVarIdx();
@ -250,7 +344,7 @@ namespace ml
virtual const std::vector<Split>& getSplits() const { return splits; }
virtual const std::vector<int>& getSubsets() const { return subsets; }
Params params0, params;
TreeParams params;
vector<int> varIdx;
vector<int> compVarIdx;

@ -48,21 +48,16 @@ namespace ml {
//////////////////////////////////////////////////////////////////////////////////////////
// Random trees //
//////////////////////////////////////////////////////////////////////////////////////////
RTrees::Params::Params()
: DTrees::Params(5, 10, 0.f, false, 10, 0, false, false, Mat())
RTreeParams::RTreeParams()
{
calcVarImportance = false;
nactiveVars = 0;
termCrit = TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 50, 0.1);
}
RTrees::Params::Params( int _maxDepth, int _minSampleCount,
double _regressionAccuracy, bool _useSurrogates,
int _maxCategories, const Mat& _priors,
bool _calcVarImportance, int _nactiveVars,
TermCriteria _termCrit )
: DTrees::Params(_maxDepth, _minSampleCount, _regressionAccuracy, _useSurrogates,
_maxCategories, 0, false, false, _priors)
RTreeParams::RTreeParams(bool _calcVarImportance,
int _nactiveVars,
TermCriteria _termCrit )
{
calcVarImportance = _calcVarImportance;
nactiveVars = _nactiveVars;
@ -73,18 +68,19 @@ RTrees::Params::Params( int _maxDepth, int _minSampleCount,
class DTreesImplForRTrees : public DTreesImpl
{
public:
DTreesImplForRTrees() {}
virtual ~DTreesImplForRTrees() {}
void setRParams(const RTrees::Params& p)
{
rparams = p;
}
RTrees::Params getRParams() const
DTreesImplForRTrees()
{
return rparams;
params.setMaxDepth(5);
params.setMinSampleCount(10);
params.setRegressionAccuracy(0.f);
params.useSurrogates = false;
params.setMaxCategories(10);
params.setCVFolds(0);
params.use1SERule = false;
params.truncatePrunedTree = false;
params.priors = Mat();
}
virtual ~DTreesImplForRTrees() {}
void clear()
{
@ -129,10 +125,6 @@ public:
bool train( const Ptr<TrainData>& trainData, int flags )
{
Params dp(rparams.maxDepth, rparams.minSampleCount, rparams.regressionAccuracy,
rparams.useSurrogates, rparams.maxCategories, rparams.CVFolds,
rparams.use1SERule, rparams.truncatePrunedTree, rparams.priors);
setDParams(dp);
startTraining(trainData, flags);
int treeidx, ntrees = (rparams.termCrit.type & TermCriteria::COUNT) != 0 ?
rparams.termCrit.maxCount : 10000;
@ -326,12 +318,6 @@ public:
void readParams( const FileNode& fn )
{
DTreesImpl::readParams(fn);
rparams.maxDepth = params0.maxDepth;
rparams.minSampleCount = params0.minSampleCount;
rparams.regressionAccuracy = params0.regressionAccuracy;
rparams.useSurrogates = params0.useSurrogates;
rparams.maxCategories = params0.maxCategories;
rparams.priors = params0.priors;
FileNode tparams_node = fn["training_params"];
rparams.nactiveVars = (int)tparams_node["nactive_vars"];
@ -361,7 +347,7 @@ public:
}
}
RTrees::Params rparams;
RTreeParams rparams;
double oobError;
vector<float> varImportance;
vector<int> allVars, activeVars;
@ -372,6 +358,20 @@ public:
class RTreesImpl : public RTrees
{
public:
CV_IMPL_PROPERTY(bool, CalculateVarImportance, impl.rparams.calcVarImportance)
CV_IMPL_PROPERTY(int, ActiveVarCount, impl.rparams.nactiveVars)
CV_IMPL_PROPERTY_S(TermCriteria, TermCriteria, impl.rparams.termCrit)
CV_WRAP_SAME_PROPERTY(int, MaxCategories, impl.params)
CV_WRAP_SAME_PROPERTY(int, MaxDepth, impl.params)
CV_WRAP_SAME_PROPERTY(int, MinSampleCount, impl.params)
CV_WRAP_SAME_PROPERTY(int, CVFolds, impl.params)
CV_WRAP_SAME_PROPERTY(bool, UseSurrogates, impl.params)
CV_WRAP_SAME_PROPERTY(bool, Use1SERule, impl.params)
CV_WRAP_SAME_PROPERTY(bool, TruncatePrunedTree, impl.params)
CV_WRAP_SAME_PROPERTY(float, RegressionAccuracy, impl.params)
CV_WRAP_SAME_PROPERTY_S(cv::Mat, Priors, impl.params)
RTreesImpl() {}
virtual ~RTreesImpl() {}
@ -397,9 +397,6 @@ public:
impl.read(fn);
}
void setRParams(const Params& p) { impl.setRParams(p); }
Params getRParams() const { return impl.getRParams(); }
Mat getVarImportance() const { return Mat_<float>(impl.varImportance, true); }
int getVarCount() const { return impl.getVarCount(); }
@ -415,11 +412,9 @@ public:
};
Ptr<RTrees> RTrees::create(const Params& params)
Ptr<RTrees> RTrees::create()
{
Ptr<RTreesImpl> p = makePtr<RTreesImpl>();
p->setRParams(params);
return p;
return makePtr<RTreesImpl>();
}
}}

