Merge pull request #17919 from zhaoyue-zephyrus:flownet2_with_anysize

pull/18211/head
Alexander Alekhin 4 years ago
commit 792722865f
  1. 24
      modules/dnn/src/layers/scale_layer.cpp
  2. 2
      modules/dnn/test/test_layers.cpp
  3. 30
      samples/dnn/optical_flow.py

@ -15,6 +15,7 @@ Implementation of Scale layer.
#include "../op_inf_engine.hpp"
#include "../ie_ngraph.hpp"
#include <opencv2/imgproc.hpp>
#include <opencv2/dnn/shape_utils.hpp>
namespace cv
@ -324,7 +325,7 @@ public:
std::vector<MatShape> &internals) const CV_OVERRIDE
{
CV_Assert_N(inputs.size() == 1, blobs.size() == 3);
CV_Assert_N(blobs[0].total() == 1, blobs[1].total() == total(inputs[0], 1),
CV_Assert_N(blobs[0].total() == 1,
blobs[2].total() == inputs[0][1]);
outputs.assign(1, inputs[0]);
@ -347,15 +348,20 @@ public:
float* outData = outputs[0].ptr<float>();
Mat data_mean_cpu = blobs[1].clone();
Mat mean_resize = Mat(inputs[0].size[3], inputs[0].size[2], CV_32FC3);
Mat mean_3d = Mat(data_mean_cpu.size[3], data_mean_cpu.size[2], CV_32FC3, data_mean_cpu.ptr<float>(0));
resize(mean_3d, mean_resize, Size(inputs[0].size[3], inputs[0].size[2]));
int new_size[] = {1, mean_resize.channels(), mean_resize.cols, mean_resize.rows};
Mat data_mean_cpu_resize = mean_resize.reshape(1, *new_size);
Mat data_mean_per_channel_cpu = blobs[2].clone();
const int numWeights = data_mean_cpu.total();
const int numWeights = data_mean_cpu_resize.total();
CV_Assert(numWeights != 0);
++num_iter;
if (num_iter <= recompute_mean)
{
data_mean_cpu *= (num_iter - 1);
data_mean_cpu_resize *= (num_iter - 1);
const int batch = inputs[0].size[0];
float alpha = 1.0 / batch;
@ -364,15 +370,15 @@ public:
Mat inpSlice(1, numWeights, CV_32F, inpData);
inpSlice = alpha * inpSlice;
add(data_mean_cpu.reshape(1, 1), inpSlice, data_mean_cpu.reshape(1, 1));
add(data_mean_cpu_resize.reshape(1, 1), inpSlice, data_mean_cpu_resize.reshape(1, 1));
inpData += numWeights;
}
data_mean_cpu *= (1.0 / num_iter);
data_mean_cpu_resize *= (1.0 / num_iter);
int newsize[] = {blobs[1].size[1], (int)blobs[1].total(2)};
reduce(data_mean_cpu.reshape(1, 2, &newsize[0]), data_mean_per_channel_cpu, 1, REDUCE_SUM, CV_32F);
int newsize[] = {inputs[0].size[1], (int)inputs[0].total(2)};
reduce(data_mean_cpu_resize.reshape(1, 2, &newsize[0]), data_mean_per_channel_cpu, 1, REDUCE_SUM, CV_32F);
int area = blobs[1].total(2);
int area = inputs[0].total(2);
data_mean_per_channel_cpu *= (1.0 / area);
}
@ -387,7 +393,7 @@ public:
Mat inpSlice(1, numWeights, CV_32F, inpData);
Mat outSlice(1, numWeights, CV_32F, outData);
add(inpSlice, (-1) * data_mean_cpu, outSlice);
add(inpSlice, (-1) * data_mean_cpu_resize, outSlice);
inpData += numWeights;
outData += numWeights;
}

@ -646,6 +646,8 @@ TEST_P(Test_Caffe_layers, DataAugmentation)
if (backend == DNN_BACKEND_OPENCV && target == DNN_TARGET_OPENCL_FP16)
applyTestTag(CV_TEST_TAG_DNN_SKIP_OPENCL_FP16);
testLayerUsingCaffeModels("data_augmentation", true, false);
testLayerUsingCaffeModels("data_augmentation_2x1", true, false);
testLayerUsingCaffeModels("data_augmentation_8x6", true, false);
}
TEST_P(Test_Caffe_layers, Resample)

@ -5,7 +5,7 @@ Original paper: https://arxiv.org/abs/1612.01925.
Original repo: https://github.com/lmb-freiburg/flownet2.
Download the converted .caffemodel model from https://drive.google.com/open?id=16qvE9VNmU39NttpZwZs81Ga8VYQJDaWZ
and .prototxt from https://drive.google.com/open?id=19bo6SWU2p8ZKvjXqMKiCPdK8mghwDy9b.
and .prototxt from https://drive.google.com/file/d/1RyNIUsan1ZOh2hpYIH36A-jofAvJlT6a/view?usp=sharing.
Otherwise download original model from https://lmb.informatik.uni-freiburg.de/resources/binaries/flownet2/flownet2-models.tar.gz,
convert .h5 model to .caffemodel and modify original .prototxt using .prototxt from link above.
'''
@ -18,7 +18,7 @@ import cv2 as cv
class OpticalFlow(object):
def __init__(self, proto, model, height, width):
self.net = cv.dnn.readNet(proto, model)
self.net = cv.dnn.readNetFromCaffe(proto, model)
self.net.setPreferableBackend(cv.dnn.DNN_BACKEND_OPENCV)
self.height = height
self.width = width
@ -62,9 +62,9 @@ if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Use this script to calculate optical flow using FlowNetv2',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('-input', '-i', required=True, help='Path to input video file. Skip this argument to capture frames from a camera.')
parser.add_argument('--height', default=320, help='Input height')
parser.add_argument('--width', default=448, help='Input width')
parser.add_argument('--proto', '-p', default='FlowNet2_deploy.prototxt', help='Path to prototxt.')
parser.add_argument('--height', default=320, type=int, help='Input height')
parser.add_argument('--width', default=448, type=int, help='Input width')
parser.add_argument('--proto', '-p', default='FlowNet2_deploy_anysize.prototxt', help='Path to prototxt.')
parser.add_argument('--model', '-m', default='FlowNet2_weights.caffemodel', help='Path to caffemodel.')
args, _ = parser.parse_known_args()
@ -75,7 +75,25 @@ if __name__ == '__main__':
cv.namedWindow(winName, cv.WINDOW_NORMAL)
cap = cv.VideoCapture(args.input if args.input else 0)
hasFrame, first_frame = cap.read()
opt_flow = OpticalFlow(args.proto, args.model, args.height, args.width)
divisor = 64.
var = {}
var['ADAPTED_WIDTH'] = int(np.ceil(args.width/divisor) * divisor)
var['ADAPTED_HEIGHT'] = int(np.ceil(args.height/divisor) * divisor)
var['SCALE_WIDTH'] = args.width / float(var['ADAPTED_WIDTH'])
var['SCALE_HEIGHT'] = args.height / float(var['ADAPTED_HEIGHT'])
config = ''
proto = open(args.proto).readlines()
for line in proto:
for key, value in var.items():
tag = "$%s$" % key
line = line.replace(tag, str(value))
config += line
caffemodel = open(args.model, 'rb').read()
opt_flow = OpticalFlow(bytearray(config.encode()), caffemodel, var['ADAPTED_HEIGHT'], var['ADAPTED_WIDTH'])
while cv.waitKey(1) < 0:
hasFrame, second_frame = cap.read()
if not hasFrame:

Loading…
Cancel
Save