@ -103,54 +103,60 @@ static void checkParamGrid(const ParamGrid& pg)
}
// SVM training parameters
SVM::Params::Params()
struct SvmParams
{
svmType = SVM::C_SVC;
kernelType = SVM::RBF;
degree = 0;
gamma = 1;
coef0 = 0;
C = 1;
nu = 0;
p = 0;
termCrit = TermCriteria( CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 1000, FLT_EPSILON );
}
int svmType;
int kernelType;
double gamma;
double coef0;
double degree;
double C;
double nu;
double p;
Mat classWeights;
TermCriteria termCrit;
SvmParams()
{
svmType = SVM::C_SVC;
kernelType = SVM::RBF;
degree = 0;
gamma = 1;
coef0 = 0;
C = 1;
nu = 0;
p = 0;
termCrit = TermCriteria( CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 1000, FLT_EPSILON );
}
SVM::Params::Params( int _svmType, int _kernelType,
double _degree, double _gamma, double _coef0,
double _Con, double _nu, double _p,
const Mat& _classWeights, TermCriteria _termCrit )
{
svmType = _svmType;
kernelType = _kernelType;
degree = _degree;
gamma = _gamma;
coef0 = _coef0;
C = _Con;
nu = _nu;
p = _p;
classWeights = _classWeights;
termCrit = _termCrit;
}
SvmParams( int _svmType, int _kernelType,
double _degree, double _gamma, double _coef0,
double _Con, double _nu, double _p,
const Mat& _classWeights, TermCriteria _termCrit )
{
svmType = _svmType;
kernelType = _kernelType;
degree = _degree;
gamma = _gamma;
coef0 = _coef0;
C = _Con;
nu = _nu;
p = _p;
classWeights = _classWeights;
termCrit = _termCrit;
}
};
/////////////////////////////////////// SVM kernel ///////////////////////////////////////
class SVMKernelImpl : public SVM::Kernel
{
public:
SVMKernelImpl()
{
}
SVMKernelImpl( const SVM::Params& _params )
SVMKernelImpl( const SvmParams& _params = SvmParams() )
{
params = _params;
}
virtual ~SVMKernelImpl()
{
}
int getType() const
{
return params.kernelType;
@ -327,7 +333,7 @@ public:
}
}
SVM::Params params;
SvmParams params;
};
@ -1185,7 +1191,7 @@ public:
int cache_size;
int max_cache_size;
Mat samples;
SVM::Params params;
SvmParams params;
vector<KernelRow> lru_cache;
int lru_first;
int lru_last;
@ -1215,6 +1221,7 @@ public:
SVMImpl()
{
clear();
checkParams();
}
~SVMImpl()
@ -1235,32 +1242,68 @@ public:
return sv;
}
void setParams( const Params& _params, const Ptr<Kernel>& _kernel )
CV_IMPL_PROPERTY(int, Type, params.svmType)
CV_IMPL_PROPERTY(double, Gamma, params.gamma)
CV_IMPL_PROPERTY(double, Coef0, params.coef0)
CV_IMPL_PROPERTY(double, Degree, params.degree)
CV_IMPL_PROPERTY(double, C, params.C)
CV_IMPL_PROPERTY(double, Nu, params.nu)
CV_IMPL_PROPERTY(double, P, params.p)
CV_IMPL_PROPERTY_S(cv::Mat, ClassWeights, params.classWeights)
CV_IMPL_PROPERTY_S(cv::TermCriteria, TermCriteria, params.termCrit)
int getKernelType() const
{
params = _params;
return params.kernelType;
}
int kernelType = params.kernelType;
int svmType = params.svmType;
void setKernel(int kernelType)
{
params.kernelType = kernelType;
if (kernelType != CUSTOM)
kernel = makePtr<SVMKernelImpl>(params);
}
if( kernelType != LINEAR && kernelType != POLY &&
kernelType != SIGMOID && kernelType != RBF &&
kernelType != INTER && kernelType != CHI2)
CV_Error( CV_StsBadArg, "Unknown/unsupported kernel type" );
void setCustomKernel(const Ptr<Kernel> &_kernel)
{
params.kernelType = CUSTOM;
kernel = _kernel;
}
if( kernelType == LINEAR )
params.gamma = 1;
else if( params.gamma <= 0 )
CV_Error( CV_StsOutOfRange, "gamma parameter of the kernel must be positive" );
void checkParams()
{
int kernelType = params.kernelType;
if (kernelType != CUSTOM)
{
if( kernelType != LINEAR && kernelType != POLY &&
kernelType != SIGMOID && kernelType != RBF &&
kernelType != INTER && kernelType != CHI2)
CV_Error( CV_StsBadArg, "Unknown/unsupported kernel type" );
if( kernelType == LINEAR )
params.gamma = 1;
else if( params.gamma <= 0 )
CV_Error( CV_StsOutOfRange, "gamma parameter of the kernel must be positive" );
if( kernelType != SIGMOID && kernelType != POLY )
params.coef0 = 0;
else if( params.coef0 < 0 )
CV_Error( CV_StsOutOfRange, "The kernel parameter <coef0> must be positive or zero" );
if( kernelType != POLY )
params.degree = 0;
else if( params.degree <= 0 )
CV_Error( CV_StsOutOfRange, "The kernel parameter <degree> must be positive" );
if( kernelType != SIGMOID && kernelType != POLY )
params.coef0 = 0;
else if( params.coef0 < 0 )
CV_Error( CV_StsOutOfRange, "The kernel parameter <coef0> must be positive or zero" );
kernel = makePtr<SVMKernelImpl>(params);
}
else
{
if (!kernel)
CV_Error( CV_StsBadArg, "Custom kernel is not set" );
}
if( kernelType != POLY )
params.degree = 0;
else if( params.degree <= 0 )
CV_Error( CV_StsOutOfRange, "The kernel parameter <degree> must be positive" );
int svmType = params.svmType;
if( svmType != C_SVC && svmType != NU_SVC &&
svmType != ONE_CLASS && svmType != EPS_SVR &&
@ -1285,28 +1328,18 @@ public:
if( svmType != C_SVC )
params.classWeights.release();
termCrit = params.termCrit;
if( !(termCrit.type & TermCriteria::EPS) )
termCrit.epsilon = DBL_EPSILON;
termCrit.epsilon = std::max(termCrit.epsilon, DBL_EPSILON);
if( !(termCrit.type & TermCriteria::COUNT) )
termCrit.maxCount = INT_MAX;
termCrit.maxCount = std::max(termCrit.maxCount, 1);
if( _kernel )
kernel = _kernel;
else
kernel = makePtr<SVMKernelImpl>(params);
if( !(params.termCrit.type & TermCriteria::EPS) )
params.termCrit.epsilon = DBL_EPSILON;
params.termCrit.epsilon = std::max(params.termCrit.epsilon, DBL_EPSILON);
if( !(params.termCrit.type & TermCriteria::COUNT) )
params.termCrit.maxCount = INT_MAX;
params.termCrit.maxCount = std::max(params.termCrit.maxCount, 1);
}
Params getParams() const
void setParams( const SvmParams& _params)
{
return params;
}
Ptr<Kernel> getKernel() const
{
return kernel;
params = _params;
checkParams();
}
int getSVCount(int i) const
@ -1335,9 +1368,9 @@ public:
_responses.convertTo(_yf, CV_32F);
bool ok =
svmType == ONE_CLASS ? Solver::solve_one_class( _samples, params.nu, kernel, _alpha, sinfo, termCrit ) :
svmType == EPS_SVR ? Solver::solve_eps_svr( _samples, _yf, params.p, params.C, kernel, _alpha, sinfo, termCrit ) :
svmType == NU_SVR ? Solver::solve_nu_svr( _samples, _yf, params.nu, params.C, kernel, _alpha, sinfo, termCrit ) : false;
svmType == ONE_CLASS ? Solver::solve_one_class( _samples, params.nu, kernel, _alpha, sinfo, params.termCrit ) :
svmType == EPS_SVR ? Solver::solve_eps_svr( _samples, _yf, params.p, params.C, kernel, _alpha, sinfo, params.termCrit ) :
svmType == NU_SVR ? Solver::solve_nu_svr( _samples, _yf, params.nu, params.C, kernel, _alpha, sinfo, params.termCrit ) : false;
if( !ok )
return false;
@ -1397,7 +1430,7 @@ public:
//check that while cross-validation there were the samples from all the classes
if( class_ranges[class_count] <= 0 )
CV_Error( CV_StsBadArg, "While cross-validation one or more of the classes have "
"been fell out of the sample. Try to enlarge <CvSVMParams::k_fold>" );
"been fell out of the sample. Try to enlarge <Params::k_fold>" );
if( svmType == NU_SVC )
{
@ -1448,10 +1481,10 @@ public:
DecisionFunc df;
bool ok = params.svmType == C_SVC ?
Solver::solve_c_svc( temp_samples, temp_y, Cp, Cn,
kernel, _alpha, sinfo, termCrit ) :
kernel, _alpha, sinfo, params.termCrit ) :
params.svmType == NU_SVC ?
Solver::solve_nu_svc( temp_samples, temp_y, params.nu,
kernel, _alpha, sinfo, termCrit ) :
kernel, _alpha, sinfo, params.termCrit ) :
false;
if( !ok )
return false;
@ -1557,6 +1590,8 @@ public:
{
clear();
checkParams();
int svmType = params.svmType;
Mat samples = data->getTrainSamples();
Mat responses;
@ -1586,6 +1621,8 @@ public:
ParamGrid nu_grid, ParamGrid coef_grid, ParamGrid degree_grid,
bool balanced )
{
checkParams();
int svmType = params.svmType;
RNG rng((uint64)-1);
@ -1708,7 +1745,7 @@ public:
int test_sample_count = (sample_count + k_fold/2)/k_fold;
int train_sample_count = sample_count - test_sample_count;
Params best_params = params;
SvmParams best_params = params;
double min_error = FLT_MAX;
int rtype = responses.type();
@ -1729,7 +1766,7 @@ public:
FOR_IN_GRID(degree, degree_grid)
{
// make sure we updated the kernel and other parameters
setParams(params, Ptr<Kernel>() );
setParams(params);
double error = 0;
for( k = 0; k < k_fold; k++ )
@ -1919,7 +1956,9 @@ public:
kernelType == LINEAR ? "LINEAR" :
kernelType == POLY ? "POLY" :
kernelType == RBF ? "RBF" :
kernelType == SIGMOID ? "SIGMOID" : format("Unknown_%d", kernelType);
kernelType == SIGMOID ? "SIGMOID" :
kernelType == CHI2 ? "CHI2" :
kernelType == INTER ? "INTER" : format("Unknown_%d", kernelType);
fs << "svmType" << svm_type_str;
@ -2036,7 +2075,7 @@ public:
void read_params( const FileNode& fn )
{
Params _params;
SvmParams _params;
// check for old naming
String svm_type_str = (String)(fn["svm_type"].empty() ? fn["svmType"] : fn["svm_type"]);
@ -2059,10 +2098,12 @@ public:
kernel_type_str == "LINEAR" ? LINEAR :
kernel_type_str == "POLY" ? POLY :
kernel_type_str == "RBF" ? RBF :
kernel_type_str == "SIGMOID" ? SIGMOID : -1;
kernel_type_str == "SIGMOID" ? SIGMOID :
kernel_type_str == "CHI2" ? CHI2 :
kernel_type_str == "INTER" ? INTER : CUSTOM;
if( kernelType < 0 )
CV_Error( CV_StsParseError, "Missing of invalid SVM kernel type" );
if( kernelType == CUSTOM )
CV_Error( CV_StsParseError, "Invalid SVM kernel type (or custom kernel)" );
_params.svmType = svmType;
_params.kernelType = kernelType;
@ -2086,7 +2127,7 @@ public:
else
_params.termCrit = TermCriteria( TermCriteria::EPS + TermCriteria::COUNT, 1000, FLT_EPSILON );
setParams( _params, Ptr<Kernel>() );
setParams( _params );
}
void read( const FileNode& fn )
@ -2154,8 +2195,7 @@ public:
optimize_linear_svm();
}
Params params;
TermCriteria termCrit;
SvmParams params;
Mat class_labels;
int var_count;
Mat sv;
@ -2167,11 +2207,9 @@ public:
};
Ptr<SVM> SVM::create(const Params& params, const Ptr<SVM::Kernel>& kernel)
Ptr<SVM> SVM::create()
{
Ptr<SVMImpl> p = makePtr<SVMImpl>();
p->setParams(params, kernel);
return p;
return makePtr<SVMImpl>();
}
}

@ -48,18 +48,7 @@ namespace ml {
using std::vector;
void DTrees::setDParams(const DTrees::Params&)
{
CV_Error(CV_StsNotImplemented, "");
}
DTrees::Params DTrees::getDParams() const
{
CV_Error(CV_StsNotImplemented, "");
return DTrees::Params();
}
DTrees::Params::Params()
TreeParams::TreeParams()
{
maxDepth = INT_MAX;
minSampleCount = 10;
@ -72,11 +61,11 @@ DTrees::Params::Params()
priors = Mat();
}
DTrees::Params::Params( int _maxDepth, int _minSampleCount,
double _regressionAccuracy, bool _useSurrogates,
int _maxCategories, int _CVFolds,
bool _use1SERule, bool _truncatePrunedTree,
const Mat& _priors )
TreeParams::TreeParams(int _maxDepth, int _minSampleCount,
double _regressionAccuracy, bool _useSurrogates,
int _maxCategories, int _CVFolds,
bool _use1SERule, bool _truncatePrunedTree,
const Mat& _priors)
{
maxDepth = _maxDepth;
minSampleCount = _minSampleCount;
@ -248,7 +237,7 @@ const vector<int>& DTreesImpl::getActiveVars()
int DTreesImpl::addTree(const vector<int>& sidx )
{
size_t n = (params.maxDepth > 0 ? (1 << params.maxDepth) : 1024) + w->wnodes.size();
size_t n = (params.getMaxDepth() > 0 ? (1 << params.getMaxDepth()) : 1024) + w->wnodes.size();
w->wnodes.reserve(n);
w->wsplits.reserve(n);
@ -257,7 +246,7 @@ int DTreesImpl::addTree(const vector<int>& sidx )
w->wsplits.clear();
w->wsubsets.clear();
int cv_n = params.CVFolds;
int cv_n = params.getCVFolds();
if( cv_n > 0 )
{
@ -347,34 +336,9 @@ int DTreesImpl::addTree(const vector<int>& sidx )
return root;
}
DTrees::Params DTreesImpl::getDParams() const
{
return params0;
}
void DTreesImpl::setDParams(const Params& _params)
void DTreesImpl::setDParams(const TreeParams& _params)
{
params0 = params = _params;
if( params.maxCategories < 2 )
CV_Error( CV_StsOutOfRange, "params.max_categories should be >= 2" );
params.maxCategories = std::min( params.maxCategories, 15 );
if( params.maxDepth < 0 )
CV_Error( CV_StsOutOfRange, "params.max_depth should be >= 0" );
params.maxDepth = std::min( params.maxDepth, 25 );
params.minSampleCount = std::max(params.minSampleCount, 1);
if( params.CVFolds < 0 )
CV_Error( CV_StsOutOfRange,
"params.CVFolds should be =0 (the tree is not pruned) "
"or n>0 (tree is pruned using n-fold cross-validation)" );
if( params.CVFolds == 1 )
params.CVFolds = 0;
if( params.regressionAccuracy < 0 )
CV_Error( CV_StsOutOfRange, "params.regression_accuracy should be >= 0" );
params = _params;
}
int DTreesImpl::addNodeAndTrySplit( int parent, const vector<int>& sidx )
@ -385,7 +349,7 @@ int DTreesImpl::addNodeAndTrySplit( int parent, const vector<int>& sidx )
node.parent = parent;
node.depth = parent >= 0 ? w->wnodes[parent].depth + 1 : 0;
int nfolds = params.CVFolds;
int nfolds = params.getCVFolds();
if( nfolds > 0 )
{
@ -400,7 +364,7 @@ int DTreesImpl::addNodeAndTrySplit( int parent, const vector<int>& sidx )
calcValue( nidx, sidx );
if( n <= params.minSampleCount || node.depth >= params.maxDepth )
if( n <= params.getMinSampleCount() || node.depth >= params.getMaxDepth() )
can_split = false;
else if( _isClassifier )
{
@ -415,7 +379,7 @@ int DTreesImpl::addNodeAndTrySplit( int parent, const vector<int>& sidx )
}
else
{
if( sqrt(node.node_risk) < params.regressionAccuracy )
if( sqrt(node.node_risk) < params.getRegressionAccuracy() )
can_split = false;
}
@ -493,7 +457,7 @@ int DTreesImpl::findBestSplit( const vector<int>& _sidx )
void DTreesImpl::calcValue( int nidx, const vector<int>& _sidx )
{
WNode* node = &w->wnodes[nidx];
int i, j, k, n = (int)_sidx.size(), cv_n = params.CVFolds;
int i, j, k, n = (int)_sidx.size(), cv_n = params.getCVFolds();
int m = (int)classLabels.size();
cv::AutoBuffer<double> buf(std::max(m, 3)*(cv_n+1));
@ -841,8 +805,8 @@ DTreesImpl::WSplit DTreesImpl::findSplitCatClass( int vi, const vector<int>& _si
int m = (int)classLabels.size();
int base_size = m*(3 + mi) + mi + 1;
if( m > 2 && mi > params.maxCategories )
base_size += m*std::min(params.maxCategories, n) + mi;
if( m > 2 && mi > params.getMaxCategories() )
base_size += m*std::min(params.getMaxCategories(), n) + mi;
else
base_size += mi;
AutoBuffer<double> buf(base_size + n);
@ -880,9 +844,9 @@ DTreesImpl::WSplit DTreesImpl::findSplitCatClass( int vi, const vector<int>& _si
if( m > 2 )
{
if( mi > params.maxCategories )
if( mi > params.getMaxCategories() )
{
mi = std::min(params.maxCategories, n);
mi = std::min(params.getMaxCategories(), n);
cjk = c_weights + _mi;
cluster_labels = (int*)(cjk + m*mi);
clusterCategories( _cjk, _mi, m, cjk, mi, cluster_labels );
@ -1228,7 +1192,7 @@ int DTreesImpl::pruneCV( int root )
// 2. choose the best tree index (if need, apply 1SE rule).
// 3. store the best index and cut the branches.
int ti, tree_count = 0, j, cv_n = params.CVFolds, n = w->wnodes[root].sample_count;
int ti, tree_count = 0, j, cv_n = params.getCVFolds(), n = w->wnodes[root].sample_count;
// currently, 1SE for regression is not implemented
bool use_1se = params.use1SERule != 0 && _isClassifier;
double min_err = 0, min_err_se = 0;
@ -1294,7 +1258,7 @@ int DTreesImpl::pruneCV( int root )
double DTreesImpl::updateTreeRNC( int root, double T, int fold )
{
int nidx = root, pidx = -1, cv_n = params.CVFolds;
int nidx = root, pidx = -1, cv_n = params.getCVFolds();
double min_alpha = DBL_MAX;
for(;;)
@ -1350,7 +1314,7 @@ double DTreesImpl::updateTreeRNC( int root, double T, int fold )
bool DTreesImpl::cutTree( int root, double T, int fold, double min_alpha )
{
int cv_n = params.CVFolds, nidx = root, pidx = -1;
int cv_n = params.getCVFolds(), nidx = root, pidx = -1;
WNode* node = &w->wnodes[root];
if( node->left < 0 )
return true;
@ -1560,19 +1524,19 @@ float DTreesImpl::predict( InputArray _samples, OutputArray _results, int flags
void DTreesImpl::writeTrainingParams(FileStorage& fs) const
{
fs << "use_surrogates" << (params0.useSurrogates ? 1 : 0);
fs << "max_categories" << params0.maxCategories;
fs << "regression_accuracy" << params0.regressionAccuracy;
fs << "use_surrogates" << (params.useSurrogates ? 1 : 0);
fs << "max_categories" << params.getMaxCategories();
fs << "regression_accuracy" << params.getRegressionAccuracy();
fs << "max_depth" << params0.maxDepth;
fs << "min_sample_count" << params0.minSampleCount;
fs << "cross_validation_folds" << params0.CVFolds;
fs << "max_depth" << params.getMaxDepth();
fs << "min_sample_count" << params.getMinSampleCount();
fs << "cross_validation_folds" << params.getCVFolds();
if( params0.CVFolds > 1 )
fs << "use_1se_rule" << (params0.use1SERule ? 1 : 0);
if( params.getCVFolds() > 1 )
fs << "use_1se_rule" << (params.use1SERule ? 1 : 0);
if( !params0.priors.empty() )
fs << "priors" << params0.priors;
if( !params.priors.empty() )
fs << "priors" << params.priors;
}
void DTreesImpl::writeParams(FileStorage& fs) const
@ -1724,18 +1688,18 @@ void DTreesImpl::readParams( const FileNode& fn )
FileNode tparams_node = fn["training_params"];
params0 = Params();
TreeParams params0 = TreeParams();
if( !tparams_node.empty() ) // training parameters are not necessary
{
params0.useSurrogates = (int)tparams_node["use_surrogates"] != 0;
params0.maxCategories = (int)(tparams_node["max_categories"].empty() ? 16 : tparams_node["max_categories"]);
params0.regressionAccuracy = (float)tparams_node["regression_accuracy"];
params0.maxDepth = (int)tparams_node["max_depth"];
params0.minSampleCount = (int)tparams_node["min_sample_count"];
params0.CVFolds = (int)tparams_node["cross_validation_folds"];
params0.setMaxCategories((int)(tparams_node["max_categories"].empty() ? 16 : tparams_node["max_categories"]));
params0.setRegressionAccuracy((float)tparams_node["regression_accuracy"]);
params0.setMaxDepth((int)tparams_node["max_depth"]);
params0.setMinSampleCount((int)tparams_node["min_sample_count"]);
params0.setCVFolds((int)tparams_node["cross_validation_folds"]);
if( params0.CVFolds > 1 )
if( params0.getCVFolds() > 1 )
{
params.use1SERule = (int)tparams_node["use_1se_rule"] != 0;
}
@ -1964,11 +1928,9 @@ void DTreesImpl::read( const FileNode& fn )
readTree(fnodes);
}
Ptr<DTrees> DTrees::create(const DTrees::Params& params)
Ptr<DTrees> DTrees::create()
{
Ptr<DTreesImpl> p = makePtr<DTreesImpl>();
p->setDParams(params);
return p;
return makePtr<DTreesImpl>();
}
}

@ -330,7 +330,8 @@ void CV_KNearestTest::run( int /*start_from*/ )
}
// KNearest KDTree implementation
Ptr<KNearest> knearestKdt = KNearest::create(ml::KNearest::Params(10, true, INT_MAX, ml::KNearest::KDTREE));
Ptr<KNearest> knearestKdt = KNearest::create();
knearestKdt->setAlgorithmType(KNearest::KDTREE);
knearestKdt->train(trainData, ml::ROW_SAMPLE, trainLabels);
knearestKdt->findNearest(testData, 4, bestLabels);
if( !calcErr( bestLabels, testLabels, sizes, err, true ) )
@ -394,16 +395,18 @@ int CV_EMTest::runCase( int caseIndex, const EM_Params& params,
cv::Mat labels;
float err;
Ptr<EM> em;
EM::Params emp(params.nclusters, params.covMatType, params.termCrit);
Ptr<EM> em = EM::create();
em->setClustersNumber(params.nclusters);
em->setCovarianceMatrixType(params.covMatType);
em->setTermCriteria(params.termCrit);
if( params.startStep == EM::START_AUTO_STEP )
em = EM::train( trainData, noArray(), labels, noArray(), emp );
em->trainEM( trainData, noArray(), labels, noArray() );
else if( params.startStep == EM::START_E_STEP )
em = EM::train_startWithE( trainData, *params.means, *params.covs,
*params.weights, noArray(), labels, noArray(), emp );
em->trainE( trainData, *params.means, *params.covs,
*params.weights, noArray(), labels, noArray() );
else if( params.startStep == EM::START_M_STEP )
em = EM::train_startWithM( trainData, *params.probs,
noArray(), labels, noArray(), emp );
em->trainM( trainData, *params.probs,
noArray(), labels, noArray() );
// check train error
if( !calcErr( labels, trainLabels, sizes, err , false, false ) )
@ -543,7 +546,9 @@ protected:
Mat labels;
Ptr<EM> em = EM::train(samples, noArray(), labels, noArray(), EM::Params(nclusters));
Ptr<EM> em = EM::create();
em->setClustersNumber(nclusters);
em->trainEM(samples, noArray(), labels, noArray());
Mat firstResult(samples.rows, 1, CV_32SC1);
for( int i = 0; i < samples.rows; i++)
@ -644,8 +649,13 @@ protected:
samples1.push_back(sample);
}
}
Ptr<EM> model0 = EM::train(samples0, noArray(), noArray(), noArray(), EM::Params(3));
Ptr<EM> model1 = EM::train(samples1, noArray(), noArray(), noArray(), EM::Params(3));
Ptr<EM> model0 = EM::create();
model0->setClustersNumber(3);
model0->trainEM(samples0, noArray(), noArray(), noArray());
Ptr<EM> model1 = EM::create();
model1->setClustersNumber(3);
model1->trainEM(samples1, noArray(), noArray(), noArray());
Mat trainConfusionMat(2, 2, CV_32SC1, Scalar(0)),
testConfusionMat(2, 2, CV_32SC1, Scalar(0));

@ -95,16 +95,13 @@ void CV_LRTest::run( int /*start_from*/ )
string dataFileName = ts->get_data_path() + "iris.data";
Ptr<TrainData> tdata = TrainData::loadFromCSV(dataFileName, 0);
LogisticRegression::Params params = LogisticRegression::Params();
params.alpha = 1.0;
params.num_iters = 10001;
params.norm = LogisticRegression::REG_L2;
params.regularized = 1;
params.train_method = LogisticRegression::BATCH;
params.mini_batch_size = 10;
// run LR classifier train classifier
Ptr<LogisticRegression> p = LogisticRegression::create(params);
Ptr<LogisticRegression> p = LogisticRegression::create();
p->setLearningRate(1.0);
p->setIterations(10001);
p->setRegularization(LogisticRegression::REG_L2);
p->setTrainMethod(LogisticRegression::BATCH);
p->setMiniBatchSize(10);
p->train(tdata);
// predict using the same data
@ -157,20 +154,17 @@ void CV_LRTest_SaveLoad::run( int /*start_from*/ )
Mat responses1, responses2;
Mat learnt_mat1, learnt_mat2;
LogisticRegression::Params params1 = LogisticRegression::Params();
params1.alpha = 1.0;
params1.num_iters = 10001;
params1.norm = LogisticRegression::REG_L2;
params1.regularized = 1;
params1.train_method = LogisticRegression::BATCH;
params1.mini_batch_size = 10;
// train and save the classifier
String filename = tempfile(".xml");
try
{
// run LR classifier train classifier
Ptr<LogisticRegression> lr1 = LogisticRegression::create(params1);
Ptr<LogisticRegression> lr1 = LogisticRegression::create();
lr1->setLearningRate(1.0);
lr1->setIterations(10001);
lr1->setRegularization(LogisticRegression::REG_L2);
lr1->setTrainMethod(LogisticRegression::BATCH);
lr1->setMiniBatchSize(10);
lr1->train(tdata);
lr1->predict(tdata->getSamples(), responses1);
learnt_mat1 = lr1->get_learnt_thetas();

@ -73,30 +73,14 @@ int str_to_svm_kernel_type( String& str )
return -1;
}
Ptr<SVM> svm_train_auto( Ptr<TrainData> _data, SVM::Params _params,
int k_fold, ParamGrid C_grid, ParamGrid gamma_grid,
ParamGrid p_grid, ParamGrid nu_grid, ParamGrid coef_grid,
ParamGrid degree_grid )
{
Mat _train_data = _data->getSamples();
Mat _responses = _data->getResponses();
Mat _var_idx = _data->getVarIdx();
Mat _sample_idx = _data->getTrainSampleIdx();
Ptr<SVM> svm = SVM::create(_params);
if( svm->trainAuto( _data, k_fold, C_grid, gamma_grid, p_grid, nu_grid, coef_grid, degree_grid ) )
return svm;
return Ptr<SVM>();
}
// 4. em
// 5. ann
int str_to_ann_train_method( String& str )
{
if( !str.compare("BACKPROP") )
return ANN_MLP::Params::BACKPROP;
return ANN_MLP::BACKPROP;
if( !str.compare("RPROP") )
return ANN_MLP::Params::RPROP;
return ANN_MLP::RPROP;
CV_Error( CV_StsBadArg, "incorrect ann train method string" );
return -1;
}
@ -343,16 +327,16 @@ int CV_MLBaseTest::train( int testCaseIdx )
String svm_type_str, kernel_type_str;
modelParamsNode["svm_type"] >> svm_type_str;
modelParamsNode["kernel_type"] >> kernel_type_str;
SVM::Params params;
params.svmType = str_to_svm_type( svm_type_str );
params.kernelType = str_to_svm_kernel_type( kernel_type_str );
modelParamsNode["degree"] >> params.degree;
modelParamsNode["gamma"] >> params.gamma;
modelParamsNode["coef0"] >> params.coef0;
modelParamsNode["C"] >> params.C;
modelParamsNode["nu"] >> params.nu;
modelParamsNode["p"] >> params.p;
model = SVM::create(params);
Ptr<SVM> m = SVM::create();
m->setType(str_to_svm_type( svm_type_str ));
m->setKernel(str_to_svm_kernel_type( kernel_type_str ));
m->setDegree(modelParamsNode["degree"]);
m->setGamma(modelParamsNode["gamma"]);
m->setCoef0(modelParamsNode["coef0"]);
m->setC(modelParamsNode["C"]);
m->setNu(modelParamsNode["nu"]);
m->setP(modelParamsNode["p"]);
model = m;
}
else if( modelName == CV_EM )
{
@ -371,9 +355,13 @@ int CV_MLBaseTest::train( int testCaseIdx )
data->getVarIdx(), data->getTrainSampleIdx());
int layer_sz[] = { data->getNAllVars(), 100, 100, (int)cls_map.size() };
Mat layer_sizes( 1, (int)(sizeof(layer_sz)/sizeof(layer_sz[0])), CV_32S, layer_sz );
model = ANN_MLP::create(ANN_MLP::Params(layer_sizes, ANN_MLP::SIGMOID_SYM, 0, 0,
TermCriteria(TermCriteria::COUNT,300,0.01),
str_to_ann_train_method(train_method_str), param1, param2));
Ptr<ANN_MLP> m = ANN_MLP::create();
m->setLayerSizes(layer_sizes);
m->setActivationFunction(ANN_MLP::SIGMOID_SYM, 0, 0);
m->setTermCriteria(TermCriteria(TermCriteria::COUNT,300,0.01));
m->setTrainMethod(str_to_ann_train_method(train_method_str), param1, param2);
model = m;
}
else if( modelName == CV_DTREE )
{
@ -386,8 +374,18 @@ int CV_MLBaseTest::train( int testCaseIdx )
modelParamsNode["max_categories"] >> MAX_CATEGORIES;
modelParamsNode["cv_folds"] >> CV_FOLDS;
modelParamsNode["is_pruned"] >> IS_PRUNED;
model = DTrees::create(DTrees::Params(MAX_DEPTH, MIN_SAMPLE_COUNT, REG_ACCURACY, USE_SURROGATE,
MAX_CATEGORIES, CV_FOLDS, false, IS_PRUNED, Mat() ));
Ptr<DTrees> m = DTrees::create();
m->setMaxDepth(MAX_DEPTH);
m->setMinSampleCount(MIN_SAMPLE_COUNT);
m->setRegressionAccuracy(REG_ACCURACY);
m->setUseSurrogates(USE_SURROGATE);
m->setMaxCategories(MAX_CATEGORIES);
m->setCVFolds(CV_FOLDS);
m->setUse1SERule(false);
m->setTruncatePrunedTree(IS_PRUNED);
m->setPriors(Mat());
model = m;
}
else if( modelName == CV_BOOST )
{
@ -401,7 +399,15 @@ int CV_MLBaseTest::train( int testCaseIdx )
modelParamsNode["weight_trim_rate"] >> WEIGHT_TRIM_RATE;
modelParamsNode["max_depth"] >> MAX_DEPTH;
//modelParamsNode["use_surrogate"] >> USE_SURROGATE;
model = Boost::create( Boost::Params(BOOST_TYPE, WEAK_COUNT, WEIGHT_TRIM_RATE, MAX_DEPTH, USE_SURROGATE, Mat()) );
Ptr<Boost> m = Boost::create();
m->setBoostType(BOOST_TYPE);
m->setWeakCount(WEAK_COUNT);
m->setWeightTrimRate(WEIGHT_TRIM_RATE);
m->setMaxDepth(MAX_DEPTH);
m->setUseSurrogates(USE_SURROGATE);
m->setPriors(Mat());
model = m;
}
else if( modelName == CV_RTREES )
{
@ -416,9 +422,18 @@ int CV_MLBaseTest::train( int testCaseIdx )
modelParamsNode["is_pruned"] >> IS_PRUNED;
modelParamsNode["nactive_vars"] >> NACTIVE_VARS;
modelParamsNode["max_trees_num"] >> MAX_TREES_NUM;
model = RTrees::create(RTrees::Params( MAX_DEPTH, MIN_SAMPLE_COUNT, REG_ACCURACY,
USE_SURROGATE, MAX_CATEGORIES, Mat(), true, // (calc_var_importance == true) <=> RF processes variable importance
NACTIVE_VARS, TermCriteria(TermCriteria::COUNT, MAX_TREES_NUM, OOB_EPS)));
Ptr<RTrees> m = RTrees::create();
m->setMaxDepth(MAX_DEPTH);
m->setMinSampleCount(MIN_SAMPLE_COUNT);
m->setRegressionAccuracy(REG_ACCURACY);
m->setUseSurrogates(USE_SURROGATE);
m->setMaxCategories(MAX_CATEGORIES);
m->setPriors(Mat());
m->setCalculateVarImportance(true);
m->setActiveVarCount(NACTIVE_VARS);
m->setTermCriteria(TermCriteria(TermCriteria::COUNT, MAX_TREES_NUM, OOB_EPS));
model = m;
}
if( !model.empty() )

@ -149,9 +149,8 @@ int CV_SLMLTest::validate_test_results( int testCaseIdx )
}
TEST(ML_NaiveBayes, save_load) { CV_SLMLTest test( CV_NBAYES ); test.safe_run(); }
//CV_SLMLTest lsmlknearest( CV_KNEAREST, "slknearest" ); // does not support save!
TEST(ML_KNearest, save_load) { CV_SLMLTest test( CV_KNEAREST ); test.safe_run(); }
TEST(ML_SVM, save_load) { CV_SLMLTest test( CV_SVM ); test.safe_run(); }
//CV_SLMLTest lsmlem( CV_EM, "slem" ); // does not support save!
TEST(ML_ANN, save_load) { CV_SLMLTest test( CV_ANN ); test.safe_run(); }
TEST(ML_DTree, save_load) { CV_SLMLTest test( CV_DTREE ); test.safe_run(); }
TEST(ML_Boost, save_load) { CV_SLMLTest test( CV_BOOST ); test.safe_run(); }

@ -104,34 +104,34 @@ namespace cv
*/
virtual void collectGarbage();
//! @name Scale factor
//! @brief Scale factor
CV_PURE_PROPERTY(int, Scale)
//! @name Iterations count
//! @brief Iterations count
CV_PURE_PROPERTY(int, Iterations)
//! @name Asymptotic value of steepest descent method
//! @brief Asymptotic value of steepest descent method
CV_PURE_PROPERTY(double, Tau)
//! @name Weight parameter to balance data term and smoothness term
//! @brief Weight parameter to balance data term and smoothness term
CV_PURE_PROPERTY(double, Labmda)
//! @name Parameter of spacial distribution in Bilateral-TV
//! @brief Parameter of spacial distribution in Bilateral-TV
CV_PURE_PROPERTY(double, Alpha)
//! @name Kernel size of Bilateral-TV filter
//! @brief Kernel size of Bilateral-TV filter
CV_PURE_PROPERTY(int, KernelSize)
//! @name Gaussian blur kernel size
//! @brief Gaussian blur kernel size
CV_PURE_PROPERTY(int, BlurKernelSize)
//! @name Gaussian blur sigma
//! @brief Gaussian blur sigma
CV_PURE_PROPERTY(double, BlurSigma)
//! @name Radius of the temporal search area
//! @brief Radius of the temporal search area
CV_PURE_PROPERTY(int, TemporalAreaRadius)
//! @name Dense optical flow algorithm
//! @brief Dense optical flow algorithm
CV_PURE_PROPERTY_S(Ptr<cv::superres::DenseOpticalFlowExt>, OpticalFlow)
protected:

@ -98,17 +98,17 @@ namespace cv
class CV_EXPORTS BroxOpticalFlow : public virtual DenseOpticalFlowExt
{
public:
//! @name Flow smoothness
//! @brief Flow smoothness
CV_PURE_PROPERTY(double, Alpha)
//! @name Gradient constancy importance
//! @brief Gradient constancy importance
CV_PURE_PROPERTY(double, Gamma)
//! @name Pyramid scale factor
//! @brief Pyramid scale factor
CV_PURE_PROPERTY(double, ScaleFactor)
//! @name Number of lagged non-linearity iterations (inner loop)
//! @brief Number of lagged non-linearity iterations (inner loop)
CV_PURE_PROPERTY(int, InnerIterations)
//! @name Number of warping iterations (number of pyramid levels)
//! @brief Number of warping iterations (number of pyramid levels)
CV_PURE_PROPERTY(int, OuterIterations)
//! @name Number of linear system solver iterations
//! @brief Number of linear system solver iterations
CV_PURE_PROPERTY(int, SolverIterations)
};
CV_EXPORTS Ptr<BroxOpticalFlow> createOptFlow_Brox_CUDA();

@ -328,18 +328,6 @@ Ptr<DenseOpticalFlowExt> cv::superres::createOptFlow_Simple()
namespace
{
#define CV_WRAP_PROPERTY(type, name, internal_name, internal_obj) \
type get##name() const \
{ \
return internal_obj->get##internal_name(); \
} \
void set##name(type _name) \
{ \
internal_obj->set##internal_name(_name); \
}
#define CV_WRAP_SAME_PROPERTY(type, name, internal_obj) CV_WRAP_PROPERTY(type, name, name, internal_obj)
class DualTVL1 : public CpuOpticalFlow, public virtual cv::superres::DualTVL1OpticalFlow
{
public:
@ -347,14 +335,14 @@ namespace
void calc(InputArray frame0, InputArray frame1, OutputArray flow1, OutputArray flow2);
void collectGarbage();
CV_WRAP_SAME_PROPERTY(double, Tau, alg_)
CV_WRAP_SAME_PROPERTY(double, Lambda, alg_)
CV_WRAP_SAME_PROPERTY(double, Theta, alg_)
CV_WRAP_SAME_PROPERTY(int, ScalesNumber, alg_)
CV_WRAP_SAME_PROPERTY(int, WarpingsNumber, alg_)
CV_WRAP_SAME_PROPERTY(double, Epsilon, alg_)
CV_WRAP_PROPERTY(int, Iterations, OuterIterations, alg_)
CV_WRAP_SAME_PROPERTY(bool, UseInitialFlow, alg_)
CV_WRAP_SAME_PROPERTY(double, Tau, (*alg_))
CV_WRAP_SAME_PROPERTY(double, Lambda, (*alg_))
CV_WRAP_SAME_PROPERTY(double, Theta, (*alg_))
CV_WRAP_SAME_PROPERTY(int, ScalesNumber, (*alg_))
CV_WRAP_SAME_PROPERTY(int, WarpingsNumber, (*alg_))
CV_WRAP_SAME_PROPERTY(double, Epsilon, (*alg_))
CV_WRAP_PROPERTY(int, Iterations, OuterIterations, (*alg_))
CV_WRAP_SAME_PROPERTY(bool, UseInitialFlow, (*alg_))
protected:
void impl(InputArray input0, InputArray input1, OutputArray dst);

@ -440,29 +440,29 @@ Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flo
class CV_EXPORTS_W DualTVL1OpticalFlow : public DenseOpticalFlow
{
public:
//! @name Time step of the numerical scheme
//! @brief Time step of the numerical scheme
CV_PURE_PROPERTY(double, Tau)
//! @name Weight parameter for the data term, attachment parameter
//! @brief Weight parameter for the data term, attachment parameter
CV_PURE_PROPERTY(double, Lambda)
//! @name Weight parameter for (u - v)^2, tightness parameter
//! @brief Weight parameter for (u - v)^2, tightness parameter
CV_PURE_PROPERTY(double, Theta)
//! @name coefficient for additional illumination variation term
//! @brief coefficient for additional illumination variation term
CV_PURE_PROPERTY(double, Gamma)
//! @name Number of scales used to create the pyramid of images
//! @brief Number of scales used to create the pyramid of images
CV_PURE_PROPERTY(int, ScalesNumber)
//! @name Number of warpings per scale
//! @brief Number of warpings per scale
CV_PURE_PROPERTY(int, WarpingsNumber)
//! @name Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time
//! @brief Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time
CV_PURE_PROPERTY(double, Epsilon)
//! @name Inner iterations (between outlier filtering) used in the numerical scheme
//! @brief Inner iterations (between outlier filtering) used in the numerical scheme
CV_PURE_PROPERTY(int, InnerIterations)
//! @name Outer iterations (number of inner loops) used in the numerical scheme
//! @brief Outer iterations (number of inner loops) used in the numerical scheme
CV_PURE_PROPERTY(int, OuterIterations)
//! @name Use initial flow
//! @brief Use initial flow
CV_PURE_PROPERTY(bool, UseInitialFlow)
//! @name Step between scales (<1)
//! @brief Step between scales (<1)
CV_PURE_PROPERTY(double, ScaleStep)
//! @name Median filter kernel size (1 = no filter) (3 or 5)
//! @brief Median filter kernel size (1 = no filter) (3 or 5)
CV_PURE_PROPERTY(int, MedianFiltering)
};

@ -36,9 +36,11 @@ int main( int /*argc*/, char** /*argv*/ )
samples = samples.reshape(1, 0);
// cluster the data
Ptr<EM> em_model = EM::train( samples, noArray(), labels, noArray(),
EM::Params(N, EM::COV_MAT_SPHERICAL,
TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 300, 0.1)));
Ptr<EM> em_model = EM::create();
em_model->setClustersNumber(N);
em_model->setCovarianceMatrixType(EM::COV_MAT_SPHERICAL);
em_model->setTermCriteria(TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 300, 0.1));
em_model->trainEM( samples, noArray(), labels, noArray() );
// classify every image pixel
for( i = 0; i < img.rows; i++ )

@ -178,8 +178,23 @@ build_rtrees_classifier( const string& data_filename,
{
// create classifier by using <data> and <responses>
cout << "Training the classifier ...\n";
// Params( int maxDepth, int minSampleCount,
// double regressionAccuracy, bool useSurrogates,
// int maxCategories, const Mat& priors,
// bool calcVarImportance, int nactiveVars,
// TermCriteria termCrit );
Ptr<TrainData> tdata = prepare_train_data(data, responses, ntrain_samples);
model = StatModel::train<RTrees>(tdata, RTrees::Params(10,10,0,false,15,Mat(),true,4,TC(100,0.01f)));
model = RTrees::create();
model->setMaxDepth(10);
model->setMinSampleCount(10);
model->setRegressionAccuracy(0);
model->setUseSurrogates(false);
model->setMaxCategories(15);
model->setPriors(Mat());
model->setCalculateVarImportance(true);
model->setActiveVarCount(4);
model->setTermCriteria(TC(100,0.01f));
model->train(tdata);
cout << endl;
}
@ -269,7 +284,14 @@ build_boost_classifier( const string& data_filename,
priors[1] = 26;
cout << "Training the classifier (may take a few minutes)...\n";
model = StatModel::train<Boost>(tdata, Boost::Params(Boost::GENTLE, 100, 0.95, 5, false, Mat(priors) ));
model = Boost::create();
model->setBoostType(Boost::GENTLE);
model->setWeakCount(100);
model->setWeightTrimRate(0.95);
model->setMaxDepth(5);
model->setUseSurrogates(false);
model->setPriors(Mat(priors));
model->train(tdata);
cout << endl;
}
@ -374,11 +396,11 @@ build_mlp_classifier( const string& data_filename,
Mat layer_sizes( 1, nlayers, CV_32S, layer_sz );
#if 1
int method = ANN_MLP::Params::BACKPROP;
int method = ANN_MLP::BACKPROP;
double method_param = 0.001;
int max_iter = 300;
#else
int method = ANN_MLP::Params::RPROP;
int method = ANN_MLP::RPROP;
double method_param = 0.1;
int max_iter = 1000;
#endif
@ -386,7 +408,12 @@ build_mlp_classifier( const string& data_filename,
Ptr<TrainData> tdata = TrainData::create(train_data, ROW_SAMPLE, train_responses);
cout << "Training the classifier (may take a few minutes)...\n";
model = StatModel::train<ANN_MLP>(tdata, ANN_MLP::Params(layer_sizes, ANN_MLP::SIGMOID_SYM, 0, 0, TC(max_iter,0), method, method_param));
model = ANN_MLP::create();
model->setLayerSizes(layer_sizes);
model->setActivationFunction(ANN_MLP::SIGMOID_SYM, 0, 0);
model->setTermCriteria(TC(max_iter,0));
model->setTrainMethod(method, method_param);
model->train(tdata);
cout << endl;
}
@ -403,7 +430,6 @@ build_knearest_classifier( const string& data_filename, int K )
if( !ok )
return ok;
Ptr<KNearest> model;
int nsamples_all = data.rows;
int ntrain_samples = (int)(nsamples_all*0.8);
@ -411,7 +437,10 @@ build_knearest_classifier( const string& data_filename, int K )
// create classifier by using <data> and <responses>
cout << "Training the classifier ...\n";
Ptr<TrainData> tdata = prepare_train_data(data, responses, ntrain_samples);
model = StatModel::train<KNearest>(tdata, KNearest::Params(K, true));
Ptr<KNearest> model = KNearest::create();
model->setDefaultK(K);
model->setIsClassifier(true);
model->train(tdata);
cout << endl;
test_and_save_classifier(model, data, responses, ntrain_samples, 0, string());
@ -435,7 +464,8 @@ build_nbayes_classifier( const string& data_filename )
// create classifier by using <data> and <responses>
cout << "Training the classifier ...\n";
Ptr<TrainData> tdata = prepare_train_data(data, responses, ntrain_samples);
model = StatModel::train<NormalBayesClassifier>(tdata, NormalBayesClassifier::Params());
model = NormalBayesClassifier::create();
model->train(tdata);
cout << endl;
test_and_save_classifier(model, data, responses, ntrain_samples, 0, string());
@ -471,13 +501,11 @@ build_svm_classifier( const string& data_filename,
// create classifier by using <data> and <responses>
cout << "Training the classifier ...\n";
Ptr<TrainData> tdata = prepare_train_data(data, responses, ntrain_samples);
SVM::Params params;
params.svmType = SVM::C_SVC;
params.kernelType = SVM::LINEAR;
params.C = 1;
model = StatModel::train<SVM>(tdata, params);
model = SVM::create();
model->setType(SVM::C_SVC);
model->setKernel(SVM::LINEAR);
model->setC(1);
model->train(tdata);
cout << endl;
}

@ -132,20 +132,16 @@ int main()
showImage(data_train, 28, "train data");
showImage(data_test, 28, "test data");
// simple case with batch gradient
LogisticRegression::Params params = LogisticRegression::Params(
0.001, 10, LogisticRegression::BATCH, LogisticRegression::REG_L2, 1, 1);
// simple case with mini-batch gradient
// LogisticRegression::Params params = LogisticRegression::Params(
// 0.001, 10, LogisticRegression::MINI_BATCH, LogisticRegression::REG_L2, 1, 1);
// mini-batch gradient with higher accuracy
// LogisticRegression::Params params = LogisticRegression::Params(
// 0.000001, 10, LogisticRegression::MINI_BATCH, LogisticRegression::REG_L2, 1, 1);
cout << "training...";
Ptr<StatModel> lr1 = LogisticRegression::create(params);
//! [init]
Ptr<LogisticRegression> lr1 = LogisticRegression::create();
lr1->setLearningRate(0.001);
lr1->setIterations(10);
lr1->setRegularization(LogisticRegression::REG_L2);
lr1->setTrainMethod(LogisticRegression::BATCH);
lr1->setMiniBatchSize(1);
//! [init]
lr1->train(data_train, ROW_SAMPLE, labels_train);
cout << "done!" << endl;

@ -102,7 +102,7 @@ static void predict_and_paint(const Ptr<StatModel>& model, Mat& dst)
static void find_decision_boundary_NBC()
{
// learn classifier
Ptr<NormalBayesClassifier> normalBayesClassifier = StatModel::train<NormalBayesClassifier>(prepare_train_data(), NormalBayesClassifier::Params());
Ptr<NormalBayesClassifier> normalBayesClassifier = StatModel::train<NormalBayesClassifier>(prepare_train_data());
predict_and_paint(normalBayesClassifier, imgDst);
}
@ -112,15 +112,29 @@ static void find_decision_boundary_NBC()
#if _KNN_
static void find_decision_boundary_KNN( int K )
{
Ptr<KNearest> knn = StatModel::train<KNearest>(prepare_train_data(), KNearest::Params(K, true));
Ptr<KNearest> knn = KNearest::create();
knn->setDefaultK(K);
knn->setIsClassifier(true);
knn->train(prepare_train_data());
predict_and_paint(knn, imgDst);
}
#endif
#if _SVM_
static void find_decision_boundary_SVM( SVM::Params params )
static void find_decision_boundary_SVM( double C )
{
Ptr<SVM> svm = StatModel::train<SVM>(prepare_train_data(), params);
Ptr<SVM> svm = SVM::create();
svm->setType(SVM::C_SVC);
svm->setKernel(SVM::POLY); //SVM::LINEAR;
svm->setDegree(0.5);
svm->setGamma(1);
svm->setCoef0(1);
svm->setNu(0.5);
svm->setP(0);
svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 1000, 0.01));
svm->setC(C);
svm->train(prepare_train_data());
predict_and_paint(svm, imgDst);
Mat sv = svm->getSupportVectors();
@ -135,16 +149,14 @@ static void find_decision_boundary_SVM( SVM::Params params )
#if _DT_
static void find_decision_boundary_DT()
{
DTrees::Params params;
params.maxDepth = 8;
params.minSampleCount = 2;
params.useSurrogates = false;
params.CVFolds = 0; // the number of cross-validation folds
params.use1SERule = false;
params.truncatePrunedTree = false;
Ptr<DTrees> dtree = StatModel::train<DTrees>(prepare_train_data(), params);
Ptr<DTrees> dtree = DTrees::create();
dtree->setMaxDepth(8);
dtree->setMinSampleCount(2);
dtree->setUseSurrogates(false);
dtree->setCVFolds(0); // the number of cross-validation folds
dtree->setUse1SERule(false);
dtree->setTruncatePrunedTree(false);
dtree->train(prepare_train_data());
predict_and_paint(dtree, imgDst);
}
#endif
@ -152,15 +164,14 @@ static void find_decision_boundary_DT()
#if _BT_
static void find_decision_boundary_BT()
{
Boost::Params params( Boost::DISCRETE, // boost_type
100, // weak_count
0.95, // weight_trim_rate
2, // max_depth
false, //use_surrogates
Mat() // priors
);
Ptr<Boost> boost = StatModel::train<Boost>(prepare_train_data(), params);
Ptr<Boost> boost = Boost::create();
boost->setBoostType(Boost::DISCRETE);
boost->setWeakCount(100);
boost->setWeightTrimRate(0.95);
boost->setMaxDepth(2);
boost->setUseSurrogates(false);
boost->setPriors(Mat());
boost->train(prepare_train_data());
predict_and_paint(boost, imgDst);
}
@ -185,18 +196,17 @@ static void find_decision_boundary_GBT()
#if _RF_
static void find_decision_boundary_RF()
{
RTrees::Params params( 4, // max_depth,
2, // min_sample_count,
0.f, // regression_accuracy,
false, // use_surrogates,
16, // max_categories,
Mat(), // priors,
false, // calc_var_importance,
1, // nactive_vars,
TermCriteria(TermCriteria::MAX_ITER, 5, 0) // max_num_of_trees_in_the_forest,
);
Ptr<RTrees> rtrees = StatModel::train<RTrees>(prepare_train_data(), params);
Ptr<RTrees> rtrees = RTrees::create();
rtrees->setMaxDepth(4);
rtrees->setMinSampleCount(2);
rtrees->setRegressionAccuracy(0.f);
rtrees->setUseSurrogates(false);
rtrees->setMaxCategories(16);
rtrees->setPriors(Mat());
rtrees->setCalculateVarImportance(false);
rtrees->setActiveVarCount(1);
rtrees->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, 5, 0));
rtrees->train(prepare_train_data());
predict_and_paint(rtrees, imgDst);
}
@ -205,9 +215,6 @@ static void find_decision_boundary_RF()
#if _ANN_
static void find_decision_boundary_ANN( const Mat& layer_sizes )
{
ANN_MLP::Params params(layer_sizes, ANN_MLP::SIGMOID_SYM, 1, 1, TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 300, FLT_EPSILON),
ANN_MLP::Params::BACKPROP, 0.001);
Mat trainClasses = Mat::zeros( (int)trainedPoints.size(), (int)classColors.size(), CV_32FC1 );
for( int i = 0; i < trainClasses.rows; i++ )
{
@ -217,7 +224,12 @@ static void find_decision_boundary_ANN( const Mat& layer_sizes )
Mat samples = prepare_train_samples(trainedPoints);
Ptr<TrainData> tdata = TrainData::create(samples, ROW_SAMPLE, trainClasses);
Ptr<ANN_MLP> ann = StatModel::train<ANN_MLP>(tdata, params);
Ptr<ANN_MLP> ann = ANN_MLP::create();
ann->setLayerSizes(layer_sizes);
ann->setActivationFunction(ANN_MLP::SIGMOID_SYM, 1, 1);
ann->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 300, FLT_EPSILON));
ann->setTrainMethod(ANN_MLP::BACKPROP, 0.001);
ann->train(tdata);
predict_and_paint(ann, imgDst);
}
#endif
@ -247,8 +259,11 @@ static void find_decision_boundary_EM()
// learn models
if( !modelSamples.empty() )
{
em_models[i] = EM::train(modelSamples, noArray(), noArray(), noArray(),
EM::Params(componentCount, EM::COV_MAT_DIAGONAL));
Ptr<EM> em = EM::create();
em->setClustersNumber(componentCount);
em->setCovarianceMatrixType(EM::COV_MAT_DIAGONAL);
em->trainEM(modelSamples, noArray(), noArray(), noArray());
em_models[i] = em;
}
}
@ -332,33 +347,20 @@ int main()
imshow( "NormalBayesClassifier", imgDst );
#endif
#if _KNN_
int K = 3;
find_decision_boundary_KNN( K );
find_decision_boundary_KNN( 3 );
imshow( "kNN", imgDst );
K = 15;
find_decision_boundary_KNN( K );
find_decision_boundary_KNN( 15 );
imshow( "kNN2", imgDst );
#endif
#if _SVM_
//(1)-(2)separable and not sets
SVM::Params params;
params.svmType = SVM::C_SVC;
params.kernelType = SVM::POLY; //CvSVM::LINEAR;
params.degree = 0.5;
params.gamma = 1;
params.coef0 = 1;
params.C = 1;
params.nu = 0.5;
params.p = 0;
params.termCrit = TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS, 1000, 0.01);
find_decision_boundary_SVM( params );
find_decision_boundary_SVM( 1 );
imshow( "classificationSVM1", imgDst );
params.C = 10;
find_decision_boundary_SVM( params );
find_decision_boundary_SVM( 10 );
imshow( "classificationSVM2", imgDst );
#endif

@ -141,7 +141,7 @@ Mat get_hogdescriptor_visu(const Mat& color_origImg, vector<float>& descriptorVa
int cellSize = 8;
int gradientBinSize = 9;
float radRangeForOneBin = (float)(CV_PI/(float)gradientBinSize); // dividing 180° into 9 bins, how large (in rad) is one bin?
float radRangeForOneBin = (float)(CV_PI/(float)gradientBinSize); // dividing 180 into 9 bins, how large (in rad) is one bin?
// prepare data structure: 9 orientation / gradient strenghts for each cell
int cells_in_x_dir = DIMX / cellSize;
@ -313,23 +313,23 @@ void compute_hog( const vector< Mat > & img_lst, vector< Mat > & gradient_lst, c
void train_svm( const vector< Mat > & gradient_lst, const vector< int > & labels )
{
/* Default values to train SVM */
SVM::Params params;
params.coef0 = 0.0;
params.degree = 3;
params.termCrit.epsilon = 1e-3;
params.gamma = 0;
params.kernelType = SVM::LINEAR;
params.nu = 0.5;
params.p = 0.1; // for EPSILON_SVR, epsilon in loss function?
params.C = 0.01; // From paper, soft classifier
params.svmType = SVM::EPS_SVR; // C_SVC; // EPSILON_SVR; // may be also NU_SVR; // do regression task
Mat train_data;
convert_to_ml( gradient_lst, train_data );
clog << "Start training...";
Ptr<SVM> svm = StatModel::train<SVM>(train_data, ROW_SAMPLE, Mat(labels), params);
Ptr<SVM> svm = SVM::create();
/* Default values to train SVM */
svm->setCoef0(0.0);
svm->setDegree(3);
svm->setTermCriteria(TermCriteria( CV_TERMCRIT_ITER+CV_TERMCRIT_EPS, 1000, 1e-3 ));
svm->setGamma(0);
svm->setKernel(SVM::LINEAR);
svm->setNu(0.5);
svm->setP(0.1); // for EPSILON_SVR, epsilon in loss function?
svm->setC(0.01); // From paper, soft classifier
svm->setType(SVM::EPS_SVR); // C_SVC; // EPSILON_SVR; // may be also NU_SVR; // do regression task
svm->train(train_data, ROW_SAMPLE, Mat(labels));
clog << "...[done]" << endl;
svm->save( "my_people_detector.yml" );

@ -73,18 +73,42 @@ int main(int argc, char** argv)
data->setTrainTestSplitRatio(train_test_split_ratio);
printf("======DTREE=====\n");
Ptr<DTrees> dtree = DTrees::create(DTrees::Params( 10, 2, 0, false, 16, 0, false, false, Mat() ));
Ptr<DTrees> dtree = DTrees::create();
dtree->setMaxDepth(10);
dtree->setMinSampleCount(2);
dtree->setRegressionAccuracy(0);
dtree->setUseSurrogates(false);
dtree->setMaxCategories(16);
dtree->setCVFolds(0);
dtree->setUse1SERule(false);
dtree->setTruncatePrunedTree(false);
dtree->setPriors(Mat());
train_and_print_errs(dtree, data);
if( (int)data->getClassLabels().total() <= 2 ) // regression or 2-class classification problem
{
printf("======BOOST=====\n");
Ptr<Boost> boost = Boost::create(Boost::Params(Boost::GENTLE, 100, 0.95, 2, false, Mat()));
Ptr<Boost> boost = Boost::create();
boost->setBoostType(Boost::GENTLE);
boost->setWeakCount(100);
boost->setWeightTrimRate(0.95);
boost->setMaxDepth(2);
boost->setUseSurrogates(false);
boost->setPriors(Mat());
train_and_print_errs(boost, data);
}
printf("======RTREES=====\n");
Ptr<RTrees> rtrees = RTrees::create(RTrees::Params(10, 2, 0, false, 16, Mat(), false, 0, TermCriteria(TermCriteria::MAX_ITER, 100, 0)));
Ptr<RTrees> rtrees = RTrees::create();
rtrees->setMaxDepth(10);
rtrees->setMinSampleCount(2);
rtrees->setRegressionAccuracy(0);
rtrees->setUseSurrogates(false);
rtrees->setMaxCategories(16);
rtrees->setPriors(Mat());
rtrees->setCalculateVarImportance(false);
rtrees->setActiveVarCount(0);
rtrees->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, 100, 0));
train_and_print_errs(rtrees, data);
return 0;

@ -14,23 +14,30 @@ int main(int, char**)
Mat image = Mat::zeros(height, width, CV_8UC3);
// Set up training data
//! [setup1]
int labels[4] = {1, -1, -1, -1};
Mat labelsMat(4, 1, CV_32SC1, labels);
float trainingData[4][2] = { {501, 10}, {255, 10}, {501, 255}, {10, 501} };
//! [setup1]
//! [setup2]
Mat trainingDataMat(4, 2, CV_32FC1, trainingData);
Mat labelsMat(4, 1, CV_32SC1, labels);
//! [setup2]
// Set up SVM's parameters
SVM::Params params;
params.svmType = SVM::C_SVC;
params.kernelType = SVM::LINEAR;
params.termCrit = TermCriteria(TermCriteria::MAX_ITER, 100, 1e-6);
// Train the SVM
Ptr<SVM> svm = StatModel::train<SVM>(trainingDataMat, ROW_SAMPLE, labelsMat, params);
//! [init]
Ptr<SVM> svm = SVM::create();
svm->setType(SVM::C_SVC);
svm->setKernel(SVM::LINEAR);
svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, 100, 1e-6));
//! [init]
//! [train]
svm->train(trainingDataMat, ROW_SAMPLE, labelsMat);
//! [train]
Vec3b green(0,255,0), blue (255,0,0);
// Show the decision regions given by the SVM
//! [show]
Vec3b green(0,255,0), blue (255,0,0);
for (int i = 0; i < image.rows; ++i)
for (int j = 0; j < image.cols; ++j)
{
@ -42,16 +49,20 @@ int main(int, char**)
else if (response == -1)
image.at<Vec3b>(i,j) = blue;
}
//! [show]
// Show the training data
//! [show_data]
int thickness = -1;
int lineType = 8;
circle( image, Point(501, 10), 5, Scalar( 0, 0, 0), thickness, lineType );
circle( image, Point(255, 10), 5, Scalar(255, 255, 255), thickness, lineType );
circle( image, Point(501, 255), 5, Scalar(255, 255, 255), thickness, lineType );
circle( image, Point( 10, 501), 5, Scalar(255, 255, 255), thickness, lineType );
//! [show_data]
// Show support vectors
//! [show_vectors]
thickness = 2;
lineType = 8;
Mat sv = svm->getSupportVectors();
@ -61,6 +72,7 @@ int main(int, char**)
const float* v = sv.ptr<float>(i);
circle( image, Point( (int) v[0], (int) v[1]), 6, Scalar(128, 128, 128), thickness, lineType);
}
//! [show_vectors]
imwrite("result.png", image); // save the image

@ -39,6 +39,7 @@ int main()
// Set up the linearly separable part of the training data
int nLinearSamples = (int) (FRAC_LINEAR_SEP * NTRAINING_SAMPLES);
//! [setup1]
// Generate random points for the class 1
Mat trainClass = trainData.rowRange(0, nLinearSamples);
// The x coordinate of the points is in [0, 0.4)
@ -56,9 +57,10 @@ int main()
// The y coordinate of the points is in [0, 1)
c = trainClass.colRange(1,2);
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));
//! [setup1]
//------------------ Set up the non-linearly separable part of the training data ---------------
//! [setup2]
// Generate random points for the classes 1 and 2
trainClass = trainData.rowRange( nLinearSamples, 2*NTRAINING_SAMPLES-nLinearSamples);
// The x coordinate of the points is in [0.4, 0.6)
@ -67,24 +69,28 @@ int main()
// The y coordinate of the points is in [0, 1)
c = trainClass.colRange(1,2);
rng.fill(c, RNG::UNIFORM, Scalar(1), Scalar(HEIGHT));
//! [setup2]
//------------------------- Set up the labels for the classes ---------------------------------
labels.rowRange( 0, NTRAINING_SAMPLES).setTo(1); // Class 1
labels.rowRange(NTRAINING_SAMPLES, 2*NTRAINING_SAMPLES).setTo(2); // Class 2
//------------------------ 2. Set up the support vector machines parameters --------------------
SVM::Params params;
params.svmType = SVM::C_SVC;
params.C = 0.1;
params.kernelType = SVM::LINEAR;
params.termCrit = TermCriteria(TermCriteria::MAX_ITER, (int)1e7, 1e-6);
//------------------------ 3. Train the svm ----------------------------------------------------
cout << "Starting training process" << endl;
Ptr<SVM> svm = StatModel::train<SVM>(trainData, ROW_SAMPLE, labels, params);
//! [init]
Ptr<SVM> svm = SVM::create();
svm->setType(SVM::C_SVC);
svm->setC(0.1);
svm->setKernel(SVM::LINEAR);
svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, (int)1e7, 1e-6));
//! [init]
//! [train]
svm->train(trainData, ROW_SAMPLE, labels);
//! [train]
cout << "Finished training process" << endl;
//------------------------ 4. Show the decision regions ----------------------------------------
//! [show]
Vec3b green(0,100,0), blue (100,0,0);
for (int i = 0; i < I.rows; ++i)
for (int j = 0; j < I.cols; ++j)
@ -95,8 +101,10 @@ int main()
if (response == 1) I.at<Vec3b>(j, i) = green;
else if (response == 2) I.at<Vec3b>(j, i) = blue;
}
//! [show]
//----------------------- 5. Show the training data --------------------------------------------
//! [show_data]
int thick = -1;
int lineType = 8;
float px, py;
@ -114,8 +122,10 @@ int main()
py = trainData.at<float>(i,1);
circle(I, Point( (int) px, (int) py ), 3, Scalar(255, 0, 0), thick, lineType);
}
//! [show_data]
//------------------------- 6. Show support vectors --------------------------------------------
//! [show_vectors]
thick = 2;
lineType = 8;
Mat sv = svm->getSupportVectors();
@ -125,6 +135,7 @@ int main()
const float* v = sv.ptr<float>(i);
circle( I, Point( (int) v[0], (int) v[1]), 6, Scalar(128, 128, 128), thick, lineType);
}
//! [show_vectors]
imwrite("result.png", I); // save the Image
imshow("SVM for Non-Linear Training Data", I); // show it to the user

Loading…
Cancel
Save